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Abstract In assessing the distribution and metabolism
of toxic compounds in the body, measurements are not
always feasible for ethical or technical reasons. Com-
puter modeling offers a reasonable alternative, but the
variability and complexity of biological systems pose
unique challenges in model building and adjustment.
Recent tools from population pharmacokinetics,
Bayesian statistical inference, and physiological
modeling can be brought together to solve these prob-
lems. As an example, we modeled the distribution and
metabolism of tetrachloroethylene (PERC) in humans.
We derive statistical distributions for the parameters of
a physiological model of PERC, on the basis of data
from Monster et al. (1979). The model adequately fits
both prior physiological information and experimental
data. An estimate of the relationship between PERC
exposure and fraction metabolized is obtained. Our
median population estimate for the fraction of inhaled
tetrachloroethylene that is metabolized, at exposure
levels exceeding current occupational standards, is
1.5% [95% confidence interval (0.52%, 4.1%)]. At
levels approaching ambient inhalation exposure
(0.001 ppm), the median estimate of the fraction metab-
olized is much higher, at 36% [95% confidence interval
(15%, 58%)]. This disproportionality should be taken
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into account when deriving safe exposure limits for
tetrachloroethylene and deserves to be verified by fur-
ther experiments.
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Introduction

There is currently no general agreement on the value of
the fraction of tetrachloroethylene (perchloroethylene,
PERC) intake metabolized at low exposure levels in
humans. Still, this number is of importance in deter-
mining the health risks posed by exposure to PERC:
PERC is carcinogenic in animals via one or several of
its metabolites (Odum et al. 1988; Green et al. 1990;
Alexeeff et al. 1992); therefore the fraction metabolized
is likely to be a better measure of toxic exposure than
PERC exposure itself. For humans this fraction is diffi-
cult to measure directly but can be estimated with
a physiological toxicokinetic model (Gerlowski and
Jain 1983; Balant and Gex-Fabry 1990; Bois et al. 1990;
Andersen et al. 1993). Such models (Fig. 1) allow the
simulation of a variety of end-points (e.g. metabolite
concentrations) in specific organs, while providing the
opportunity to use relevant prior information (usually
published literature) on physiological parameters, such
as blood flows, organ volumes etc. Yet, some para-
meters, typically those controlling metabolism, are not
known with precision. Proper statistical inference re-
garding the value of these parameters is therefore ne-
cessary.

In addition, our interest lies in inference about
PERC metabolism in humans, i.e. in a diverse popula-
tion, rather than in any one individual studied in pub-
lished experiments. We therefore designed a statistical
model describing the relationships between individual
and population physiological parameters to estimate
population variability (Sheiner 1984; Racine-Poon and



Fig. 1 Schematic representation of the 4 compartment physiological
model used to simulate the distribution and metabolism of PERC.
The symbols are: », volumes; F, blood flows; P, partition coeffi-
cients; »ml, and Kml, Michaelis-Menten coefficients; A¸», alveolar
ventilation rate; »PR, ventilation over perfusion ratio

Table 1 Measured individual characteristics of the six human male
volunteers exposed to PERC by Monster et al. (personal commun-
ication; 1979)

Subject Body mass
(kg)

Lean body
mass (kg)

Minute volume
at rest (l/min)

Age
(years)

A 70 62 7.6 31
B 82 71 11.6 22
C 82 71 10.0 21
D 86 74 11.3 28
E 67 61 12.3 27
F 77 61 8.8 25
Mean 77! 66! 10! 26"

