Splitting a Predictor at the Upper Quarter or Third
and the Lower Quarter or Third
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study of the efficiency of this comparison, we make the general
recommendation that the high and low categories each be set to
Alinear regression of onx can be approximated by a simpleontain 1/4 to 1/3 of the data, which results in comparisons with
difference: the average valuesy€orresponding to the highestapproximately 80%—-90% of the efficiency of linear regression
guarter or third ofk, minus the average valuesyptorrespond- if the predictorx follows a uniform or normal distribution.
ing to the lowest quarter or third af A simple theoretical anal- A loss of 10%—-20% of efficiency is not minor, and so we
ysis, similar to analyses that have been done in psychometrittsnot recommend that the comparisons replace regressions but
shows this comparison to perform reasonably well, with 80%ather that they be considered as useful supplementary sum-
90% efficiency compared to the regression if the predictorrigaries, especially for the goal of communicating to a general
uniformly or normally distributed. By discretizing into three audience.
categories, we claw back about half the efficiency lost by the
commonly used strategy of dichotomizing the predictor. 1.1 Income and Voting Example
We illustrate with the example that motivated our research:
an ana|ysis of income and Voting which we had origina”y per- We illustrate with an example from our recent researCh, a

formed for a scholarly journal but then wanted to communicaiidy of income and voting in United States presidential elec-
to a general audience. tions (Gelman, Shor, et al. 2008). Figure 1 shows the graphs

that begin that article; each displays a time series of estimated
KEY WORDS: Discretizing; Linear regression; Statisticdegression coefficients.
communication; Tichotomizing. The first graph shows, for each election year, the coefficient
of average state incomfr predicting the Republican candi-
date’s proportion of the vote in the state: in recent years, these
coefficients have become strongly negative, indicating that Re-

1. INTRODUCTION publicans are doing better in poor states than in rich states. This
. L regression was estimated using election results and state-level
Linear regression is perhaps the most commonly used tﬁfgome data.

in statistics and as such is familiar to a diverse range of StUrhe second graph shows coefficients fiadividual income
dents and researchers. But an even wider segment of theged | gistic regressions predicting individual vote (1 for Re-
ucated public does not understand regression or least sqQUalgSican votes, 0 for Democrats), estimated from national sur-
and thus has to take many statistical results on faith, for examy qata from each election year. Here, the coefficients are pos-

plghaccept!ng relsults that are Ir;bgled as ;tatllstlcl:ally significgill implying that Republican candidates do better among rich
without being able to interpret their numerical values. voters than among poor voters.

We would like to approximate the regressionyodnx by a - \ye il not further discuss here the substantive concerns of

simple comparison of the average valueyoivhenx is high, . anayses (see, e.g., Brooks and Brady 1999 and McCarty,
compared to the average valueyfvhenx is low. This inter-

\ ! bl Gorrotred Hote that these results are of wide interest, not just to political
ing. In common practice, variables are discretized into two Cgl5entists and election analysts, but also to the general public,
egories (i.e., the predictarfalling above or below some thresh

old) which has been bombarded in recent elections with discussions

i of “red-state” and “blue-state” voters.
However, as we show here, we can do better by discretiz-

ing x into three values and throwing away the middle category2 | of . . . h
thus comparing the average valueyofor x in the high cate- 1.2 Goal of Expressing Regressions as Comparisons that

gory to the average value gffor x in the low category. After a can be Understood by the General Reader

In order to present our results in a form that is understand-
Andrew Gelman, Department of Statistics and Department of Political Scienﬁfﬂ ; ; Fias

e to a general audience, we would like to minimize the ga
Columbia University, New York (E-mail and Wegelman@stat.columbia.edu between g]e numerical re ’ Its (e the reqression coeff'c'genr;
www.stat.columbia.edtgelman David K. Park, Department of Political Sci- W : ) u ! sults (e.g., ; g SS_' ICI _S
ence, George Washington University. We thank Boris Shor and Joseph 820wn in Figure 1) and the substantive conclusions (Republi-
fumi for collaboration with the original example, David Dunson, lan McKcans doing worse in rich states, and so forth). The goal is to

eague, John Carlin, the editor, and the referees for helpful comments, Kri P ;
pher Preacher and Jim Corter for help with references, and the National Scien%_ng the nonstatistical reader closer to a direct engagement

Foundation, the National Institutes of Health, and the Applied Statistics Ceﬁ_fé'ﬁ" our finc_jingg. Presenting regressions as simple differences
at Columbia University for financial support. is one step in this process.

