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20.1 IntroductionMarkov chain simulation, and Bayesian ideas in general, allow a wonder-fully exible treatment of probability models. In this chapter, we discusstwo related ideas: (1) checking the �t of a model to data, and (2) im-proving a model by adding substantively meaningful parameters. Modelimprovement by expansion is also an important technique in assessing thesensitivity of inferences to untestable assumptions. We illustrate both thesemethods with an example of a mixture model �t to experimental data frompsychology using the Gibbs sampler.Any Markov chain simulation is conditional on an assumed probabilitymodel. As the applied chapters of this book illustrate, these models canbe complicated and generally rely on inherently unveri�able assumptions.From a practical standpoint, then, it is important to explore how infer-ences of substantive interest depend on the assumptions, and to test theassumptions where possible.0.2 Model checking using posterior predictive simulationBayesian prior-to-posterior analysis conditions on the whole structure (like-lihood and prior distribution) of a probability model and can yield verymisleading inferences when the model is far from reality. A good Bayesiananalysis, therefore, should at least check to see if the �t of the model to thedata is so poor that the model should be rejected without other evidence.In the classical setting, this checking is often facilitated by a goodness-of-�ttest, which quanti�es the extremeness of the observed value of a selectedmeasure of discrepancy (e.g., di�erences between observations and predic-tions) by calculating a tail-area probability given that the model underconsideration is true. In this section, we discuss how to employ a Bayesiantest of model �t using the posterior predictive distribution.In the classical approach, test statistics cannot depend on any unknownquantities and so comparisons are actually made between the data andthe best-�tting model from within a family of models (typically obtainedvia maximum likelihood). The p-value for the test is determined based onthe sampling distribution of the data under the model. The main tech-nical problem with the classical method is that, in general, the p-valuedepends on the unknown parameters unless we restrict attention to teststatistics that are pivotal. Unfortunately, as is well known, most usefulstatistics are not pivotal, especially with complex models. The Bayesianformulation naturally allows the test statistic to be a function of both dataand unknown parameters, and thus allow more direct comparisons betweenthe sample and population characteristics. In the frequentist setting, usingparameter-dependent test statistics was largely promoted recently by Tsuiand Weerahandi (1989), who called such test statistics \test variables."



MODEL CHECKING USING POSTERIOR PREDICTIVE SIMULATION 3Here we discuss model checking using posterior predictive tests, whichwas �rst proposed and applied by Guttman (1967) and Rubin (1981, 1984).Recently, Gelman, Meng, and Stern (1993) provide a general discussionof this method, with special emphasis of using test variables rather thantraditional test statistics. They also present several applications and sometheoretical properties of the method and compare to the prior predictivetest of Box (1980). Meng (1994) presents a similar discussion of the use ofposterior predictive p-values for testing hypotheses of parameters within agiven model.The posterior predictive model checking goes as follows. Let y be theobserved data, � be the vector of unknown parameters in the model (in-cluding any hierarchical parameters), p(yj�) be the likelihood, and p(�jy)be the posterior distribution. We assume that we have already obtaineddraws �1; : : : ; �N from the posterior distribution, possibly using Markovchain simulation. We now draw simulations from hypothetical replicationsof the data, which we label yrep1 ; : : : ; yrepN . For each i = 1; : : : ; N , we drawyrepi from the sampling distribution given the simulated parameters �i.Creating simulations yrep is the old idea of comparing data to simulationsfrom a model, with the Bayesian twist that the parameters of the modelare themselves drawn from their posterior distribution.If the model is reasonably accurate, the hypothetical replications shouldlook similar to the observed data y. Formally, one can compare the data tothe predictive distribution by choosing a test variable, T (y; �), and comput-ing the p-value, the proportion of cases in which the simulated test variablesexceeds the realized value:estimated p-value = 1N NXi=1 IT (yrepi ;�i)>T (y;�i);where I is the indicator function. We call T (y; �) a \realized value" becauseit is realized by the observed data y, although it cannot be observed when Tdepends on unknown parameters. In the special case that the test variabledepends only on data and not on parameters, and thus can be written T (y),we call it a test statistic, as in the classical usage.In practice, we often can visually examine the posterior predictive dis-tribution of the test variable as it compares to the realized value. If thetest variable depends only on data and not on the parameters, �, thenone can plot a histogram of the posterior predictive distribution of T (yrep)and compare it to the observed value, T (y). A good �t is indicated by anobserved value near the center of the histogram. If the test variable is afunction of data and parameters, one can plot a scatterplot of the realizedvalues, T (y; �i), versus the predictive values, T (yrepi ; �i). A good �t is indi-cated by about half the points in the scatterplot falling above the 45� lineand half falling below.