! Geometric mean
" Arithmetic mean

Smith 1990; Sheiner and Ludden 1992; Smith and
Wakefield 1994; Wakefield et al. 1994). Linking a popu-
lation model to a physiological toxicokinetic model has
already been achieved by Droz et al. (1989a, b), but
fitting the linked models has never been done, to our
knowledge, and may seem like wishful thinking with
regard to modeling and computation. In fact, up to
now, little consideration has generally been given to
statistical issues when using physiological models: the
task seems daunting, given the number of parameters
involved in these models and the relative paucity of
relevant data. Yet, for such difficult problems, the use of
Bayesian numerical methods is promising (Woodruff
et al. 1992; Woodruff and Bois 1993). Bayesian statistics
also provide a natural way to merge a priori know-
ledge, gained by implementing a physiological model,
with the in vivo experimental data. We describe the
application to our model of Markov chain Monte
Carlo simulation, which is a particularly simple and

powerful tool. A similar approach to pharmacokinetic
modeling is presented by Wakefield et al. (1994) and
Smith and Wakefield (1994), for classical one-compart-
ment models. By using a physiological model, we
increase the number of parameters but can take ad-
vantage of a large body of prior information on the
parameter values. We report predictions and confi-
dence bounds on the fraction of PERC metabolized at
low dose in humans. We discuss how the method can
improve our use of toxicokinetic modeling for exposure
to toxic substances in the air.

Materials and methods

Data and models

The data comprised the concentrations of PERC in exhaled air and
venous blood for six male volunteers exposed to 72 ppm PERC in
an inhalation chamber during 4 h (Monster, personal communica-
tion; Monster et al. 1979). PERC concentrations were measured over
the week following exposure. Two exposure levels were used:
72 ppm (204 lg/l) and 144 ppm (409 lg/l). In addition, a set of
physiologic measurements was obtained on each individual
(Table 1).

We used a physiological model in which the human body is
divided into four compartments: poorly perfused tissues, well per-
fused tissues, fat, and liver (Bois et al. 1990) (Fig. 1). Compartments
are assumed to be homogeneous and distribution limited by blood
flow. Pulmonary exchanges are modeled by assuming instantaneous
equilibrium between alveolar air, venous blood and arterial blood.
Differential equations of the form LC
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Michaelis constant. The differentials were solved using our own
software, MCSim (available from the first author). This model allows
us to compute, for given parameter values and exposure conditions,
various quantities relevant for our purpose: concentration of PERC
in blood or exhaled air, and quantity of PERC metabolized in
a given period of time.

The statistical model was constructed using a hierachical popula-
tion approach, as described in Fig. 2. It has two major components:
the individual level and the population level. At the individual’s
level, for each of six subjects, exhaled air and blood concentrations
(y) were measured experimentally. The expected values of the ex-
haled air and blood concentrations are a function (f ) of exposure
level (E), time (t), a set of physiological parameters of unknown
values (h), and a set of measured, covariate parameters (u). E, t, h,
and u are subject-specific. The function f is the nonlinear physiolo-
gical model, described above. The concentrations actually observed
in expired air and blood are also affected by measurement errors,
which are assumed, as usual, to be independent and log-normally
distributed, with a mean of zero and a variance r2 (on the log scale).
The variance vector r2 has two components, r2

1
for the measure-

ments in blood, and r2
2

for the measurements in exhaled air, because
these measurements have different experimental protocols and are
therefore likely to have different precisions.
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Table 2 Prior parameters, truncations, and summary of the posterior (fitted) distributions for the population means and standard deviations
of the scaling coefficients of the PERC model parameters in humans !,",#. The posterior distributions are established using the last 5000
iterations of the five runs performed

Scaled parameter Prior on l Prior on R Posterior

Multiplier exp (M) exp (S) Truncation$ exp (R
0
) exp(l)]%exp(R)

Ventilation over perfusion ratio (»PR) 1 1.6 1.3 3 1.3 1.19]%1.13
Blood flows

Well perfused tissues (Fwp) 0.7]M»/»PR 0.48% 1.2& 3 1.2 0.637]%1.06
Poorly perfused tissues (Fpp) 0.7]M»/»PR 0.20 1.2& 3 1.2 0.129]%1.11
Fat (Ff ) 0.7]M»/»PR 0.07 1.2& 3 1.2 0.0488]%1.12
Liver (Fl ) 0.7]M»/»PR 0.25 1.1& 3 1.1 0.179]%1.11

