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20.1 Di�culties of inference from Markov chain simulationMarkov chain simulation is a powerful tool|so easy to apply, in fact, thatthere is the risk of serious error, including:1. Inappropriate modeling: the assumed model may not be realistic from asubstantive standpoint or may not �t the data.2. Errors in calculation or programming: the stationary distribution of thesimulation process may not be the same as the desired target distribu-tion, or the algorithm, as programmed, may not converge to any properdistribution.3. Slow convergence: the simulation can remain for many iterations in aregion heavily in
uenced by the starting distribution. If the iterationsare used to summarize the target distribution, they can yield falsely-precise inference.The �rst two errors can occur with other statistical methods (such as max-imum likelihood), but the complexity of Markov chain simulation makesmistakes more common. In particular, it is possible to program a methodof computation such as the Gibbs sampler or Metropolis' algorithm thatonly depends on local properties of the model without ever understandingthe large-scale features of the joint distribution. For a discussion of thisissue in the context of probability models for images, see Besag (1986).Slow convergence is a problem with deterministic algorithms as well; con-sider, for example, the literature about the convergence of EM and relatedalgorithms (e.g., Meng and Pedlow, 1992). In deterministic algorithms, thetwo most useful ways of measuring convergence are (a) monitoring indi-vidual summaries, such as the increasing likelihood in the EM and ECMalgorithms or the symmetry of the covariance matrix in the SEM algo-rithm (Dempster, Laird, and Rubin, 1977; Meng and Rubin, 1993; Mengand Rubin, 1991), and (b) replicating the algorithm with di�erent start-ing points and checking that they converge to the same point (or, if not,noting multiple solutions). We apply both general approaches to Markovchain simulation, but we must overcome the di�culties that (a) the algo-rithm is stochastic, so we cannot expect any summary statistic to increaseor decrease monotonically, and (b) convergence is to a distribution, ratherthan a point.This chapter presents an overview of methods for addressing two practi-cal tasks: monitoring convergence of the simulation and summarizing infer-ence about the target distribution using the output from the simulations.The material in Sections 3{5 is presented in more detail, with an example,in Gelman and Rubin (1992b). The �nal section of this chapter introducesand provides references to various methods in the recent statistical litera-ture for using inference from the simulation to improve the e�ciency of theMarkov chain algorithm.



THE RISK OF UNDIAGNOSED SLOW CONVERGENCE 3The practical task in \monitoring convergence" is to estimate how muchthe inference based on the Markov chain simulations di�ers from the desiredtarget distribution. Our basic method, inspired by the analysis of variance,is to form an overestimate and an underestimate of the variance of thetarget distribution, with the property that the estimates will be roughlyequal at convergence but not before.0.2 The risk of undiagnosed slow convergenceThe fundamental problem of inference from simulation is that, for anysimulation, there will be areas of the target distribution that have not beencovered by a �nite Markov chain. As the simulation progresses, the ergodicproperty of the Markov chain causes it eventually to cover all the targetdistribution, but in the short term the simulations cannot, in general, tellus about areas where they has not been. Incidentally, this is a generalproblem whenever convergence is slow, even in a distribution that has asingle mode. It has happened several times in our experience that a singlesequence of Markov chain simulation has appeared to have \converged,"even though evidence from replications makes it clear that the movementof the simulation is just too slow to detect.In our own experience of applying Markov chain simulation to proba-bility models and Bayesian posterior distributions, we have commonly no-ticed poor convergence by examining multiple independent simulations. Inmany of these settings, any single one of the simulated sequences wouldhave appeared to have converged perfectly if examined alone; some ofthese examples have been published as Figures 1{3 of Gelman and Ru-bin (1992a)|note the title of that article|and Figure 4 of Gelman andRubin (1992b). In these examples, quantitative methods of diagnosing lackof convergence from a single sequence (e.g., Hastings, 1970, Raftery andLewis, 1992, Geyer, 1992) all fail, because the simulations are moving soslowly, or are \stuck" in separate places in the target distribution. For thisarticle we present yet another example, from our current applied research.Figure 0.1 displays an example of slow convergence from a Markov chainsimulation for a hierarchical Bayesian model for a pharmacokinetics prob-lem (see Bois et al., 1994, for details). The simulations were done using aMetropolis-approximate Gibbs sampler (as in Section 4.4 of Gelman, 1992);due to the complexity of the model, each iteration was expensive in com-puter time, and it was desirable to keep the simulation runs as short aspossible. Figures 1a and 1b display time series plots for a single parameterin the posterior distribution in two independent simulations, each of length1000. The simulations were run in parallel simultaneously on two work-stations in a network. It is clear from the separation of the two sequencesthat, after 1000 iterations, the simulations are still far from convergence.However, either sequence alone looks perfectly well behaved.