4 The test variable can be any function of data and parameters. It is mostuseful to choose a test variable that measures some aspect of the data thatmight not accurately be �t by the model. For example, if one is concernedwith outliers in a normal regression model, a sometimes useful test variableis the proportion of residuals that are more than three standard deviationsaway from zero. If one is concerned about overall lack of �t in a contingencytable model, a �2 discrepancy measure can be used (see Gelman,Meng, andStern, 1993). One of course can use more than one test variable to checkdi�erent aspects of the �tness. An advantage of Monte Carlo is that thesame set of simulations of (�; yrep) can be used for checking the posteriorpredictive distribution of many test variables.A model does not �t the data if the realized values for some meaningfultest variable are far from the predictive distribution; the discrepancy cannotreasonably be explained by chance if the tail-area probability is close to 0or 1. The p-values are actual posterior probabilities and can therefore beinterpreted directly|not as the posterior probability of the model beingtrue. The role of predictive model checking is to assess the practical �t of amodel, not to estimate the \probability that the model is true," whateverthat means. We may choose to work with an invalidated model but weshould be aware of its de�ciencies. On the other hand, a lack of rejectionshould not be interpreted as \acceptance" of the model, but rather as asign that the model adequately �ts the aspect of the data being tested.Major failures of the model can be addressed by expanding the model,as we discuss in the next section. Lesser failures may also suggest modelimprovements or might be ignored in the short term if the failure appearsnot to a�ect the main inferences. In some cases, even extreme p-valuesmay be ignored if the mis�t of the model is substantively small comparedto variation within the model. It is important not to interpret p-valuesas numerical \evidence." For example, a p-value of 0.00001 is virtually nostronger, in practice, than 0.001; in either case, the aspect of the datameasured by the test variables is inconsistent with the model. A slightimprovement in the model (or correction of a data coding error!) couldbring either p-value to a reasonable range (between 0.05 and 0.95, say).0.3 Model improvement via expansion and averagingWe will address two issues that are mathematically and statistically essen-tially the same: expanding a model that is already set up on the computerand has been estimated from the data, and averaging several competingmodels that have been estimated from the same data. The latter problemis sometimes posed as \model selection," but from the perspectives of bothBayesian methodology and Markov chain computation, it is more naturalto think of averaging over a mixture of several models, rather than choosinga single distribution with certainty.



