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Table 2. Coverage accuracy and average lengths of MFB CIs for µ1

for the CP, the AIC, and the BIC methods based on 500 simulation
runs and 1000 bootstrap replicates. The nominal confidence level is 95

Length of CIs Coverage probability

AIC 3.140 0.927
Cp 3.161 0.960
BIC 3.182 0.980

of bootstrap replicates (among B many) that resulted in selec-
tion of the model j0. Then, the MFB method makes use of the
subcollection

{D∗b
n : b ∈ B0}

of resamples to carry out bootstrap-based inference. For exam-
ple, bootstrap CIs for linear combinations of the regression pa-
rameter vector can be obtained by using the bootstrap-t method
applied only to the resamples {D∗b

n : b ∈ B0}. Since all repli-
cates in this collection correspond to a single model, the extra
variability that results from the model selection step in different
resamples is eliminated. In fact, this MFB approach was used
for constructing percentile-t CIs for the parameter µ1 in Sec-
tion 3. Although the respective model selection methods have
considerable variability in selecting the true model among B re-
samples, the empirical coverage accuracy of the MFB approach
reported therein appears reasonable for each of the three model
selection methods. Theoretical properties of the MFB method
is currently under investigation.

3. NUMERICAL RESULTS

Here, we report results from a small simulation study on the
MFB method. We consider model (1) with p = 10 and p0 = 3
(a cubic model), where β0 = 1, β1 = 0.5, β2 = 0.4, β3 = 5.0,

and βi = 0 for all i = 4, . . . , 10. We generated the variables
(ci, ϵi) as iid bivariate normal vectors with zero mean vector
and identity covariance matrix. The sample size considered was
n = 200. The MFB method was used to construct bootstrap
CIs for the parameter µ1 = E(y1|c1) where the model selection
was performed with the CP, the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) methods.
The results from the model selection step applied to the bootstrap
resamples are summarized in Table 1. The first three rows of the
table give the frequencies of the different models, which were
selected by each of the three methods over 600 simulation runs.
The last three rows give the associated standard deviations. It is
evident from the table that except for the BIC, which is known
to be consistent for model selection, the other two methods
selected the true model with low empirical probability. As a
result, the use of either of these model methods in the naive
approach would produce very distorted results. However, by
using the MFB approach, even in such situations, we are able
to identify the true model. The empirical coverage accuracy and
the average lengths of a nominal 95% CI for µ1 are reported
in Table 2. The coverage is evidently very good irrespective of
the model selection performance of the three model selection
methods.
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Comment
Andrew GELMAN and Aki VEHTARI

1. ACCOUNTING FOR MODEL SELECTION IN
STATISTICAL INFERENCE

How can one proceed with predictive inference and assess-
ment of model accuracy if we have selected a single model from
some collection of models? Selecting a single model instead
of model averaging can be useful as it makes the model easier
to explain, and in some cases that single model gives similar
predictions as the model averaging.

The selection process, however, causes overfitting and biased
estimates of prediction error; thus much work has gone into es-
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timating predictive accuracy given available data (e.g., Gelman,
Hwang, and Vehtari 2013). In Efron’s article, bagging is used to
average over different models, and the main contribution is pro-
viding a useful new formula estimating the accuracy of bagging
in this situation.

It makes sense that bagging should work for the smooth unsta-
ble (“jumpy”) estimates in the examples shown. Full Bayesian
inference should also be able to handle these problems, but it
can be useful to have different approaches based on different
principles.
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One of the appeals of the bootstrap is its generality (as, in a
completely different way, with Bayes; see Gelman 2011). Any
estimate can be bootstrapped; all that is needed are an estimate
and a sampling distribution. The very generality of the boostrap
creates both opportunity and peril, allowing researchers to solve
otherwise intractable problems but also sometimes leading to
an answer with an inappropriately high level of certainty.

We demonstrate with two examples from our own research:
one problem where bootstrap smoothing was effective and led
us to an improved method, and another case where bootstrap
smoothing would not solve the underlying problem. Our point
in these examples is not to disparage bootstrapping but rather
to gain insight into where it will be more or less effective as a
smoothing tool.

2. AN EXAMPLE WHERE BOOTSTRAP SMOOTHING
WORKS WELL

Bayesian posterior distributions are commonly summarized
using Monte Carlo simulations, and inferences for scalar param-
eters or quantities of interest can be summarized using 50% or
95% intervals. A 1 − α interval for a continuous quantity is typ-
ically constructed either as a central probability interval (with
probability α/2 in each direction) or a highest posterior density
interval (which, if the marginal distribution is unimodal, is the
shortest interval containing 1 − α probability). These intervals
can in turn be computed using posterior simulations, either us-
ing order statistics (e.g., the lower and upper bounds of a 95%
central interval can be set to the 25th and 976th order statistics
from 1000 simulations) or the empirical shortest interval (e.g.,
the shortest interval containing 950 of the 1000 posterior draws).

For large models or large datasets, posterior simulation can be
costly, the number of effective simulation draws can be small,
and the empirical central or shortest posterior intervals can have
a high Monte Carlo error, especially for wide intervals such as
95% that go into the tails and thus sparse regions of the simula-
tions. We have had success using the bootstrap, in combination
with analytical methods, to smooth the procedure and produce
posterior intervals that have much lower mean squared error
compared with the direct empirical approaches (Liu, Gelman,
and Zheng 2013).

3. AN EXAMPLE WHERE BOOTSTRAP SMOOTHING
IS UNHELPFUL

When there is separation in logistic regression, the maximum
likelihood estimate of the coefficients diverges to infinity. Gel-
man et al. (2008) illustrated with an example of a poll from
the 1964 U.S. presidential election campaign, in which none
of the black respondents in the sample supported the Republi-

can candidate, Barry Goldwater. As a result, when presidential
preference was modeled using a logistic regression including
several demographic predictors, the maximum likelihood for
the coefficient of “black” was −∞. The posterior distribution
for this coefficient, assuming the usual default uniform prior
density, had all its mass at −∞ as well. In our article, we rec-
ommended a posterior mode (equivalently, penalized likelihood)
solution based on a weakly informative Cauchy (0, 2.5) prior
distribution that pulls the coefficient toward zero. Other, simi-
lar, approaches to regularization have appeared over the years.
We justified our particular solution based on an argument about
the reasonableness of the prior distribution and through a cross-
validation experiment. In other settings, regularized estimates
have been given frequentist justifications based on coverage of
posterior intervals (see, e.g., the arguments given by Agresti
and Coull 1998, in support of the binomial interval based on the
estimate p̂ = y+2

n+4 ).
Bootstrap smoothing does not solve problems of separa-

tion. If zero black respondents in the sample supported Barry
Goldwater, then zero black respondents in any bootstrap sam-
ple will support Goldwater as well. Indeed, bootstrapping can
exacerbate separation by turning near-separation into complete
separation for some samples. For example, consider a survey
in which only one or two of the black respondents support the
Republican candidate. The resulting logistic regression estimate
will be noisy but it will be finite. But, in bootstrapping, some
of the resampled data will happen to contain zero black Re-
publicans, hence complete separation, hence infinite parameter
estimates. If the bootstrapped estimates are regularized, how-
ever, there is no problem.

The message from this example is that, perhaps paradoxically,
bootstrap smoothing can be more effective when applied to
estimates that have already been smoothed or regularized.
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