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0.1 Difficulties of inference from Markov chain simulation

Markov chain simulation is a powerful tool—so easy to apply, in fact, that
there 1s the risk of serious error, including:

1. Inappropriate modeling: the assumed model may not be realistic from a
substantive standpoint or may not fit the data.

2. Errors in calculation or programming: the stationary distribution of the
simulation process may not be the same as the desired target distribu-
tion, or the algorithm, as programmed, may not converge to any proper
distribution.

3. Slow convergence: the simulation can remain for many iterations in a
region heavily influenced by the starting distribution. If the iterations
are used to summarize the target distribution, they can yield falsely-
precise inference.

The first two errors can occur with other statistical methods (such as max-
imum likelihood), but the complexity of Markov chain simulation makes
mistakes more common. In particular, it is possible to program a method
of computation such as the Gibbs sampler or Metropolis’ algorithm that
only depends on local properties of the model without ever understanding
the large-scale features of the joint distribution. For a discussion of this
issue in the context of probability models for images, see Besag (1986).

Slow convergence is a problem with deterministic algorithms as well; con-
sider, for example, the literature about the convergence of EM and related
algorithms (e.g., Meng and Pedlow, 1992). In deterministic algorithms, the
two most useful ways of measuring convergence are (a) monitoring indi-
vidual summaries, such as the increasing likelihood in the EM and ECM
algorithms or the symmetry of the covariance matrix in the SEM algo-
rithm (Dempster, Laird, and Rubin, 1977; Meng and Rubin, 1993; Meng
and Rubin, 1991), and (b) replicating the algorithm with different start-
ing points and checking that they converge to the same point (or, if not,
noting multiple solutions). We apply both general approaches to Markov
chain simulation, but we must overcome the difficulties that (a) the algo-
rithm is stochastic, so we cannot expect any summary statistic to increase
or decrease monotonically, and (b) convergence is to a distribution, rather
than a point.

This chapter presents an overview of methods for addressing two practi-
cal tasks: monitoring convergence of the simulation and summarizing infer-
ence about the target distribution using the output from the simulations.
The material in Sections 3-5 1s presented in more detail, with an example,
in Gelman and Rubin (1992b). The final section of this chapter introduces
and provides references to various methods in the recent statistical litera-
ture for using inference from the simulation to improve the efficiency of the
Markov chain algorithm.
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The practical task in “monitoring convergence” is to estimate how much
the inference based on the Markov chain simulations differs from the desired
target distribution. Our basic method, inspired by the analysis of variance,
is to form an overestimate and an underestimate of the variance of the
target distribution, with the property that the estimates will be roughly
equal at convergence but not before.

0.2 The risk of undiagnosed slow convergence

The fundamental problem of inference from simulation is that, for any
simulation, there will be areas of the target distribution that have not been
covered by a finite Markov chain. As the simulation progresses, the ergodic
property of the Markov chain causes it eventually to cover all the target
distribution, but in the short term the simulations cannot, in general, tell
us about areas where they has not been. Incidentally, this is a general
problem whenever convergence is slow, even in a distribution that has a
single mode. It has happened several times in our experience that a single
sequence of Markov chain simulation has appeared to have “converged,”
even though evidence from replications makes it clear that the movement
of the simulation 1s just too slow to detect.

In our own experience of applying Markov chain simulation to proba-
bility models and Bayesian posterior distributions, we have commonly no-
ticed poor convergence by examining multiple independent simulations. In
many of these settings, any single one of the simulated sequences would
have appeared to have converged perfectly if examined alone; some of
these examples have been published as Figures 1-3 of Gelman and Ru-
bin (1992a)—note the title of that article—and Figure 4 of Gelman and
Rubin (1992b). In these examples, quantitative methods of diagnosing lack
of convergence from a single sequence (e.g., Hastings, 1970, Raftery and
Lewis, 1992, Geyer, 1992) all fail, because the simulations are moving so
slowly, or are “stuck” in separate places in the target distribution. For this
article we present yet another example, from our current applied research.