MODEL IMPROVEMENT VIA EXPANSION AND AVERAGING 5There are three natural reasons to expand a model. First, if the modelclearly does not �t the data or prior knowledge, it should be improvedin some way, possibly by adding new parameters to allow a better �t.Second, if a modeling assumption is particularly questionable, it may berelaxed. For example, a set of parameters that are �xed to equality may bereplaced by a random e�ects model. Third, a model may be embedded intoa larger model to address more general applied questions; for example, anstudy previously analyzed on its own may be inserted into a hierarchicalpopulation model (e.g., Rubin, 1981). The goal of our model expansionis not merely to �t the data, but rather to improve the model to bettercapture the substantive structures. Thus, when one adds new parameters,a key requirement is that these parameters should have clear substantivemeaning. This point is illustrated in our example in the next section.All these applications of model expansion have the same mathematicalstructure: the old model, p(�), is replaced by a new model, p(�; �), in whichboth � and � may be vectors. In Bayesian notation, the posterior distribu-tion p(�jy) is replaced by p(�; �jy), with a prior distribution required for theadditional parameters �. Assuming that the original model in � has alreadybeen programmed for Markov chain simulation, one can immediately usethe Gibbs sampler to draw samples from the joint distribution, p(�; �jy).The step of drawing from p(�j�; y) is just the problem of drawing fromp(�jy) in the individual model identi�ed by �. The only new step requiredis sampling from among the models, given data and parameters: p(�j�; y).If the model class has no simple form, this additional simulation can beperformed using a Metropolis step.For instance, suppose we are interested in the sensitivity of a data analy-sis with possible outliers to a model with an assumed normal distribution.A natural expansion would be to replace the normal by a Student-t withunknown degrees of freedom, �. For a Bayesian analysis, a prior distribu-tion must be assumed for �; a reasonable noninformative prior density isuniform in 1=�; or, after transformation, p(�) / 1=�2, with the t distribu-tions restricted to the range � � 1, so that the limits are the Cauchy andnormal distributions. (The uniform prior density on � may seems reason-able at �rst, but it actually has essentially all its mass \near" � =1, whichcorresponds to the normal distribution.) The Markov chain simulation forthe Student-t model is now obtained by altering the simulations based onthe normal model to simulations conditional on �, and an added step todraw �. Since the t distributions are not conjugate, it is probably easiestto use the Metropolis algorithm to correct for draws based on the normaldistribution at each Gibbs step.Additional technique is required to average over, or choose among, a setof models that do not follow a single parametric family.With no parametersin common, the above Gibbs approach makes no sense. Carlin and Chib(1993) present a clever solution, de�ning a joint distribution on the space



6of models and the union of all the model parameters and applying theGibbs sampling to a larger space. When averaging over models that arenot part of a single parametric family, or models that have di�erent setsof parameters, the above methods only work when the individual modelshave proper prior distributions. Kass and Raftery (1994) discuss this pointand review some methods that have been proposed for circumventing thisdi�culty.0.4 Example: hierarchical mixture modeling for reaction-timedataNeither model checking or model expansion is enough by itself. Once lackof �t has been found, the next step is to �nd a model that improves the �t,with the requirement that the new model should at least as interpretablesubstantively as the old one. On the other hand, model expansion alonecan never reveal lack of �t of the larger, expanded model. In this example,we illustrate how model checking and expansion can be used in tandem.The data and the basic model, �t by the Gibbs samplerBelin and Rubin (1990) describe an experiment from psychology measuringthirty reaction times for each of seventeen subjects: eleven non-schizophren-ics and six schizophrenics. Belin and Rubin (1994) �t several probabilitymodels using maximum likelihood; we describe their approach and �t re-lated Bayesian models. Computation with the Gibbs sampler allows us to�t more realistic hierarchical models to the dataset.The data are presented in Figure 0.1. It is clear that the response timesare higher on average for schizophrenics. In addition, the response times forat least some of the schizophrenic individuals are considerably more vari-able than the response times for the non-schizophrenic individuals. Currentpsychological theory suggests a