(©2008 American Statistical Association DOI: 10.1198/000313008X366226 The American Statistician, November 2008, Vol. 62, No. 4 1



States Individuals

L
Do TR b to4
'8 o | 0 + + + +
s 5 t ¢
2 o |t ‘s S $ ¢ ) ¢
o g1 * ¢ % O -
c ¢ ) O
o L] ¢ @)
@ ¢ =
o o ¢ <4
> 2@ —
[¢D) x—l| |
x
| T | | T |
1960 1980 2000 1960 1980 2000
Year Year

Figure 1. Left plot: Coefficients#1 standard error) for average state income in a regression predicting Republican vote share by state in a
series of U.S. presidential elections. The model was fit separately for each election year. The negative coefficients in recent years indicate th:
richerstatesnow tend to support the Democrats. Right plot: Coefficients for income in logistic regressions of Republican vote, fit to individual
survey data from each election year. The positive coefficients indicate that victegscontinue to support the Republicans. These plots are

clear to statistically sophisticated readers, but we would like more transparent data summaries for a general audience.

Statisticians have come up with methods of summarizing iog data (see Cox 1957 and Morgan and Elashoff 1986). Our
gistic regressions and other nonlinear models using predictbamtribution is to frame the question as one of providing an un-
comparisons (see Gelman and Pardoe 2007), but even tliesstandable summary with minimal loss of efficiency, and to
summaries require an understanding of regression which is t@astruct a simulation-based method for finding an optimal so-
yond many educated laypersons. For example, taking the diffation. We also hope that this article will motivate social scien-
ence between expected values of the outcome when a pretiits to consider discretization into three categories instead of
tor is set to prechosen high or low values requires understasidhple binary divisions.
ing the regression model itself. Correlations are another simple
summary but, again, are not readily interpretable to the general
reader.

At the other extreme, simple data summaries can & Replacing a Regression Slope by a Simple Comparison
appealing—it is common to present electoral results as colored of Average Values ofy in the Upper and Lower Quan-
maps—but such displays are not structured enough for us, as tjles of x

they are awkward for understanding the relation between two
variables (such as income and voting, in our example). ScatConsider a linear regressionpbn x based om data points,
terplots are a good way of displaying the relation between vapbere the regression model is assumed to be true; thus,
ables, but it is also important to have numerical summaries, béttr A% + error, with errors that are normally distributed with
for their own sake and for comparisons such as the time sefélgal variance and are independent of the predictdve shall
in Figure 1. compare the least-squares estimat® a simple difference of
the mean of data valuasin the upper and lower quantiles »f
More precisely, given a fractiorfi of data to be kept in the
1.3 Earlier Work upper and lower range of we set thresholds'®Ver andxuPPer
) . . to be the(fn)th and((1— f)n+ 1)th order statistics of in the
Our mathematical results are not new, similar CaICUIat'OHQta, respectively. The fractiohmust be greater than 0 (so that
have been'pe.rformed by psychqmetnmans to 'address th? A4ffeast some data are kept) and not exceed 0.5 (at which point
tion of designing a study that will be summarized by a dlffeg\-/e would be comparing the average valuey abrresponding

ence, see Kelley (1928, 1939), Cureton (1957), Feldt (1961](:)’the upper and lower half of). We discretize the predictor
D’Agostino and Cureton (1975), Fowler (1992), and Preacherb%tsed on the selected order statistics:

al. (2005). The question of optimal selection of upper and lower

2. METHOD

ranges for comparison has also been formulated in the statisti- —05 if x < xlower
cal literature with the goal of simpler computation (Mosteller zZ= 0 if xlower - x — yupper Q)
1946) and in biostatistics with the goal of efficiently discretiz- 05 if x > xupper
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We then summarize the linear relationyo§ivenx by highest two values ok to the mean of the values gf corre-
sponding to the lowest two values i)
simple comparisony;—o5 — Yz=—05 The asymptotic variance of (3) is easily worked out using
1 standard sampling-theory formulas for the variance of a ratio
=+ Z % - Dy (2) estimate (see, e.g., Lohr 1999):
i:z=05 i:z=-05