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Figure 0.1. Time series of the value of a single parameter from two parallel sim-ulations of length 1000 from iterative simulation of a complicated multiparametermodel. Lack of convergence is evident by comparing the simulations but cannotbe detected from either sequence alone.Interestingly, we do not yet know whether the slow convergence exhibitedin Figure 0.1 is due to an inappropriate model, programming mistakes, orjust slow movement of the Markov chain. As is common in applied statis-tics, we have repeatedly altered our model in the last several months of re-search on this problem, as we have gained understanding about the relationbetween the model, the data, and our prior information. The simulationsfrom a previous version of the model had reached approximate conver-gence before 1000 iterations, which leads us to suspect an error of somesort in the simulation leading to Figure 1. (One of the strengths of Markovchain simulation has been that it has allowed us to change our model with



DESIGNINGTHE SIMULATIONS TO MAKE INFERENCEMORE RELIABLE: MULTIPLE SEQUENCES AND OVERDISPERSED STARTING POINTS5only minor alterations in the computer program.) Several times in this re-search, we have noted poor convergence by comparing parallel sequences,and each time we have investigated and found a substantive 
aw in themodel or a programming error, or else we have had to alter our Markovchain simulation to run more e�ciently. Another approach would be torun the simulation inde�nitely and wait until the lines begun in Figures 1aand 1b overlap; because of the slowness in computing the simulation drawsat each step, we would prefer to avoid this approach. Also, our model isstill in a preliminary stage, and so any investment made now in computa-tional e�ciency (or in debugging!) can be expected to pay o� repeatedlyin computations with future versions of the model.0.3 Designing the simulations to make inference more reliable:multiple sequences and overdispersed starting pointsOur general approach to monitoring convergence of Markov chain simula-tions is based on plots such as Figure 0.1 above. We have always found ituseful to simulate at least two parallel sequences, typically four or more.If the computations are implemented on a network of workstations or aparallel machine, it makes sense to run as many parallel simulations asthere are free workstations or machine processors. The recommendationto always simulate multiple sequences is not new in the iterative simula-tion literature (e.g., Fosdick, 1959) but is somewhat controversial (see thediscussion of Gelman and Rubin, 1992b, and Geyer, 1992). In our experi-ence with Bayesian posterior simulation, however, we have found that theadded information obtained from replication (as in Figures 0.1) outweighsany additional costs required in multiple simulations.It is desirable to choose starting points that are widely dispersed in thetarget distribution. Overdispersed starting points are an important designfeature because starting far apart can make lack of convergence apparent(as in Figure 0.1), and also for the purposes of inference, to ensure that allmajor regions of the target distribution are represented in the simulations.For many problems, especially with discrete or bounded parameter spaces,it is possible to pick several starting points that are far apart by inspectingthe parameter space and the form of the distribution. For example, theproportion in a two-component mixture model can be started at values of0.1 and 0.9 in two parallel sequences.In more complicated situations, more work may be be needed to �nda range of dispersed starting values. In practice, we have found that anyadditional e�ort spent on approximating the target density is useful forunderstanding the problem and for debugging: after the Markov chain sim-ulations have been completed, the �nal estimates can be compared to theearlier approximations. In complicated applied statistical problems, it isstandard practice to gradually improve models as more information be-