Figure 0.1 displays an example of slow convergence from a Markov chain
simulation for a hierarchical Bayesian model for a pharmacokinetics prob-
lem (see Bois et al., 1994, for details). The simulations were done using a
Metropolis-approximate Gibbs sampler (as in Section 4.4 of Gelman, 1992);
due to the complexity of the model, each iteration was expensive in com-
puter time, and it was desirable to keep the simulation runs as short as
possible. Figures la and 1b display time series plots for a single parameter
in the posterior distribution in two independent simulations, each of length
1000. The simulations were run in parallel simultaneously on two work-
stations in a network. It is clear from the separation of the two sequences
that, after 1000 iterations, the simulations are still far from convergence.
However, either sequence alone looks perfectly well behaved.
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Figure 0.1. Time sertes of the value of a single parameter from two parallel sim-
ulations of length 1000 from iterative simulation of a complicated multiparameter
model. Lack of convergence is evident by comparing the simulations but cannot
be detected from either sequence alone.

Interestingly, we do not yet know whether the slow convergence exhibited
in Figure 0.1 is due to an inappropriate model, programming mistakes, or
just slow movement of the Markov chain. As is common in applied statis-
tics, we have repeatedly altered our model in the last several months of re-
search on this problem, as we have gained understanding about the relation
between the model, the data, and our prior information. The simulations
from a previous version of the model had reached approximate conver-
gence before 1000 iterations, which leads us to suspect an error of some
sort in the simulation leading to Figure 1. (One of the strengths of Markov
chain simulation has been that it has allowed us to change our model with
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only minor alterations in the computer program.) Several times in this re-
search, we have noted poor convergence by comparing parallel sequences,
and each time we have investigated and found a substantive flaw in the
model or a programming error, or else we have had to alter our Markov
chain simulation to run more efficiently. Another approach would be to
run the simulation indefinitely and wait until the lines begun in Figures la
and 1b overlap; because of the slowness in computing the simulation draws
at each step, we would prefer to avoid this approach. Also, our model is
still in a preliminary stage, and so any investment made now in computa-
tional efficiency (or in debugging!) can be expected to pay off repeatedly
in computations with future versions of the model.

0.3 Designing the simulations to make inference more reliable:
multiple sequences and overdispersed starting points

Our general approach to monitoring convergence of Markov chain simula-
tions is based on plots such as Figure 0.1 above. We have always found it
useful to simulate at least two parallel sequences, typically four or more.
If the computations are implemented on a network of workstations or a
parallel machine, 1t makes sense to run as many parallel simulations as
there are free workstations or machine processors. The recommendation
to always simulate multiple sequences is not new in the iterative simula-
tion literature (e.g., Fosdick, 1959) but is somewhat controversial (see the
discussion of Gelman and Rubin, 1992b, and Geyer, 1992). In our experi-
ence with Bayesian posterior simulation, however, we have found that the
added information obtained from replication (as in Figures 0.1) outweighs
any additional costs required in multiple simulations.

It is desirable to choose starting points that are widely dispersed in the
target distribution. Overdispersed starting points are an important design
feature because starting far apart can make lack of convergence apparent
(as in Figure 0.1), and also for the purposes of inference, to ensure that all
major regions of the target distribution are represented in the simulations.
For many problems, especially with discrete or bounded parameter spaces,
it is possible to pick several starting points that are far apart by inspecting
the parameter space and the form of the distribution. For example, the
proportion in a two-component mixture model can be started at values of
0.1 and 0.9 in two parallel sequences.

In more complicated situations, more work may be be needed to find
a range of dispersed starting values. In practice, we have found that any
additional effort spent on approximating the target density is useful for
understanding the problem and for debugging: after the Markov chain sim-
ulations have been completed, the final estimates can be compared to the
earlier approximations. In complicated applied statistical problems, it is
standard practice to gradually improve models as more information be-
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comes available, and the estimates from each model can be used to obtain
starting points for the computation in the next stage.