Volumes
Well perfused tissues (»wp) ¸BM 0.28% 1.2& 3 1.2 0.196]%1.09
Poorly perfused tissues (»pp) ¸BM 0.56% 1.2& 3 1.2 0.641]%1.03
Liver (»l) ¸BM 0.033 1.1& 3 1.1 0.033]%1.04

Blood/air partition coefficient (Pba) 1 12 1.5 3 1.3 16.0]%1.11
Tissue/blood partition coefficients 1.3

Well perfused tissues (Pwp) 1 4.8 1.5 3 1.3 1.92]%1.12
Poorly perfused tissues (Ppp) 1 1.6 1.5 3 1.3 2.9]%1.15
Fat (Pf ) 1 125 1.5 3 1.3 84.1]%1.28
Liver (Pl ) 1 4.8 1.5 3 1.3 3.08]%1.12

Max. rate of metabolism in liver (»Ml) ¸BM0.7 0.042 10 2 2 0.00191]%1.45
Km in liver (KMl) 1 16 10 2 1.5 0.729]%1.20

! Scaled parameter"multiplier]scaling coefficient (a multiplier of 1 implies that no scaling is made). Units: weights in kg, flows in l/min,
volumes in l, »Ml in mg/min, KMl in mg
" Body mass (BM), lean body mass (¸BM), minute volume (M»), volume of fat (»f) are explicitly given in Monster et al. (1979) and
summarized in Table 2
# For all parameters the scaling coefficients are assumed to be a priori lognormally distributed
$ Truncation is expressed in terms of n, the number of SD added of subtracted to the mean. In natural space the bounds were therefore
exp(M$nS)
% For these parameters the reparametrization lead to actual means of 0.47, 0.27, and 0.55, respectively (see text)
& For these parameters a reparametrization was used with actual SDs at 1.17, 1.22, 1.27, 1.15, 1.36, and 1.17, respectively (see text)

Fig. 2 Graph of the statistical model describing the dependence
relationships between several groups of variables. Symbols are:
l mean population parameters; R2 variances of the parameters in the
population; E PERC exposure concentrations; t experimental samp-
ling times; h unknown physiological parameters; u measured
physiological parameters; f toxicokinetic model; y measured PERC
concentrations in blood or exhaled air; r2 variance of the experi-
mental measurements

Three types of nodes are featured in Fig. 2:

f Square nodes represent variables for which the values are known
by observation, such as y or u, were fixed by the experimenters;
for example E and t; or were fixed by ourselves, for example the
prior on l and R2.

f Circle nodes represent unknown variables, such as h, r2, l, or R2.
f Following the notation of Thomas et al. (1992), the triangle

represents the deterministic physiological model f.

An arrow between two nodes indicates a direct statistical depend-
ence between the variables of those nodes.

A priori parameter distributions

To take into account known physiological dependencies between
the toxicokinetic model parameters (e.g., between organ volumes
and body weight, or alveolar ventilation rate and cardiac output),
several of them were linked to the lean body mass or other para-
meter values, via scaling functions (Adolph 1949; Davidson et al.
1986; Mordenti 1986; Ings, 1990) (Table 2). In brief, volumes are
input as fractions of the lean body weight, flows as fractions of
cardiac output (itself obtained by multiplying the minute volume,
which is the total pulmonary ventilation flow, by the ventilation
over perfusion ratio), and the maximum rate of metabolism as
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a power function of lean body weight. The other parameters were
unscaled. The scaling coefficients were the actual parameters used in
input.