6comes available, and the estimates from each model can be used to obtainstarting points for the computation in the next stage.Before running the Markov chain simulations, it is important to havea rough idea of the extent of the target distribution. In many problems,initial estimates can be obtained using the data and a simpler model; forexample, approximating a hierarchical generalized linear model by a lin-ear regression or nonhierarchical generalized linear model computation. Inother problems, including the example used for Figure 0.1, the prior dis-tribution is informative and can be used to construct rough bounds on theparameters of the model. In problems without strong prior distributions, itis often useful to locate the mode or modes of the target distribution usingsome deterministic algorithm such as stepwise ascent, EM, or ECM (Demp-ster, Laird, and Rubin, 1977; Meng and Rubin, 1993). (Once the Markovchain simulation algorithm has been programmed, it is often easily alteredto �nd modes, by replacing random jumps with deterministic steps to moveto higher points in the target density.) It is also useful to estimate roughlythe scale of the target distribution near the modes, which can often be doneby computing the second derivative matrix of the log-posterior density ateach mode. For continuous-parameter problems, starting points for paral-lel Markov chain simulations can be drawn from an approximate Student-tmixture distribution based on the posterior modes, possibly corrected byimportance resampling; see Gelman and Rubin (1992b) for details. If thetarget distribution is multimodal, or suspected to be multimodal, it is agood idea to start at least one sequence at each mode. If the number ofmodes is large, the simulation algorithm should be designed to frequentlyjump between modes. As we have seen, preliminary estimation is not al-ways easy, but the e�ort generally pays o� in greater understanding of themodel and con�dence in the results.0.4 Monitoring convergence using simulation outputOur recommended general approach to monitoring convergence is based ondetecting when the Markov chains have \forgotten" their starting pointsby comparing several sequences drawn from di�erent starting points andchecking that they are indistinguishable. There are many possible ways tocompare parallel sequences, the most obvious approach being to look attime series plots such as Figures 1a and 1b overlaid and see if the two se-quences can be distinguished. Here we outline a more quantitative approachbased on the analysis of variance: approximate convergence is diagnosedwhen the variance \between" the di�erent sequences is no larger than thevariance \within" each individual sequence.A more general formulation of the method presented here is to identify\convergence" with the condition that empirical distribution of simulationsobtained separately from each sequence is approximately the same as the



MONITORING CONVERGENCE USING SIMULATION OUTPUT 7distribution obtained by mixing all the sequences together. Before the par-allel sequences have converged, the collected simulations from each singlesequence will be much less variable than the simulations collected from allthe sequences combined; consider Figure 0.1, for example.The approach we have found most convenient is based on separatelymonitoring the convergence of all scalar summaries of interest from thetarget distribution. For example, we may be interested in all the parametersin the distribution and various predictive quantities. We will defer untilthe end of this section a discussion of what scalar summaries should bemonitored; for the purpose of de�ning the method, we shall consider asingle summary at a time, and label it  . We shall assume m parallelsimulations, each of length n.For each scalar summary of interest, we would like a numerical equiv-alent of the comparison in Figure 0.1 that states, \the two sequences aremuch farther apart than we could expect just based on their internal vari-ability." For each scalar summary  , we label the m parallel sequences oflength n as ( ij); j = 1; : : : ; n; i = 1; : : : ;m, and we compute the followingtwo quantities|the between-sequence variance B and the within-sequencevariances W :B = nm � 1 mXi=1( i: �  ::)2; where  i: = 1n nXj=1 ij;  :: = 1m nXj=1 i:W = 1m mXi=1 s2i ; where s2i = 1n� 1 nXj=1( ij �  i:)2:The between-sequence variance B contains a factor of n because it is basedon the variance of the within-sequence means,  i:, each of which is anaverage of n values  ij.From the two variance components, we construct two estimates of thevariance of  in the target distribution. First,cvar( ) = n� 1n W + 1nBis an estimate of the variance that is unbiased under stationarity (that is, ifthe starting points of the simulations were actually drawn from the targetdistribution), but is an overestimate under the more realistic assumptionthat the starting points are overdispersed. We call cvar( ) a \conservative"estimate of the variance of  under overdispersion.Meanwhile, for any �nite n, the \within" variance W should underesti-mate the variance of  because the individual sequences have not had timeto range over all of the target distribution and, as a result, will have lessvariability; in the limit as n ! 1, both cvar( ) and W approach var( ),but from opposite directions.We can now monitor the convergence of the Markov chain by estimating