2
. . . psimpley _ 9~
in place of the estimated regression slope. var(5>P%) n

This comparison and the regression slope are not on the same Pr(x > xUPPeY 1 Pr(x < xlower)
scale, however, and so in comparing efficiencies we shall con-" (E(x|x > xUPPenPr(x > xUPPe — E(x|x < xlowenpr(x < xlowery)2
sider the ratio, o2 2

= ()

n (E(x|x > xupPen _ E(x|x < xlower))2f’

X7—05 — Xz=—05 X z=05% — 2. z——05X Wwheref is the fraction of data kept at each extreme, ards
(3) theresidual variance of the regressioryai x. By comparison,

and compare this to the least-squares estimate. Both the cthradeast-squares estimate has sampling variance
parison (2) and the ratio (3) depend through (1)x§t" and 5
xUPPET which themselves are functions of the fractibrof data var( ’gls) _7 1 ) (5)
kept in the upper and lower ranges of the data. Thus, we can n var(x)
determine the variance of the estimafé™'®as a function off
and optimize it (under various assumptions).

ﬁAsimpIez V7=05 — Yz=—05 Zi: z=05Yi — Zi: z=—05Yi

The ratio of (5) to (4) is the efficiency of the simple comparison.
We shall determine the optimal fractidnby minimizing (4)
for any particular distributionp(x). It is most convenient to find

2.2 Identifying the Estimated Linear Regression Slope as the minimum by differentiating the logarithm of the variance:
a Weighted Average of all Paired Comparisons .
log van3S™P'®) = log(252/n)

Before getting to our main findings, we recall a simple alge- ower
braic identity that expresses the least-squares regressijoorof log f 42 Iog(/oo . /x xp(x)dx)
X

x as a weighted average of all pairwise comparisons: upper —
B = 2 =YX —X) Differentiating with respect td yields,
_ 25—y = X)) ar log var(f>MP'®) = -7
Zi,j (i —xj)? 2 xupper _ ylower
v = . 6
X o (8= xp)? T Eixix > x9mo) — E(ux < oy O
206 — Xj)2 Here we have used the chain rule when differentiating with
_ _ _ , respect toxUPPe" and x'°"' plugging in df/d(xUPPe) =
The.estlmated §Iop§_|§°,_ thu.s equwalen.t to a. weighted averaggxuppey andd f/d(x'owery = p(xlower),
of difference ratios _x; , with each ratio weighted byx; — Finally, setting the derivative (6) to zero and rearranging
xj)2. This makes sense since the variance of a difference r&@tms yields,
is proportional to the squared difference of the predictors. |
We shall not directly use this formula in our analysis, butat optimumf: SX = XIPP) — B(xlx < X)) _ R

it is a helpful starting point in reminding us that regressions 2(xupper — xlower
can already be expressed as comparisons. Our goal here is to _ _
come up with a simpler and easier-to-understand difference2¢f Computation of the Optimum

means yvhich is still a reasonable approximation to the abovef:orany specific model, we can numerically solve (7) and thus
expression. compute the optimaf via simulation:

2.3 Theoretical Derivation of Optimal Fraction of Datato 1. Simulate some large even numbe(e.g., 10,000) random
Keep draws fromp(x). Order these simulations from lowest to