At the population level, we assumed that the each component of
the h parameter set was distributed log-normally, with population
averages l and variances R2 (in log scale). We have some a priori
knowledge of l and R2, at least in the form of standard values
(International Commission on Radiological Protection (ICRP),
1975). Information about the distribution of an individual’s h
parameter values is given by the experimental data and by the
population parameters. We assigned a priori truncated normal dis-
tributions to the population means l (with parameters M and S) and
inverse gamma distributions for the population variances R2. We
defined prior value for the hyper-parameters M, S, and R2, on the
basis of the literature (Guberan and Fernandez 1974; International
Commission on Radiological Protection (ICRP) 1975; As strand
1983; Fiserova-Bergerova 1983; Ward et al. 1988; Koizumi 1989;
Williams and Leggett 1989; Bois et al. 1990). The choice of values for
these parameters and the bounds for truncation (expressed as
a number of standard deviations to be subtracted or added to the
mean) are summarized in Table 2. In setting uncertainties, we tried
to be conservative and set the prior variances higher rather than
lower when there was ambiguity in the biological literature (for
example, with the partition coefficients). For convenience, we give in
Table 2 the value of exp(M), i.e. the geometric mean, exp(S) and
exp(R

o
), which lie on the natural scale.

The values used for organ masses, when expressed as fractions of
lean body weight, are usually considered as reference values for
35-year-old males (International Commission on Radiological Pro-
tection (ICRP) 1975; Williams and Leggett 1989). Volumes in liters
and masses in kilograms have the same values, since a density of 1.0
is assumed for all tissues, except for the fat (density 0.92). Both the
uncertainty on k and the heterogeneity of the fraction volumes in the
population are estimated to be of the order of 10—20% (coefficient of
variation), depending on the tissue group. Truncation was set to $3
standard deviations around M.

The geometric means of the fractions of cardiac output going to
different compartments were set to usually accepted reference values
(International Commission on Radiological Protection (ICRP)
1975; Williams and Leggett 1989). The mean ventilation over perfu-
sion ratio, »PR, was set at 1.6 (As strand, 1983), since the subjects
were allowed some activity after exposure. Exp(S) and exp(R

o
) were

set at 1.1 for the liver blood flow, 1.2 for the flows to other tissues,
and 1.3 for »PR. This corresponds approximately to 10—30% varia-
bility. Truncation was set to $3 standard deviations.

The values found in the literature for PERC blood/air partition
coefficient range from 9.1 to 18.9 (Guberan and Fernandez 1974;
Fiserova-Bergerova 1983; Ward et al. 1988; Koizumi 1989), with
a geometric mean of 12, which we adopt here. The geometric means
of the tissue over blood partition coefficients were set to 4.8 for the
liver and well perfused tissue, 1.6 for the poorly perfused tissue, and
125 for the fat. These correspond to the geometric means of the
values published independently (for the rat) by Koizumi (1989) and
Ward et al. (1988). While PERC partition coefficients do not vary
with hematocrit (Morgan et al. 1970), they could still vary within an
individual (depending on fasting, for example), by a factor of 2
(Fiserova-Bergerova 1983). Therefore exp(S) was set at 1.5 and
truncation was set at $3 standard deviations for all partition
coefficients. This truncation corresponds to bounds 3.56 and 40.5 for
the blood/air partition coefficient. Exp(R

o
) was set to 1.3.

Some prior estimates for the population’s maximum rate of meta-
bolism, »Ml, and for the Michaelis-Menten coefficient, KMl, were
obtained when fitting the model to animal data (Bois et al. 1990). For
»Ml, a value of 1.2 mg/min is obtained when extrapolating the
value of 0.006 mg/min found in mice. A value of 0.3 mg/min is
obtained when extrapolating the value of 0.008 mg/min found in
rats. Extrapolation was performed by allometric scaling using body
weight to the power 0.7 (Mordenti 1986). Independently, data from
in vitro experiments (Reitz 1992) indicate that »Ml value (in mg/min
per kg) in humans is approximately one-eighth of that for the mouse

and two-fifth of the rat value. This translates for humans into values
of 1.4 mg/min and 0.64 mg/min from mouse and rat data, respec-
tively. We adopt for humans a geometric mean of 0.7 mg/min,
bracketed by the extrapolated animal values. A large uncertainty is
still associated with this number. The animal values are themselves
uncertain (Bois et al. 1990) and the agreement of the two extrapola-
tion methods could be fortuitous. We choose a value of 10 for exp(S),
and truncation at $2S, in log space. This truncation corresponds to
$2 orders of magnitude around the geometric mean. Since in vitro
human data (Reitz 1992) indicate a population coefficient of vari-
ation of approximately 2, we set exp(R

o
) at 2. Thus, we believe these

parameters to vary in Monster et al.’s subjects by about a factor of 2,
but we are uncertain by a factor of 10 as to their population mean. It
would be difficult to express this sort of uncertainty without an
explicit hierarchical model.