Before running the Markov chain simulations, it is important to have
a rough idea of the extent of the target distribution. In many problems,
initial estimates can be obtained using the data and a simpler model; for
example, approximating a hierarchical generalized linear model by a lin-
ear regression or nonhierarchical generalized linear model computation. In
other problems, including the example used for Figure 0.1, the prior dis-
tribution is informative and can be used to construct rough bounds on the
parameters of the model. In problems without strong prior distributions, it
is often useful to locate the mode or modes of the target distribution using
some deterministic algorithm such as stepwise ascent, EM, or ECM (Demp-
ster, Laird, and Rubin, 1977; Meng and Rubin, 1993). (Once the Markov
chain simulation algorithm has been programmed, it is often easily altered
to find modes, by replacing random jumps with deterministic steps to move
to higher points in the target density.) It is also useful to estimate roughly
the scale of the target distribution near the modes, which can often be done
by computing the second derivative matrix of the log-posterior density at
each mode. For continuous-parameter problems, starting points for paral-
lel Markov chain simulations can be drawn from an approximate Student-¢
mixture distribution based on the posterior modes, possibly corrected by
importance resampling; see Gelman and Rubin (1992b) for details. If the
target distribution is multimodal, or suspected to be multimodal, it 1s a
good idea to start at least one sequence at each mode. If the number of
modes 1s large, the simulation algorithm should be designed to frequently
jump between modes. As we have seen, preliminary estimation is not al-
ways easy, but the effort generally pays off in greater understanding of the
model and confidence in the results.

0.4 Monitoring convergence using simulation output

Our recommended general approach to monitoring convergence is based on
detecting when the Markov chains have “forgotten” their starting points
by comparing several sequences drawn from different starting points and
checking that they are indistinguishable. There are many possible ways to
compare parallel sequences, the most obvious approach being to look at
time series plots such as Figures la and 1b overlaid and see if the two se-
quences can be distinguished. Here we outline a more quantitative approach
based on the analysis of variance: approximate convergence is diagnosed
when the variance “between” the different sequences is no larger than the
variance “within” each individual sequence.

A more general formulation of the method presented here is to identify
“convergence” with the condition that empirical distribution of simulations
obtained separately from each sequence is approximately the same as the
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distribution obtained by mixing all the sequences together. Before the par-
allel sequences have converged, the collected simulations from each single
sequence will be much less variable than the simulations collected from all
the sequences combined; consider Figure 0.1, for example.

The approach we have found most convenient is based on separately
monitoring the convergence of all scalar summaries of interest from the
target distribution. For example, we may be interested in all the parameters
in the distribution and various predictive quantities. We will defer until
the end of this section a discussion of what scalar summaries should be
monitored; for the purpose of defining the method, we shall consider a
single summary at a time, and label it . We shall assume m parallel
simulations, each of length n.

For each scalar summary of interest, we would like a numerical equiv-
alent of the comparison in Figure 0.1 that states, “the two sequences are
much farther apart than we could expect just based on their internal vari-
ability.” For each scalar summary 1, we label the m parallel sequences of
length n as (v;;), j=1,...,n;i=1,...,m, and we compute the following
two quantities—the between-sequence variance B and the within-sequence
variances W:

B N~ =~ — — 1L N
B o= —— 3 (@ =07 where Ty = 3 Sy, U=
i=1 ji=1 ji=1
1 2 2 1 - R
= — : h S = i — 7.
W m;“;za where 52 n_ljzzg(’l/)] 1/”)

The between-sequence variance B contains a factor of n because it is based
on the variance of the within-sequence means, t; , each of which is an
average of n values ;.
From the two variance components, we construct two estimates of the
variance of ¢ in the target distribution. First,
@) = "W+ B

n

is an estimate of the variance that is unbiased under stationarity (that is, if
the starting points of the simulations were actually drawn from the target
distribution), but is an ocverestimate under the more realistic assumption
that the starting points are overdispersed. We call var(y) a “conservative”
estimate of the variance of ¢ under overdispersion.

Meanwhile, for any finite n, the “within” variance W should underesti-
mate the variance of ¢ because the individual sequences have not had time
to range over all of the target distribution and, as a result, will have less
variability; in the limit as n — oo, both var(y) and W approach var(),
but from opposite directions.

We can now monitor the convergence of the Markov chain by estimating
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the factor by which the conservative estimate of the distribution of ¥ might
be reduced; that is, the ratio between the estimated upper and lower bounds
for the standard deviation of 1, which we call the “estimated potential scale
reduction,”

VE = )
W
(This is R rather than R because the numerator and denominator are
merely estimated upper and lower bounds on the variance.) As the simula-
tion converges, the potential scale reduction declines to 1, meaning that the
parallel Markov chains are essentially overlapping. If the potential scale re-
duction is high, then we have reason to believe that proceeding with further
simulations may improve our inference about the target distribution.

