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0.1 Introduction

Markov chain simulation, and Bayesian ideas in general, allow a wonder-
fully flexible treatment of probability models. In this chapter, we discuss
two related ideas: (1) checking the fit of a model to data, and (2) im-
proving a model by adding substantively meaningful parameters. Model
improvement by expansion is also an important technique in assessing the
sensitivity of inferences to untestable assumptions. We illustrate both these
methods with an example of a mixture model fit to experimental data from
psychology using the Gibbs sampler.

Any Markov chain simulation is conditional on an assumed probability
model. As the applied chapters of this book illustrate, these models can
be complicated and generally rely on inherently unverifiable assumptions.
From a practical standpoint, then, it is important to explore how infer-
ences of substantive interest depend on the assumptions, and to test the
assumptions where possible.

0.2 Model checking using posterior predictive simulation

Bayesian prior-to-posterior analysis conditions on the whole structure (like-
lihood and prior distribution) of a probability model and can yield very
misleading inferences when the model is far from reality. A good Bayesian
analysis, therefore, should at least check to see if the fit of the model to the
data is so poor that the model should be rejected without other evidence.
In the classical setting, this checking is often facilitated by a goodness-of-fit
test, which quantifies the extremeness of the observed value of a selected
measure of discrepancy (e.g., differences between observations and predic-
tions) by calculating a tail-area probability given that the model under
consideration is true. In this section, we discuss how to employ a Bayesian
test of model fit using the posterior predictive distribution.

In the classical approach, test statistics cannot depend on any unknown
quantities and so comparisons are actually made between the data and
the best-fitting model from within a family of models (typically obtained
via maximum likelihood). The p-value for the test is determined based on
the sampling distribution of the data under the model. The main tech-
nical problem with the classical method is that, in general, the p-value
depends on the unknown parameters unless we restrict attention to test
statistics that are pivotal. Unfortunately, as is well known, most useful
statistics are not pivotal, especially with complex models. The Bayesian
formulation naturally allows the test statistic to be a function of both data
and unknown parameters, and thus allow more direct comparisons between
the sample and population characteristics. In the frequentist setting, using
parameter-dependent test statistics was largely promoted recently by Tsui
and Weerahandi (1989), who called such test statistics “test variables.”
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Here we discuss model checking using posterior predictive tests, which
was first proposed and applied by Guttman (1967) and Rubin (1981, 1984).
Recently, Gelman, Meng, and Stern (1993) provide a general discussion
of this method, with special emphasis of using test variables rather than
traditional test statistics. They also present several applications and some
theoretical properties of the method and compare to the prior predictive
test of Box (1980). Meng (1994) presents a similar discussion of the use of
posterior predictive p-values for testing hypotheses of parameters within a
given model.

The posterior predictive model checking goes as follows. Let y be the
observed data, # be the vector of unknown parameters in the model (in-
cluding any hierarchical parameters), p(y|6) be the likelihood, and p(8|y)
be the posterior distribution. We assume that we have already obtained
draws 61,...,0y from the posterior distribution, possibly using Markov
chain simulation. We now draw simulations from hypothetical replications
of the data, which we label y;*", ... y\¥. For each i = 1,..., N, we draw
y;Y from the sampling distribution given the simulated parameters ;.
Creating simulations y™P is the old idea of comparing data to simulations
from a model, with the Bayesian twist that the parameters of the model
are themselves drawn from their posterior distribution.

If the model is reasonably accurate, the hypothetical replications should
look similar to the observed data y. Formally, one can compare the data to
the predictive distribution by choosing a test variable, T(y, #), and comput-
ing the p-value, the proportion of cases in which the simulated test variables
exceeds the realized value:

N

. 1
estimated p-value = — Z; Ir(yr=r 6.)>T(y,0.)>
1=

where [ is the indicator function. We call T'(y, #) a “realized value” because
it is realized by the observed data y, although it cannot be observed when T'
depends on unknown parameters. In the special case that the test variable
depends only on data and not on parameters, and thus can be written 7'(y),
we call it a test statistic, as in the classical usage.