For the Michaelis-Menten coefficient we found a value of 12 mg/l
for mice and 6.5 mg/l for rats (Bois et al. 1990). We adopt a geomet-
ric mean of 9 mg/l, assuming that this parameter does not change
appreciably across species. The model parameter KMl is in units of
quantity rather than concentration and was set to 16 (9 times the
average liver volume for a lean body weight of 55 kg). A large
uncertainty is still associated with this number and we set exp(S) to
10, and truncation at $2S, that is $2 orders of magnitude. We
assume a population coefficient of variation of approximately 1.5
and thus set exp(R

o
) at 1.5.

At the individual level we had no prior information for most of the
parameters (except for those in Table 1), so their prior distributions
were entirely determined by the population parameters, k and R2,
and by the data.

As a consequence of scaling, some of the parameters are con-
strained by definition: for each individual k, the fractions of blood
flow to each compartment have to sum to 1. Also, the scaling
coefficients of the organ volumes have to sum to 0.873 (the fraction
of lean body weight not including bones), for each individual. These
constraints make Monte Carlo sampling difficult and it is preferable
to remove them. We reparametrized the model in terms of a new set
w of parameters which automatically satisfy the sum constraints
(Gelman 1995). The normal models with k

l
and R

l
were then applied

to the new parameters.

Statistical computations

A Bayesian analysis allowed us to combine two forms of informa-
tion: ‘‘prior knowledge’’ from the scientific literature, and ‘‘data’’
from Monster’s experiments, in the context of the physiological
compartmental model. Neither source of information is complete. If
prior knowledge were sufficient, the experiments would not have had
to be done, but Monster’s data alone are insufficient to pin down the
parameters to reasonable values. Our goal was to fit the data using
scientifically plausible parameter values.

The second interesting feature of the Bayesian approach is that it
produces a posterior distribution for the parameters, rather than
a mere point estimate. Thus, the analysis outputs distributions of
parameter values that are consistent with both the data and the
prior information. Our statistical analysis yields distributional esti-
mates (posterior distributions) of the parameters for each subject
and for the population.

Current standard practice in Bayesian statistics is to summarize
a complicated high-dimensional posterior distribution by random
draws of the vector of parameters, in this case, from the distribution
P(h, l, R2, r2 DM.S. data). The simulations can then be used to
compute posterior distributions of estimands of interest, including
individual parameters, and also derived quantities such as the pro-
portion of PERC metabolized under specified conditions. Because
h has many components, we use a combination of Gibbs sampling
and Metropolis-Hasting sampling to perform a random walk
through the posterior distribution. These samplings are iterative
procedures, particularly convenient in the case of hierarchical
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models. They belong to a class of Markov chain Monte Carlo
techniques which has recently received much interest (Gelfand et al.
1990; Gelfand and Smith 1990; Gelfand et al. 1992; Smith 1991;
Tanner 1991; Gelman, 1992; Wakefield et al. 1994). The sampling
distributions of the different components of the model are given in
the Appendix. Five independent Monte Carlo runs were performed.
Convergence was monitored using the method of Gelman and
Rubin (1992). Details of the technique are described in a technical
report available from Dr. Bois.