For example, the estimate var(y) derived from the two simulations of
Figures 0.1 would just about cover the range of both sequences, and 1s about
2.52, while the average within variance }¥ measures just the variance within
each sequence and is about 0.52. The estimated potential scale reduction
R is about 5 for this example, indicating poor convergence and a potential
for confidence intervals for ¥ to shrink by as much as a factor of 5 once
convergence is eventually reached.

In general, if R is not near 1 for all scalar summaries of interest, it is
probably a good idea to continue the simulation runs (and perhaps alter
the simulation algorithm itself to make the simulations more efficient, as
we discuss in Section 6 of this chapter). In practice, we generally run the

simulations until the values of R are all less than 1.1 or 1.2. Using this
method, we never have to actually look at graphs such as Figure 0.1; the
potential scale reductions are all computed automatically.

There is still the question of what scalar summaries to monitor, although
the above approach simplifies the problem in practice by making monitor-
ing so easy that we can, and have, monitored over a hundred summaries
for a single problem and just scanned for values of R greater than 1.2 as in-
dicating poor convergence. We have no problem monitoring all parameters
and hyperparameters of a model and also examining predictive simulations
of interest and other summaries of interest such as the ratio between two
variance components. Tables 2 and 3 of Gelman and Rubin (1992b) pro-
vide an example of monitoring several summaries at once. In addition, the
method could be generalized to monitor convergence of vector summaries,
in which case B, W, and var(y) become matrices whose eigenvalues can be
compared to estimate the potential reduction in the scale of vector infer-
ences.

Another issue to consider is sampling variability of the quantities 1V and
B; we do not want to falsely declare convergence when R just happens to
be near 1 in a short simulation run. In practice, sampling variability of the
convergence monitoring statistics is not a serious concern, because, regard-
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less of convergence, one will almost always run the simulations long enough
to get a fairly good estimate of the variance in the target distribution. In
addition, if several scalar summaries are being monitored, it is extremely
unlikely that they will all appear to have converged by “luck,” especially
if the number of parallel simulations m is fairly large (at least 10, say).
For theoretical completeness, however, it is possible to correct the above
estimates for sampling variability, leading to a slightly different estimate of
R; details appear in Gelman and Rubin (1992b), and a computer program
(“itsim”) in the S language is available on Statlib or from the author.

A potentially useful improvement for monitoring convergence is to create
an underestimate of var(¢) that is more efficient than W, by making use of
the autocorrelated time-series structure of the iterations within each series.
Hastings (1970) discusses this approach, and Geyer (1992) reviews some
more recent theoretical results in this area; both these references attempt
to estimate var(¢) from a single Markov chain sequence, which is a hopeless
task in many practical applications (see Section 2 of this chapter), but can
be useful as improved underestimates for use in place of W in the formula
for R.

In addition, several methods have been proposed in recent years to use
the Markov chain transition probabilities, which are known in most ap-
plications of Markov chain simulation, to more efficiently diagnose lack of
convergence. At convergence, the simulations in any sequence should look
just as “likely” backward as forward and the joint distribution of successive
simulations in a sequence should be symmetric. Cui et al. (1992) construct
a scalar summary based on these principles that can diagnose poor con-
vergence in cases where summaries based only on the simulation output
(and not the transition probabilities) fail. Liu, Liu, and Rubin (1992) and
Roberts (1993) construct somewhat similar scalar summaries using infor-
mation from multiple sequences. All these methods are most effective when
used in addition to the more basic analysis of variance approach for moni-
toring scalar summaries of interest.

0.5 Inference about the target distribution

Our main practical concern in Bayesian inference is to make reliable in-
ferences about the target distribution; for example, claimed 95% regions
that include at least 95% of the mass of the target distribution, with exact
coverage as the length of the Markov chain simulations approach infinity.