In practice, we often can visually examine the posterior predictive dis-
tribution of the test variable as it compares to the realized value. If the
test variable depends only on data and not on the parameters, @, then
one can plot a histogram of the posterior predictive distribution of T'(y*P)
and compare it to the observed value, T'(y). A good fit is indicated by an
observed value near the center of the histogram. If the test variable is a
function of data and parameters, one can plot a scatterplot of the realized
values, T'(y, 0;), versus the predictive values, T'(y;", ;). A good fit is indi-
cated by about half the points in the scatterplot falling above the 45° line
and half falling below.



The test variable can be any function of data and parameters. It is most
useful to choose a test variable that measures some aspect of the data that
might not accurately be fit by the model. For example, if one is concerned
with outliers in a normal regression model, a sometimes useful test variable
is the proportion of residuals that are more than three standard deviations
away from zero. If one is concerned about overall lack of fit in a contingency
table model, a y? discrepancy measure can be used (see Gelman, Meng, and
Stern, 1993). One of course can use more than one test variable to check
different aspects of the fitness. An advantage of Monte Carlo is that the
same set of simulations of (#,y™P) can be used for checking the posterior
predictive distribution of many test variables.

A model does not fit the data if the realized values for some meaningful
test variable are far from the predictive distribution; the discrepancy cannot
reasonably be explained by chance if the tail-area probability is close to 0
or 1. The p-values are actual posterior probabilities and can therefore be
interpreted directly—not as the posterior probability of the model being
true. The role of predictive model checking is to assess the practical fit of a
model, not to estimate the “probability that the model is true,” whatever
that means. We may choose to work with an invalidated model but we
should be aware of its deficiencies. On the other hand, a lack of rejection
should not be interpreted as “acceptance” of the model, but rather as a
sign that the model adequately fits the aspect of the data being tested.

Major failures of the model can be addressed by expanding the model,
as we discuss in the next section. Lesser failures may also suggest model
improvements or might be ignored in the short term if the failure appears
not to affect the main inferences. In some cases, even extreme p-values
may be ignored if the misfit of the model is substantively small compared
to variation within the model. It is important not to interpret p-values
as numerical “evidence.” For example, a p-value of 0.00001 is virtually no
stronger, in practice, than 0.001; in either case, the aspect of the data
measured by the test variables is inconsistent with the model. A slight
improvement in the model (or correction of a data coding error!) could
bring either p-value to a reasonable range (between 0.05 and 0.95, say).

0.3 Model improvement via expansion and averaging

We will address two issues that are mathematically and statistically essen-
tially the same: expanding a model that is already set up on the computer
and has been estimated from the data, and averaging several competing
models that have been estimated from the same data. The latter problem
1s sometimes posed as “model selection,” but from the perspectives of both
Bayesian methodology and Markov chain computation, it i1s more natural
to think of averaging over a mixture of several models, rather than choosing
a single distribution with certainty.
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There are three natural reasons to expand a model. First, if the model
clearly does not fit the data or prior knowledge, it should be improved
in some way, possibly by adding new parameters to allow a better fit.
Second, if a modeling assumption is particularly questionable, it may be
relaxed. For example, a set of parameters that are fixed to equality may be
replaced by a random effects model. Third, a model may be embedded into
a larger model to address more general applied questions; for example, an
study previously analyzed on its own may be inserted into a hierarchical
population model (e.g., Rubin, 1981). The goal of our model expansion
is not merely to fit the data, but rather to improve the model to better
capture the substantive structures. Thus, when one adds new parameters,
a key requirement is that these parameters should have clear substantive
meaning. This point is illustrated in our example in the next section.

All these applications of model expansion have the same mathematical
structure: the old model, p(#), is replaced by a new model, p(é, ¢), in which
both # and ¢ may be vectors. In Bayesian notation, the posterior distribu-
tion p(f]y) is replaced by p(8, ¢|y), with a prior distribution required for the
additional parameters ¢. Assuming that the original model in § has already
been programmed for Markov chain simulation, one can immediately use
the Gibbs sampler to draw samples from the joint distribution, p(f, ¢|y).
The step of drawing from p(f|¢,y) is just the problem of drawing from
p(fly) in the individual model identified by ¢. The only new step required
is sampling from among the models, given data and parameters: p(¢|6, y).
If the model class has no simple form, this additional simulation can be
performed using a Metropolis step.