8the factor by which the conservative estimate of the distribution of  mightbe reduced; that is, the ratio between the estimated upper and lower boundsfor the standard deviation of  , which we call the \estimated potential scalereduction," pbR =rcvar( )W :(This is R̂ rather than R because the numerator and denominator aremerely estimated upper and lower bounds on the variance.) As the simula-tion converges, the potential scale reduction declines to 1, meaning that theparallel Markov chains are essentially overlapping. If the potential scale re-duction is high, then we have reason to believe that proceeding with furthersimulations may improve our inference about the target distribution.For example, the estimate cvar( ) derived from the two simulations ofFigures 0.1 would just about cover the range of both sequences, and is about2:52, while the average within varianceW measures just the variance withineach sequence and is about 0:52. The estimated potential scale reductionR̂ is about 5 for this example, indicating poor convergence and a potentialfor con�dence intervals for  to shrink by as much as a factor of 5 onceconvergence is eventually reached.In general, if bR is not near 1 for all scalar summaries of interest, it isprobably a good idea to continue the simulation runs (and perhaps alterthe simulation algorithm itself to make the simulations more e�cient, aswe discuss in Section 6 of this chapter). In practice, we generally run thesimulations until the values of bR are all less than 1.1 or 1.2. Using thismethod, we never have to actually look at graphs such as Figure 0.1; thepotential scale reductions are all computed automatically.There is still the question of what scalar summaries to monitor, althoughthe above approach simpli�es the problem in practice by making monitor-ing so easy that we can, and have, monitored over a hundred summariesfor a single problem and just scanned for values of bR greater than 1.2 as in-dicating poor convergence. We have no problem monitoring all parametersand hyperparameters of a model and also examining predictive simulationsof interest and other summaries of interest such as the ratio between twovariance components. Tables 2 and 3 of Gelman and Rubin (1992b) pro-vide an example of monitoring several summaries at once. In addition, themethod could be generalized to monitor convergence of vector summaries,in which case B, W , and cvar( ) become matrices whose eigenvalues can becompared to estimate the potential reduction in the scale of vector infer-ences.Another issue to consider is sampling variability of the quantitiesW andB; we do not want to falsely declare convergence when bR just happens tobe near 1 in a short simulation run. In practice, sampling variability of theconvergence monitoring statistics is not a serious concern, because, regard-



INFERENCE ABOUT THE TARGET DISTRIBUTION 9less of convergence, one will almost always run the simulations long enoughto get a fairly good estimate of the variance in the target distribution. Inaddition, if several scalar summaries are being monitored, it is extremelyunlikely that they will all appear to have converged by \luck," especiallyif the number of parallel simulations m is fairly large (at least 10, say).For theoretical completeness, however, it is possible to correct the aboveestimates for sampling variability, leading to a slightly di�erent estimate ofR; details appear in Gelman and Rubin (1992b), and a computer program(\itsim") in the S language is available on Statlib or from the author.A potentially useful improvement for monitoring convergence is to createan underestimate of var( ) that is more e�cient than W , by making use ofthe autocorrelated time-series structure of the iterations within each series.Hastings (1970) discusses this approach, and Geyer (1992) reviews somemore recent theoretical results in this area; both these references attemptto estimate var( ) from a single Markov chain sequence, which is a hopelesstask in many practical applications (see Section 2 of this chapter), but canbe useful as improved underestimates for use in place of W in the formulafor R̂.In addition, several methods have been proposed in recent years to usethe Markov chain transition probabilities, which are known in most ap-plications of Markov chain simulation, to more e�ciently diagnose lack ofconvergence. At convergence, the simulations in any sequence should lookjust as \likely" backward as forward and the joint distribution of successivesimulations