To obtain the distribution of the fraction of PERC metabolized at
low and high exposure by each of the six subjects, two scenarios were
simulated, using as input the parameter values generated in last 5000
iterations of each run. Continuous exposures to PERC (0.001 ppm
and 50 ppm) were simulated over 3 weeks. The amount metabolized
the last day was recorded and divided by the amount inhaled on the
same day. The amount inhaled is equal to the alveolar ventilation
volume for a day times the PERC inhalation level. Similar simula-
tions were performed for the population by sampling one random
parameter vector from N(l, R) for each of the 25 000 estimates of
l and R. This accounts for parameter covariance, since the 5]5000
individual and population parameter sets are random draws from
their joint (multivariate) distributions, not just from the marginal
distributions. For these simulations lean body mass, mass of fat as
fraction of the lean mass, and minute volume were also sampled
lognormally, with geometric means equal to that of the six subjects
of Monster et al. Standard deviations for these parameters were set
at log(1.3), log(1.2) and log(1.2), respectively.

Results and discussion

Model fit

Defining prior distributions for the physiological para-
meters was difficult. While it is well known that these
parameters exhibit a wide range of interindividual
variability, the only values readily available, and those
always used in physiological modeling, are ‘‘reference’’
values for young Caucasian males. Such reference
values artificially reduce the population variance esti-
mates. What is really needed is a database giving access
to the population distributions of important physiolo-
gical parameter values. Such a database would be us-
able for all types of physiological modeling, and for
both toxicants and drugs. Due to the current lack of
information, we had to use ‘‘reference’’ values to the
population means, and gave reasonable guesses for
population standard deviations and truncation limits.
We also had to choose the shape of prior, and selected
the lognormal distribution, which is often used for
physiological parameters. The posterior shape, how-
ever, is free to be different, and can take any form.
Further, we have recently observed, in another applica-
tion (unpublished), that the shape of the prior distribu-
tions has little impact on the final results: the data
actually ‘‘dominate’’ the prior.

The use of the Markov chain simulations, which
reached approximate convergence in about 10 000 iter-
ations, has allowed us to obtain an excellent fit to the
data of Monster et al., while maintaining scientifically
plausible parameter values. Further simulations did
not affect the results appreciably. Figure 3 shows the

Fig. 3 Predicted versus observed data values (blood and exhaled air
concentrations) for the last iteration of the first run

data values predicted for each individual versus their
observed counterparts (all data values are concentra-
tions). Predictions were made with the parameter
values of the last iteration of the first run. This iteration
is not ‘‘better’’ than any of the last 5000; it is just
representative of the set. For an optimal fit, all points
would fall on the diagonal. Such an adjustment is not
expected given the analytical measurement errors in the
data, but the deviations are small and the fit seems
reasonable compared to other models fit to these and
similar data (Hattis et al. 1990; Bois et al. 1991).

To check the model, we simulated another inhalation
experiment on human volunteers. Opdam and Smol-
ders (1986) exposed six subjects to constant levels of
PERC ranging from 0.5 to 9 ppm, and followed al-
veolar concentration during exposure (up to 50 min).
Simulations were performed using the 25 000 posterior
estimates of l and R (data not shown). The model
adjustment is good overall (i.e. all data points are
included in the 95th centile envelope), even though
exposure levels were 5—100 times lower than those used
in the studies of Monster et al.

Posterior distributions — fraction of PERC
metabolized

Among the results are presented the posterior distribu-
tions of all parameter values for individuals (whose
precision is affected by measurement errors) and for the
population (whose precision depends on population
heterogeneity). The last column of Table 2 summarizes
the distributions of the population parameter values
obtained in the last 5000 iterations of the five runs
performed (results of the five runs are pooled, and the
distributions are established with 25 000 values). The
location of many parameters is noticeably different
from the corresponding prior mean. Yet, the posterior
distributions for the parameters are consistent with
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their prior distributions (i.e. within 1 or 2 prior SDs),
indicating that the good fit to the data was not ob-
tained by ‘‘overfitting’’. In particular, values of the
scaling coefficient of metabolic parameters, which are
crucial for the determination of the fraction metab-
olized, are quite well identified (individual standard
deviation corresponding approximately to a factor of
1.5). The mean of the scaling coefficient of the max-
imum rate of metabolism is 20 times lower than our
prior estimate, which was imprecise. This implies that
the maximum rate of PERC metabolism in humans is
much lower than the values extrapolated from rodents
on the basis of body weight to the power 0.7. Inter-
individual variations of a factor of 2 are not uncommon
for metabolic parameters (and such a range was even
found among the six subjects). Similar variability for
classical pharmacokinetic parameters of PERC (clear-
ance, volume of distribution, etc.) was found in a small
group of subjects very similar to those studied here
(Opdam 1989). Wider variations would certainly be
found when observing a larger population.