For instance, suppose we are interested in the sensitivity of a data analy-
sis with possible outliers to a model with an assumed normal distribution.
A natural expansion would be to replace the normal by a Student-¢ with
unknown degrees of freedom, v. For a Bayesian analysis, a prior distribu-
tion must be assumed for v; a reasonable noninformative prior density is
uniform in 1/v; or, after transformation, p(v) oc 1/1?, with the ¢ distribu-
tions restricted to the range v > 1, so that the limits are the Cauchy and
normal distributions. (The uniform prior density on v may seems reason-
able at first, but it actually has essentially all its mass “near” v = oo, which
corresponds to the normal distribution.) The Markov chain simulation for
the Student-¢ model is now obtained by altering the simulations based on
the normal model to simulations conditional on v, and an added step to
draw v. Since the ¢ distributions are not conjugate, it is probably easiest
to use the Metropolis algorithm to correct for draws based on the normal
distribution at each Gibbs step.

Additional technique is required to average over, or choose among, a set
of models that do not follow a single parametric family. With no parameters
in common, the above Gibbs approach makes no sense. Carlin and Chib
(1993) present a clever solution, defining a joint distribution on the space
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of models and the union of all the model parameters and applying the
Gibbs sampling to a larger space. When averaging over models that are
not part of a single parametric family, or models that have different sets
of parameters, the above methods only work when the individual models
have proper prior distributions. Kass and Raftery (1994) discuss this point
and review some methods that have been proposed for circumventing this

difficulty.

0.4 Example: hierarchical mixture modeling for reaction-time
data

Neither model checking or model expansion is enough by itself. Once lack
of fit has been found, the next step is to find a model that improves the fit,
with the requirement that the new model should at least as interpretable
substantively as the old one. On the other hand, model expansion alone
can never reveal lack of fit of the larger, expanded model. In this example,
we illustrate how model checking and expansion can be used in tandem.

The data and the basic model fit by the Gibbs sampler

Belin and Rubin (1990) describe an experiment from psychology measuring
thirty reaction times for each of seventeen subjects: eleven non-schizophren-
ics and six schizophrenics. Belin and Rubin (1994) fit several probability
models using maximum likelihood; we describe their approach and fit re-
lated Bayesian models. Computation with the Gibbs sampler allows us to
fit more realistic hierarchical models to the dataset.

The data are presented in Figure 0.1. It is clear that the response times
are higher on average for schizophrenics. In addition, the response times for
at least some of the schizophrenic individuals are considerably more vari-
able than the response times for the non-schizophrenic individuals. Current
psychological theory suggests a model in which schizophrenics suffer from
an attentional deficit on some trials, as well as a general motor reflex retar-
dation; both aspects lead to a delay in the schizophrenics’ responses, with
motor retardation affecting all trials and attentional deficiency only some.

To address the questions of scientific interest, the following basic model
was fit. Response times for non-schizophrenics are thought of as arising
from a normal random effects model, in which the responses of person
¢ = 1,...,11 are normally distributed with distinct person mean «; and
common variance o2, .. To reflect the attentional deficiency, the responses
for each schizophrenic individual ¢ = 12, ..., 17 were fit to a two-component
mixture: with probability (1 — A), there is no delay and the response is
normally distributed with mean «; and variance o2, , and with probability
A, responses are delayed, with observations having a mean of «; + 7 and
the same variance. Because the reaction times are all positive and their
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Figure 0.1. (a) Log response times for 11 non-schizophrenic individuals, (b) Log
response times for 6 schizophrenic individuals. All histograms are on a common
scale.

distributions are positively skewed, even for non-schizophrenics, the model
was fit to the logarithms of the reaction time measurements. We modify
the basic model of Belin and Rubin (1994) to incorporate a hierarchical
parameter [ measuring motor retardation. Specifically, variation among
individuals is modeled by having the person means «; follow a normal
distribution with mean v + 3S; and variance o2, where v is the overall
mean response time of non-schizophrenics, and S; is an observed indicator
that is 1 if person ¢ is schizophrenic and 0 otherwise.