in a sequence should be symmetric. Cui et al. (1992) constructa scalar summary based on these principles that can diagnose poor con-vergence in cases where summaries based only on the simulation output(and not the transition probabilities) fail. Liu, Liu, and Rubin (1992) andRoberts (1993) construct somewhat similar scalar summaries using infor-mation from multiple sequences. All these methods are most e�ective whenused in addition to the more basic analysis of variance approach for moni-toring scalar summaries of interest.0.5 Inference about the target distributionOur main practical concern in Bayesian inference is to make reliable in-ferences about the target distribution; for example, claimed 95% regionsthat include at least 95% of the mass of the target distribution, with exactcoverage as the length of the Markov chain simulations approach in�nity.The simplest and most generally useful idea in inference is to use theempirical distribution of the simulated draws, as in multiple imputation(Rubin, 1987), with the iterations from all the parallel simulations mixedin together. If � is the vector variable from which N values have been sim-ulated, this means computing any moments of the posterior distributionusing sample moments of the N draws of �, estimating 95% posterior in-



10tervals of any scalar summary  by the 2.5% and 97.5% order statisticsof the N simulated values  , and so forth. This approach is generally re-liable if based on multiple sequences with overdispersed starting points.Intervals obtained before convergence should be overdispersed and conser-vative; once approximate convergence has been reached, the intervals andother summaries of the target distribution should be accurate, up to thegranularity of the �nite number of simulation draws. If the early parts ofthe simulated sequences have been discarded in monitoring convergence,they should also be discarded for the purposes of inference.It has sometimes been suggested that inferences should be based on everyk-th iteration of each sequence, with k set to some value high enough thatsuccessive draws of � are approximately independent. This strategy can beuseful when the set of simulated values is so large that reducing the numberof simulations by a factor of k gives important savings in storage and com-putation time. Except for storage and the cost of handling the simulations,however, there is no advantage in discarding intermediate simulation draws,even if highly correlated. The step of mixing the simulations from all msequences and then choosing at random destroys any serial dependence inthe simulated sequences, and even correlated draws add some information.A quantitative treatment of these issues is given by Geyer (1992), for thecase of estimating the mean of a scalar summary using simulation draws.Suppose, as is common, we are interested in the distribution of a scalarsummary,  , for a multivariate target distribution, p(�). If we know themathematical form of the conditional density of  given the other com-ponents of �, then we can obtain a better estimate of the density of  byaveraging the conditional densities over the simulated values of �:p̂( ) = 1N NXi=1 p( j�i(� ));where the notation �i(� ) represents all the components of �i except for . The application of this method to Markov chain simulation, speci�callythe Gibbs sampler, is due to Tanner and Wong (1987) and Gelfand andSmith (1990), with a theoretical proof of its e�ectiveness by Liu, Kong,and Wong (1994).0.6 Some current research topics on inference from iterativesimulationAn interesting area of current research combines the ideas of inference ande�ciency. It is possible to improve the convergence monitoring process invarious ways to more e�ectively use the information in the Markov chainsimulation. Most obviously, we note that the early part of a simulation isoften far from convergence, and we can crudely create simulations that are



SOME CURRENT RESEARCH TOPICS ON INFERENCE FROM ITERATIVE SIMULATION11closer to convergence by simply discarding the early parts of the simulatedsequences. In our applications, we have followed the simple but e�ectiveapproach of discarding the �rst half of each simulated sequence and applythe above procedure to the remainder.Finally, it is possible, both in theory and practice, to use inference aboutthe target distribution to improve the e�ciency of the simulation algorithm.Many di�erent ideas apply to this problem. A Gibbs sampler is generallymost e�cient when the jumps are along the principal components of thetarget distribution; inference from early simulations can be used to repa-rameterize (Hills and Smith, 1992). In a Metropolis