Joint distributions of the fraction of PERC metab-
olized by the six subjects at high and low exposures can
be computed by the model (Fig. 4). Marginal distribu-
tions can indeed also be obtained from these results.
The population distributions of the fraction metab-
olized are quite spread. At low exposure (Fig. 5) the
mean, and standard deviation of 25 000 draws of the
fraction metabolized in the population are 36% and
11%, respectively. At high exposure these numbers are
1.7% and 0.95%, respectively. Confidence bounds can
be obtained as percentiles of these distributions. At low
exposure the 95% confidence interval of the fraction
metabolized is (15%, 58%); at high exposure it is
(0.52%, 4.1%). This high exposure estimate is in agree-
ment with the figures of Monster et al. (1979) for the
recovery of inhaled PERC: in the experiments un-
changed PERC recovery was 80—100%, and approx-
imately 2% of the inhaled dose was recovered in urine
as trichloroacetic acid. However, risk assessments using
a fraction metabolized calculated directly from the ex-
periment, without considering exposure concentration,
would be likely to underestimate the potential risks at
low PERC exposure, by a factor of approximately 20.

The relationship between fraction of PERC metab-
olized in 1 day, after 3 weeks continuous inhalation
exposure, and exposure level is presented on Fig. 6. At
low exposure levels the fraction metabolized remains
constant, since metabolism is linear. Saturation starts
occurring above 1 ppm and is almost complete at
10 ppm. At higher levels the fraction metabolized de-
creases linearly with exposure since the quantity me-
tabolized per unit time is at its maximum.

A recent report examines the impact of variability in
some of the parameters of a physiological model of
PERC on predictions of metabolite dose (Gearhart
et al. 1993). Animal parameter distributions were ob-
tained from the literature or in vitro experiments for

Fig. 4 Estimates of the fraction of PERC metabolized per day for
a continuous inhalation exposure to 50 ppm versus estimated frac-
tion metabolized at 0.001 ppm, for the subjects of Monster et al.
experiments. Only one point in 50, out of a total of 25 000, is
presented

Fig. 5 Estimated population distribution of the fraction of PERC
metabolized per day for a continuous inhalation exposure to
0.001 ppm PERC in the air

some of the model parameters (flows, volumes, and
partition coefficients). These distributions incorporate
a mix of uncertainty (measurement errors) and variabil-
ity (results from several animals were pooled). The
metabolic parameters were visually fitted. Human
parameter values or distributions were obtained from
one individual (partition coefficients), from the litera-
ture (flows and volumes) or by extrapolation from
animals (metabolic parameters). The authors conclude
that ‘‘parameter uncertainty is not a significant poten-
tial source of variability in the use of PBPK models in
risk assessment’’. Such a conclusion suffers from con-
fusion between uncertainty and variability, and from
the limited scope of the study on which it is based. It is
true that flows or volumes alone may not have a large

352



Fig. 6 Relationship between fraction of PERC metabolized and
inhalation exposure level. The thick line corresponds to the mean
population model predictions. The thin lines bracket the 99% confi-
dence interval and the dotted lines the 95% confidence interval, over
25 000 simulations

impact on the amount of metabolites produced at con-
tinuous low exposure. However, they are much more
influential in the short term experiments typically avail-
able for humans or animals, and will significantly affect
the estimation uncertainty for the metabolic para-
meters. This effect is not observable when estimation is
decoupled (i.e. when one or two parameters are inde-
pendently fitted), but is manifest in this study: at low
exposure many parameters do condition the amount
metabolized, even if indirectly.