Letting y;; be the jth response of individual 7, the model can be written
in the following hierarchical form:

2
Yijlag, zij, ¢~ N(og+72i5,05,),



O[Z'|Z,¢ ~ N(V‘i’ﬁsiao-gz)’
zij|l¢  ~ Bernoulli(AS;),

where ¢ = (log(c2), 8,logit(A), 7,v,log(c%,)), and z; is an unobserved
indicator variable that is 1 if measurement j on person ¢ arose from the
delayed component and 0 if it arose from the undelayed component. The
indicator random variables z; are not necessary to formulate the model,
but allow convenient computation of the modes of (o, ¢) using the iterative
ECM algorithm (Meng and Rubin, 1993) and simulation using the Gibbs
sampler. For the Bayesian analysis, the parameters o2, 3, A, 7, v, and 02,
are assigned a joint uniform prior distribution, except that A is restricted to
the range [0.001,0.999], 7 is restricted to be positive to identify the model,
and o2 and ¢, are of course restricted to be positive.

We found the modes of the posterior distribution using the ECM algo-
rithm and then used a mixture of multivariate Student-¢ densities centered
at the modes as an approximation to the posterior density. We drew ten
samples from the approximate density using importance resampling and
then used those as starting points for ten parallel runs of the Gibbs sam-
pler, which adequately converged (in the sense of potential scale reductions
R less than 1.1 for all model parameters; see Gelman, 1994) after 200 steps,
after discarding the first half of each simulated sequence. We were left with
a set of 1000 simulation draws of the vector of model parameters. Details of
the Gibbs sampler implementation and the convergence monitoring appear

in Gelman et al. (1994) and Gelman and Rubin (1992), respectively.

Model checking using posterior predictive simulations

The model was chosen to accurately fit the unequal means and variances
in the two groups of subjects in the study, but there was still some ques-
tion about the fit to individuals. In particular, the measurements for the
first two schizophrenics seem much less variable than the last four. Is this
difference “statistically significant,” or could it be explained as a random
fluctuation from the model? To compare the observations to the model, we
compute, s;, the standard deviation of the 30 log reaction times y;;, for
each schizophrenic individual ¢ = 12,...,17. We then defined three test
statistics—the smallest, largest, and average of the six values s;—which we
label Thin(¥), Tmax(y), and Thayg(y), respectively. These are test statistics
and not just test variables because they are defined in terms of data alone.
Examination of Figure 0.1 suggests that T,jy 1s too low and Ti5¢ too high
than would be predicted from the model. The third test statistic, Th.g, is
included as a comparison; we expect it to be very close to the model’s pre-
dictions, since it is essentially estimated by the model parameters o2, 7
and A. For the data in Figure 0.1, the observed values of the test statistics
are Tiin(y) = 0.11, Tinax(y) = 0.58, and Thuvg(y) = 0.30.

bl
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To perform the posterior predictive model check, we simulate a predic-
tive dataset from the normal-mixture model, for each of the 1000 simulation
draws of the parameters from the posterior distribution. For each of those
1000 simulated datasets y™P, we compute the test statistics Tin(y™P),
Tinax (y™P), and Toyg (y™P). Figure 0.2 displays histograms of the 1000 sim-
ulated values of the each statistic, with the observed values, T'(y), indicated
by vertical lines. The observed data y are clearly atypical of the posterior
predictive distribution—7,i, 1s too low and Ty 18 too high—with esti-
mated p-values within 1/1000 of 0 and 1. In contrast, Ty is well fit by
the model, with a p-value of 0.72. More important than the p-values is
the poor fit on the absolute scale: the observed minimum and maximum
within-schizophrenic standard deviations are off by factors of two compared
to the posterior model predictions.

Erpanding the model

Following Belin and Rubin (1992), we try to better fit the data by including
two additional parameters in the model: to allow for some schizophrenics to
have no attentional delays and for delayed observations to be more variable
than undelayed observations. The two new parameters are w, the proba-
bility that each schizophrenic individual has attentional delays, and 2.,
the variance of attention-delayed measurements. Both these parameters are
given uniform prior densities (we use the uniform density on w because it is
proper and the uniform density on 02, ., to avoid the singularities at 0% = 0
that occur with uniform prior densities on the log scale for hierarchical and
mixture models). For computational purposes, we also introduce another
indicator variable for each individual 7, W;, that is 1 if the individual can
have attention delays and 0 otherwise. The indicator W; is automatically 0
for non-schizophrenics and, for each schizophrenic, is 1 with probability w.