The simplest and most generally useful idea in inference is to use the
empirical distribution of the simulated draws, as in multiple imputation
(Rubin, 1987), with the iterations from all the parallel simulations mixed
in together. If 6 is the vector variable from which N values have been sim-
ulated, this means computing any moments of the posterior distribution
using sample moments of the N draws of 8, estimating 95% posterior in-
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tervals of any scalar summary ¥ by the 2.5% and 97.5% order statistics
of the N simulated values 1, and so forth. This approach is generally re-
liable if based on multiple sequences with overdispersed starting points.
Intervals obtained before convergence should be overdispersed and conser-
vative; once approximate convergence has been reached, the intervals and
other summaries of the target distribution should be accurate, up to the
granularity of the finite number of simulation draws. If the early parts of
the simulated sequences have been discarded in monitoring convergence,
they should also be discarded for the purposes of inference.

It has sometimes been suggested that inferences should be based on every
k-th iteration of each sequence, with k set to some value high enough that
successive draws of § are approximately independent. This strategy can be
useful when the set of simulated values is so large that reducing the number
of simulations by a factor of k& gives important savings in storage and com-
putation time. Except for storage and the cost of handling the simulations,
however, there is no advantage in discarding intermediate simulation draws,
even 1f highly correlated. The step of mixing the simulations from all m
sequences and then choosing at random destroys any serial dependence in
the simulated sequences, and even correlated draws add some information.
A quantitative treatment of these issues is given by Geyer (1992), for the
case of estimating the mean of a scalar summary using simulation draws.

Suppose, as is common, we are interested in the distribution of a scalar
summary, ¢, for a multivariate target distribution, p(@). If we know the
mathematical form of the conditional density of ¢ given the other com-
ponents of @, then we can obtain a better estimate of the density of ¢ by
averaging the conditional densities over the simulated values of §:

B0 = 5 2l (=),

where the notation #;(—1) represents all the components of §; except for
1. The application of this method to Markov chain simulation, specifically
the Gibbs sampler, is due to Tanner and Wong (1987) and Gelfand and
Smith (1990), with a theoretical proof of its effectiveness by Liu, Kong,
and Wong (1994).

0.6 Some current research topics on inference from iterative
simulation

An interesting area of current research combines the ideas of inference and
efficiency. It is possible to improve the convergence monitoring process in
various ways to more effectively use the information in the Markov chain
simulation. Most obviously, we note that the early part of a simulation is
often far from convergence, and we can crudely create simulations that are



SOME CURRENT RESEARCH TOPICS ON INFERENCE FROM ITERATIVE SIMULATION11

closer to convergence by simply discarding the early parts of the simulated
sequences. In our applications, we have followed the simple but effective
approach of discarding the first half of each simulated sequence and apply
the above procedure to the remainder.

Finally, it is possible, both in theory and practice, to use inference about
the target distribution to improve the efficiency of the simulation algorithm.
Many different ideas apply to this problem. A Gibbs sampler is generally
most efficient when the jumps are along the principal components of the
target distribution; inference from early simulations can be used to repa-
rameterize (Hills and Smith, 1992). In a Metropolis algorithm, theory from
the normal distribution suggests that the most efficient jumping kernel is
shaped like the target distribution scaled by a factor of about 2.4/\/3,
where d is the dimension of the target distribution (Gelman, Gilks, and
Roberts, 1994; also see Muller, 1993). The scale and shape of the target
distribution can again be estimated from early simulation draws, and the
simulations can be adaptively altered as additional information arrives. In-
ference from multiple simulated sequences is useful here, so that the early
estimates of the target distribution are conservatively spread. Other related
approaches suggested by normal distribution theory for the Metropolis al-
gorithm involve adaptively altering Metropolis jumps so that the frequency
of acceptances is in the range of 1/4 to 1/2, or optimizing the average dis-
tance jumped (Gelman, Gilks, and Roberts, 1994). These approaches have
not yet reached the stage of automatic implementation; as Gelfand and
Sahu (1993) demonstrate, transition rules that are continually adaptively
altered have the potential for converging to the wrong distribution. We
anticipate that the interaction between methods of inference, monitoring
convergence, and improvements in efficiency will ultimately lead to more
automatic, reliable, and efficient iterative simulation algorithms.
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