model in which schizophrenics su�er froman attentional de�cit on some trials, as well as a general motor reex retar-dation; both aspects lead to a delay in the schizophrenics' responses, withmotor retardation a�ecting all trials and attentional de�ciency only some.To address the questions of scienti�c interest, the following basic modelwas �t. Response times for non-schizophrenics are thought of as arisingfrom a normal random e�ects model, in which the responses of personi = 1; : : : ; 11 are normally distributed with distinct person mean �i andcommon variance �2obs. To reect the attentional de�ciency, the responsesfor each schizophrenic individual i = 12; : : : ; 17 were �t to a two-componentmixture: with probability (1 � �), there is no delay and the response isnormally distributed with mean �i and variance �2obs, and with probability�, responses are delayed, with observations having a mean of �i + � andthe same variance. Because the reaction times are all positive and their



EXAMPLE: HIERARCHICAL MIXTURE MODELING FOR REACTION-TIME DATA7
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5.5 6.0 6.5 7.0 7.5 5.5 6.0 6.5 7.0 7.5Figure 0.1. (a) Log response times for 11 non-schizophrenic individuals, (b) Logresponse times for 6 schizophrenic individuals. All histograms are on a commonscale.distributions are positively skewed, even for non-schizophrenics, the modelwas �t to the logarithms of the reaction time measurements. We modifythe basic model of Belin and Rubin (1994) to incorporate a hierarchicalparameter � measuring motor retardation. Speci�cally, variation amongindividuals is modeled by having the person means �i follow a normaldistribution with mean � + �Si and variance �2�, where � is the overallmean response time of non-schizophrenics, and Si is an observed indicatorthat is 1 if person i is schizophrenic and 0 otherwise.Letting yij be the jth response of individual i, the model can be writtenin the following hierarchical form:yij j�i; zij; � � N (�i + �zij ; �2obs);



8 �ijz; � � N (� + �Si; �2�);zijj� � Bernoulli(�Si);where � = (log(�2�); �; logit(�); �; �; log(�2obs)), and zij is an unobservedindicator variable that is 1 if measurement j on person i arose from thedelayed component and 0 if it arose from the undelayed component. Theindicator random variables zij are not necessary to formulate the model,but allow convenient computation of the modes of (�; �) using the iterativeECM algorithm (Meng and Rubin, 1993) and simulation using the Gibbssampler. For the Bayesian analysis, the parameters �2�, �, �, � , �, and �2obsare assigned a joint uniform prior distribution, except that � is restricted tothe range [0:001; 0:999], � is restricted to be positive to identify the model,and �2 and �2obs are of course restricted to be positive.We found the modes of the posterior distribution using the ECM algo-rithm and then used a mixture of multivariate Student-t densities centeredat the modes as an approximation to the posterior density. We drew tensamples from the approximate density using importance resampling andthen used those as starting points for ten parallel runs of the Gibbs sam-pler, which adequately converged (in the sense of potential scale reductionsbR less than 1.1 for all model parameters; see Gelman, 1994) after 200 steps,after discarding the �rst half of each simulated sequence. We were left witha set of 1000 simulation draws of the vector of model parameters. Details ofthe Gibbs sampler implementation and the convergence monitoring appearin Gelman et al. (1994) and Gelman and Rubin (1992), respectively.Model checking using posterior predictive simulationsThe model was chosen to accurately �t the unequal means and variancesin the two groups of subjects in the study, but there was still some ques-tion about the �t to individuals. In particular, the measurements for the�rst two schizophrenics seem much less variable than the last four. Is thisdi�erence \statistically signi�cant," or could it be explained as a randomuctuation from the model? To compare the observations to the model, wecompute, si, the standard deviation of the 30 log reaction times yij, foreach schizophrenic individual i = 12; : : : ; 17. We then de�ned three teststatistics|the smallest, largest, and average of the six values si|which welabel Tmin(y), Tmax(y), and Tavg(y), respectively. These are test statisticsand not just test variables because they are de�ned in terms of data alone.Examination of Figure 0.1 suggests that Tmin is too low and Tmax too highthan would be predicted from the model. The third test statistic, Tavg, isincluded as a comparison; we expect it to be very close to the model's pre-dictions, since it is essentially estimated by the model parameters �2, � ,and �. For the data in Figure 0.1, the observed values of the test statisticsare Tmin(y) = 0:11, Tmax(y) = 0:58, and Tavg(y) = 0:30.