The model we have previously fit can be viewed as a special case of the
new model, with w = 1 and 02,,, = 0%, previously. It is quite simple to
fit the new model by just adding three new steps in the Gibbs sampler to
update w, o2, ,, and W (parameterized to allow frequent jumps between the
states W; = 1 and W; = 0 for each schizophrenic individual i. In addition,
the Gibbs sampler steps for the old parameters must be altered somewhat
to be conditional on the new parameters. We do not give the details here
but just present the results. We use ten randomly selected draws from the
previous posterior simulation as starting points for ten parallel runs of the
Gibbs sampler. Because of the added complexity of the model, we ran the
simulations for 500 steps, and discarded the first half of each sequence,
leaving a set of 2500 draws from the posterior distribution of the larger
model. The potential scale reductions R for all parameters were less than
1.1, indicating approximate convergence.

Before performing posterior predictive checks, it makes sense to compare
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Figure 0.2. Posterior predictive distributions and observed values for three test
statistics: the smallest, average, and largest observed within-schizophrenic vari-
ances. The vertical line on each histogram represents the observed value of the
test statistic.

the old and new models in their posterior distributions for the parameters.

Table 0.1 displays posterior medians and 95% intervals (from the Gibbs

sampler simulations) for the parameters of most interest to the psycholo-

gists:

e )\ the probability that an observation will be delayed, for an individual
subject to attentional delays;

e w, the probability that a schizophrenic will be subject attentional delays;
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Old model New model
Parameter 2.5% median 97.5% 2.5% median 97.5%
A 0.07 0.12 0.18 0.46 0.64 0.88
w fixed at 1 0.24 0.56 0.84
T 0.74 0.85 0.96 0.21 0.42 0.60
8 0.17 0.32 0.48 0.07 0.24 0.43

Table 0.1. Posterior quantiles for parameters of interest under the old and new
mexture models for the reaction time experiment.

e 7, the attentional delay (on the log scale);

e 3, the average log response time for the non-delayed observations of
schizophrenics minus the average log response time for non-schizophrenics.

Table 0.1 shows a significant difference between the parameter estimates in
the two models. Since the old model is nested within the new model, the
changes suggest that the improvement in fit is significant. It is a strength
of the Bayesian approach, as implemented by iterative simulation, that we
can model so many parameters and compute summary inferences for all of
them.

Checking the new model

The expanded model is an improvement, but how well does 1t fit the data?
We expect that the new model should show an improved fit to the test
statistics considered in Figure 0.2, since the new parameters were added
explicitly for this purpose. We emphasize that all the new parameters here
have substantive interpretations in psychology. To check the fit of this new
model, we use posterior predictive simulation of the same test statistics
under the new posterior distribution. The results are displayed in Figure
0.3.

Once again, the vertical lines indicates the observed test statistic. Com-
paring to Figure 0.2, the observed values are in the same place, but the pos-
terior predictive distributions have moved closer to them. (The histograms
of Figures 0.2 and 0.3 are not plotted on a common scale.) However, the fit
is by no means perfect in the new model: the observed values of Ti,;, and
Tax are still in the periphery, and the estimated p-values of the two test
statistics are 0.98 and 0.03. (The average variance statistic, Thyg, is still fit
well by the expanded model, with a p-value of 0.81.) The lack of fit is more
visible on Figure 0.3, and the p-values provide probability summaries. We
are left with an improved model that still shows some lack of fit, suggesting
directions for improved modeling and data collection.
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Figure 0.3. Posterior predictive distributions, under the expanded model, for three
test statistics: the smallest, average, and largest observed within-schizophrenic
variances. The vertical line on each histogram represents the observed value of
the test statistic.

0.5 Some current research topics

In our experience (Gelman, Meng, and Stern, 1993), it appears that p-
values for test variables that depend on both the data and the unknown
parameters behave slightly differently than those based only on the data.
This topic is worth exploring further, especially for examples such as hi-
erarchical regression in which test variables are much more conveniently
understood and computed when defined in terms of both data and param-
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eters (for example, residuals from X3, rather than from XB)

On another topic, we have treated model checking and model expansion
as separate procedures. Various approaches have been suggested for com-
bining the two—checking models by comparing them to formal alternatives
(Gelfand, Dey, and Chang, 1992; Kass and Raftery, 1994). Another related

area is theoretical studies of sensitivity analysis (e.g., Wasserman, 1992).
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