algorithm, theory fromthe normal distribution suggests that the most e�cient jumping kernel isshaped like the target distribution scaled by a factor of about 2:4=pd,where d is the dimension of the target distribution (Gelman, Gilks, andRoberts, 1994; also see Muller, 1993). The scale and shape of the targetdistribution can again be estimated from early simulation draws, and thesimulations can be adaptively altered as additional information arrives. In-ference from multiple simulated sequences is useful here, so that the earlyestimates of the target distribution are conservatively spread. Other relatedapproaches suggested by normal distribution theory for the Metropolis al-gorithm involve adaptively altering Metropolis jumps so that the frequencyof acceptances is in the range of 1=4 to 1=2, or optimizing the average dis-tance jumped (Gelman, Gilks, and Roberts, 1994). These approaches havenot yet reached the stage of automatic implementation; as Gelfand andSahu (1993) demonstrate, transition rules that are continually adaptivelyaltered have the potential for converging to the wrong distribution. Weanticipate that the interaction between methods of inference, monitoringconvergence, and improvements in e�ciency will ultimately lead to moreautomatic, reliable, and e�cient iterative simulation algorithms.ReferencesBois, F. Y., Gelman,A., Jiang, J., and Maszle, D. R. (1993). A toxicokineticanalysis of tetrachloroethylene metabolism in humans. Technical report.Besag, J. (1986). On the statistical analysis of dirty pictures (with discus-sion). Journal of the Royal Statistical Society B 48, 259{302.Cui, L., Tanner, M. A., Sinha, D., and Hall, W. J. (1992). Monitoringconvergence of the Gibbs sampler: further experience with the Gibbsstopper. Comment on Gelman and Rubin (1992b) and Geyer (1992).Statistical Science 7, 483{486.Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum like-lihood from incomplete data via the EM algorithm (with discussion).Journal of the Royal Statistical Society B 39, 1{38.Fosdick, L. D. (1959). Calculation of order parameters in a binary alloy by



12 the Monte Carlo method. Physical Review 116, 565{573.Gelfand, A., and Sahu, S. K. (1993). On Markov chain Monte Carlo accel-eration. Technical report, Department of Statistics, University of Con-necticut.Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-based approachesto calculating marginal densities. Journal of the American StatisticalAssociation 85, 398{409.Gelman, A. (1992). Iterative and non-iterative simulation algorithms.Com-puting Science and Statistics 24, 433{438.Gelman, A., Gilks, W. R., and Roberts, G. O. (1994). E�cient Metropolisjumping rules. Technical report, Department of Statistics, University ofCalifornia, Berkeley.Gelman, A., and Rubin, D. B. (1992a). A single sequence from the Gibbssampler gives a false sense of security. In Bayesian Statistics 4, ed. J. M.Bernardo et al., 625{631. New York: Oxford University Press.Gelman, A., and Rubin, D. B. (1992b). Inference from iterative simulationusing multiple sequences (with discussion). Statistical Science 7, 457{511.Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion).Statistical Science 7, 473{511.Hastings, W. K. (1970). Monte Carlo sampling methods using Markovchains and their applications. Biometrika 57, 97{109.Hills, S. E., and Smith, A. F. M. (1992). Parameterization issues in Bayesianinference (with discussion). In Bayesian Statistics 4, ed. J. Bernardo,Oxford University Press, 227{246.Liu, C., Liu, J., and Rubin, D. B. (1992). A variational control variablefor assessing the convergence of the Gibbs sampler. Proceedings of theStatistical Computing Section, American Statistical Association, 74{78.Liu, J., Kong, A., and Wong,W. H. (1994). Correlation Structure and Con-vergence Rate of the Gibbs Sampler with Applications to the Compar-isons of Estimators and Augmentation Schemes. Biometrika, to appear.Meng, X. L., and Pedlow, S. (1992). EM: a bibliographic review with miss-ing articles. Proceedings of the Statistical Computing Section, AmericanStatistical Association, 24{27.Meng, X. L., and Rubin, D. B. (1991). Using EM to obtain asymptoticvariance-covariance matrices: the SEM algorithm. Journal of the Amer-ican Statistical Association 86, 899{909.Meng, X. L., and Rubin, D. B. (1993). Maximum likelihood estimation viathe ECM algorithm: a general framework. Biometrika 80, 267{278.Muller, P. (1993). A generic approach to posterior integration and Gibbssampling. Journal of the American Statistical Association, to appear.Raftery, A. E., and Lewis, S. M. (1992). How many iterations in the Gibbs
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