EXAMPLE: HIERARCHICAL MIXTURE MODELING FOR REACTION-TIME DATA9To perform the posterior predictive model check, we simulate a predic-tive dataset from the normal-mixturemodel, for each of the 1000 simulationdraws of the parameters from the posterior distribution. For each of those1000 simulated datasets yrep, we compute the test statistics Tmin(yrep),Tmax(yrep), and Tavg(yrep). Figure 0.2 displays histograms of the 1000 sim-ulated values of the each statistic, with the observed values, T (y), indicatedby vertical lines. The observed data y are clearly atypical of the posteriorpredictive distribution|Tmin is too low and Tmax is too high|with esti-mated p-values within 1/1000 of 0 and 1. In contrast, Tavg is well �t bythe model, with a p-value of 0.72. More important than the p-values isthe poor �t on the absolute scale: the observed minimum and maximumwithin-schizophrenic standard deviations are o� by factors of two comparedto the posterior model predictions.Expanding the modelFollowing Belin and Rubin (1992), we try to better �t the data by includingtwo additional parameters in the model: to allow for some schizophrenics tohave no attentional delays and for delayed observations to be more variablethan undelayed observations. The two new parameters are !, the proba-bility that each schizophrenic individual has attentional delays, and �2obs2,the variance of attention-delayed measurements. Both these parameters aregiven uniform prior densities (we use the uniform density on ! because it isproper and the uniform density on �2obs2 to avoid the singularities at �2 = 0that occur with uniform prior densities on the log scale for hierarchical andmixture models). For computational purposes, we also introduce anotherindicator variable for each individual i, Wi, that is 1 if the individual canhave attention delays and 0 otherwise. The indicator Wi is automatically 0for non-schizophrenics and, for each schizophrenic, is 1 with probability !.The model we have previously �t can be viewed as a special case of thenew model, with ! = 1 and �2obs2 = �2obs previously. It is quite simple to�t the new model by just adding three new steps in the Gibbs sampler toupdate !, �2obs2, andW (parameterized to allow frequent jumps between thestates Wi = 1 and Wi = 0 for each schizophrenic individual i. In addition,the Gibbs sampler steps for the old parameters must be altered somewhatto be conditional on the new parameters. We do not give the details herebut just present the results. We use ten randomly selected draws from theprevious posterior simulation as starting points for ten parallel runs of theGibbs sampler. Because of the added complexity of the model, we ran thesimulations for 500 steps, and discarded the �rst half of each sequence,leaving a set of 2500 draws from the posterior distribution of the largermodel. The potential scale reductions bR for all parameters were less than1.1, indicating approximate convergence.Before performing posterior predictive checks, it makes sense to compare
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Figure 0.2. Posterior predictive distributions and observed values for three teststatistics: the smallest, average, and largest observed within-schizophrenic vari-ances. The vertical line on each histogram represents the observed value of thetest statistic.the old and new models in their posterior distributions for the parameters.Table 0.1 displays posterior medians and 95% intervals (from the Gibbssampler simulations) for the parameters of most interest to the psycholo-gists:� �, the probability that an observation will be delayed, for an individualsubject to attentional delays;� !, the probability that a schizophrenic will be subject attentional delays;



EXAMPLE: HIERARCHICAL MIXTURE MODELING FOR REACTION-TIME DATA11Old model New modelParameter 2.5% median 97.5% 2.5% median 97.5%� 0.07 0.12 0.18 0.46 0.64 0.88! �xed at 1 0.24 0.56 0.84� 0.74 0.85 0.96 0.21 0.42 0.60� 0.17 0.32 0.48 0.07 0.24 0.43Table 0.1. Posterior quantiles for parameters of interest under the old and newmixture models for the reaction time experiment.� � , the attentional delay (on the log scale);� �, the average log response time for the non-delayed observations ofschizophrenics minus the average log response time for non-schizophrenics.Table 0.1 shows a signi�cant di�erence between the parameter estimates inthe two models. Since the old model is nested within the new model, thechanges suggest that the improvement in �t is signi�cant. It is a strengthof the Bayesian approach, as implemented by iterative simulation, that wecan model so many parameters and compute summary inferences for all ofthem.Checking the new modelThe expanded model is an improvement, but how well does it �t the data?We expect that the new model should show an improved �t to the teststatistics considered in Figure 0.2, since the new parameters were addedexplicitly for this purpose. We emphasize that all the new parameters herehave substantive interpretations in psychology. To check the �t of this newmodel, we use posterior predictive simulation of the same test statisticsunder the new posterior distribution. The results are displayed in Figure0.3.Once again, the vertical lines indicates the observed test statistic. Com-paring to Figure 0.2, the observed values are in the same place, but the pos-terior predictive distributions have moved closer to them. (The histogramsof Figures 0.2 and 0.3 are not plotted on a common scale.) However, the �tis by no means perfect in the new model: the observed values of Tmin andTmax are still in the periphery, and the estimated p-values of the two teststatistics are 0.98 and 0.03. (The average variance statistic, Tavg, is still �twell by the expanded model, with a p-value of 0.81.) The lack of �t is morevisible on Figure 0.3, and the p-values provide probability summaries. Weare left with an improved model that still shows some lack of �t, suggestingdirections for improved modeling and data collection.