Hattis et al. (1990) reviewed the literature on model-
based estimates of the fraction of PERC metabolized at
low dose (1 ppm). Previous estimates range from 2 to
86%. None of these were obtained by a complete stat-
istical estimation procedure. The lowest estimates, not
surprisingly, were obtained from models which as-
sumed linear metabolism and were parametrized with
high exposure data. Note that even though our model
contains a nonlinear Michaelis-Menten term for meta-
bolism it was not constrained to behave nonlinearly.
Had metabolism actually been linear in Monster et al.’s
volunteers, the estimate of KMl would have been
driven to the upper bound of its prior distribution,
where the Michaelis-Menten term would behave lin-
early. This did not happen and KMl stabilized around
a value 2000 times smaller than its a priori upper
bound (but the prior SD, on the log scale, corresponded
to an order of magnitude). Although the exposure levels
were high in the experiments (72 and 144 ppm), the
time course of PERC concentrations in blood and
exhaled air was followed with sufficient precision over
a extended period of time, and over a large range of
tissue concentrations. This experimental design is suffi-
ciently powerful to allow a reasonable identification of
»Ml and KMl values, albeit with some covariance.

It is important to point out that large variations also
exist between individuals—a factor two difference is
seen between similar subjects A and E (in Fig. 4).
Variations of the fraction metabolized are even larger
in the simulated general population (Fig. 5) where a fac-
tor of 30 difference (at low exposure) is observed be-
tween the highest and lowest estimates among 25 000.
We did not explicitly model intraindividual variability
because of limitations in the data. Each subject was
exposed twice, but to different concentrations of PERC.
Note, however, that for a given subject the same set of
parameter values gives a very good fit to all data,
despite the fact that they were obtained at different
periods. It is therefore likely that intraindividual varia-
bility had little impact in this study. Future experi-
ments should try to include repeated exposures to con-
firm this result. They should also be performed at lower
exposure levels to confirm experimentally our present
findings. While uncertainty could be reduced by addi-
tional analyses, population variability, which in this
study is approximately as large as uncertainty about
individual subjects, could increase when more subjects
are included.

These results are indeed conditioned by the use of
a particular dataset. We did not develop new data
because it is unethical to unnecessarily expose volun-
teers to toxic chemicals. Before doing so, we preferred
to reanalyze previously collected high quality data with
improved tools. The method presented here is of gen-
eral applicability. Coupling Bayesian statistical estima-
tion to toxicokinetic models takes full advantage of
these two powerful tools.
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Appendix

The conditional posterior distribution of r2 (sampled at each step of
the sampler) is, for m " 1 or 2 (either blood or exhaled air):

p2
m
D all other parameters & Inverse
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[log (y
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where ¸ is the total number of observations of type m for all
measurements on all six subjects. For a given individual, i indexes
the measurement time, and j the dose (the other symbols have been
described in the main text). We draw samples from the inverse-
gamma distribution using Cheng’s rejection algorithm GB (Devroye
1986, Section IX.3).

The conditional posterior density for any component of W, t
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, is:
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where k"1, 2 , 6 (6 subjects), and l"1, 2 , 18 (18 model para-
meters). Because of f (the nonlinear pharmacokinetic model) this
cannot be written in closed form as a function of W. Instead of
directly sampling t

kl
from this conditional distribution, we sample

a ‘‘proposal’’ value from N(t
kl
, (S

kl
/20)2), that is centered at the

current value of t
kl
, and with a constant standard deviation propor-

tional to S
kl
. The proportionality factor was set to 20 after prelimi-

nary runs. We then either update the value of t
kl

to that new value,
or leave it unchanged, based on a Metropolis acceptance/rejection
rule (Gelfand and smith 1990; Gelman 1992).

The conditional distributions of the population parameters l
l
and

R
l
2 are normal. For each l:
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using the notation of Gelman (1995), and remembering that n " 6.
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