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Figure 0.3. Posterior predictive distributions, under the expanded model, for threetest statistics: the smallest, average, and largest observed within-schizophrenicvariances. The vertical line on each histogram represents the observed value ofthe test statistic.0.5 Some current research topicsIn our experience (Gelman, Meng, and Stern, 1993), it appears that p-values for test variables that depend on both the data and the unknownparameters behave slightly di�erently than those based only on the data.This topic is worth exploring further, especially for examples such as hi-erarchical regression in which test variables are much more convenientlyunderstood and computed when de�ned in terms of both data and param-



SOME CURRENT RESEARCH TOPICS 13eters (for example, residuals from X�, rather than from X�̂).On another topic, we have treated model checking and model expansionas separate procedures. Various approaches have been suggested for com-bining the two|checking models by comparing them to formal alternatives(Gelfand, Dey, and Chang, 1992; Kass and Raftery, 1994). Another relatedarea is theoretical studies of sensitivity analysis (e.g., Wasserman, 1992).ReferencesBelin, T. R., and Rubin, D. B. (1990). Analysis of a �nite mixture modelwith variance components. Proceedings of the American Statistical As-sociation, Social Statistics Section, 211{215.Belin, T. R., and Rubin, D. B. (1994). The analysis of repeated-measuresdata on schizophrenic reaction times using mixture models. Statistics inMedicine, to appear.Box, G. E. P. (1980). Sampling and Bayes' inference in scienti�c modellingand robustness. Journal of the Royal Statistical Society A 143, 383{430.Carlin, B. P., and Chib, S. (1993). Bayesian model choice via Markov chainMonte Carlo. Technical report, Division of Biostatistics, School of PublicHealth, University of Minnesota.Gelfand, A. E., Dey, D. K., and Chang, H. (1992). Model determinationusing predictive distributions with implementation via sampling-basedmethods. In Bayesian Statistics 4, ed. J. M. Bernardo et al., 147{167.New York: Oxford University Press.Gelman, A. (1994). Inference and monitoring convergence. In this volume.Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1994). BayesianData Analysis. Chapman and Hall, to appear.Gelman, A., Meng, X. L., and Stern, H. S. (1993). Bayesian model checkingusing tail area probabilities. Technical report, Department of Statistics,University of California, Berkeley.Gelman, A., and Rubin, D. B. (1992). Inference from iterative simulationusing multiple sequences (with discussion). Statistical Science 7, 457{511.Guttman, I. (1967). The use of the concept of a future observation ingoodness-of-�t problems. Journal of the Royal Statistical Society B 29,83{100.Kass, R. E., and Raftery, A. E. (1994). Bayes factors and model uncertainty.Journal of the American Statistical Association, to appear.Meng, X. L. (1994). Posterior predictive p-values. Annals of Statistics 22,to appear.Meng, X. L., and Rubin, D. B. (1993). Maximum likelihood estimation viathe ECM algorithm: a general framework. Biometrika 80, 267{278.
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