_ _ N— highest:x(y), X2), . . ., X(m)-

We shall work out the asymptotic variance £fMP'€ in (3)
and check the results using simulations. Asymptotic results ar2. For eachf = 1 2 . M™2-1 1 define lower= fm
fine here since we would not expect to be using this procedure and upper= (1 — f)m+ 1 and then approximate the left

with very small sample sizes. (For example) = 7, we would side of (7) by

just display the regression along with all seven data points, if 1 <m 1 <lower

necessary. There would not be much of a point to comparing, Tm Zi:upperx(i) ~ Tm Zi=1 X() 8)
for example, the mean of the valuesytorresponding to the 2(X(uppe) — X(lowen) ) (
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Figure 2. Results of computing the optimal fractiérfor the uniform and normal distributions. For each model, we simulated 10,000
random draws and then, for ead¢hbetween 0 and 1/2, computed the difference in order statigfigpey — X(ower and the difference in
expectations &|X > Xyppep) — E(X|X < X(owen) as in (8). For each model, the horizontal line shows where the ratio of these equals 2, which
comes atf = 0.33 whenx is uniformly distributed and = 0.27 whenx is normally distributed.

3. The above expression should be less than 1 for small valtgled (such as the uniform or normal), we might prefer=
of f and greater than 1 for large valuesfafCompute the 0.33, that is, comparing the upper and lower thirds of the data.
optimal f as that where the ratio (8) is closest to 1. Either of these simple rules would seem reasonable.
) ) ) ) o With longer-tailed distributions (such as the Laplace and the
Figure 2 illustrates the simulation-based optimization for th&yith 1ow degrees of freedom) it is optimal to keep even less
uniform distribution, for which the optimal fractiori is 1/3 4 each extreme, and the observations in the tails are more in-
(easily derived analytically) and the normal, whose optimg)mative. In such scenarios, inference will be more sensitive to
fraction is 0.27. As illustrated by these graphs, the curve @i 4ssumed linear form if the full regression model is fit.
E(XIX > X(uppey) — E(XIX < X(owen) — 2(Xwppey = Xdowen) Will A can be seen from the right column of Figure 3, discretiz-
always cross zero, since this difference is negativé at 0 gy into three categories claws back about half the efficiency
(where the ratio (8) is 1) and positive dt = 0.5 (where |ogt py dichotomizing the predictor, while retaining the simple

X(uppe) — X(lowen = 0). However, there can be some numerjxiepretation as a high versus low comparison.
cal instability for very heavy-tailed distributions, where extreme

outliers can affect the calculation for small valuesfof 26 Discrete Predictors
2.5 Results for Specific Distributions We can use our simulation results to guide summaries for dis-
crete predictors as well. K takes on three values with approx-
Having determined the optimal fraction to keep, it is helpfl\uflna@y equal numbers of cases in each, we would compare the
to simulate an example set of fake data from each of sevq@érage values of in the high and low categories af (thus,
models to see how the difference (2) compares to the regression 0.33); and ifx takes on four approximately equally pop-
line. The left column of Figure 3 displays a simple example fgfated values, we would again compare the highest and lowest
each of four models fax—two with short tails (the uniform and categories (in this casd, = 0.25). If x takes on five equally
normal distributions) and two with long tails (the Laplace arghpylated levels, we have the choice between comparing high-
t4 distributions)—illustrating in each case the estimated regrest and lowest{ = 0.2), or the highest two versus the lowest
sion line and the optimal comparison based on quantiles. g (f = 0.4). Based on the simulations, we would probably
assumed distributions are symmetric, but data from any parti@;_:;mpare highest to lowest, which also has the advantage of a
lar simulation will have some skewness, which is why the cutefimpler interpretation. If the different levels have different num-
points for the quantiles are not exactly centered in the graphgers of cases, we recommend counting how many cases are in

The right column of Figure 3 shows the efficiencies of théych category and aggregating to get approximately 1/4 to 1/3
comparisons under each of the assumed distributions (@s- of the data in the high and low categories.

suming large sample sizes, and assuming that the linear regres-
sion model is correct). For each model, we take our 10,000 sign;,
ulations and compute the efficiency using the ratio of numerica
estimates of (4) and (5) for each value faf Logit and probit regressions can similarly be replaced by the
These curves show that the fraction of data kept should ddference of the proportion of successes in the high and low
be too small or too large. A reasonable consensus value watdtegories. This is a comparison ofPr= 1) or, equivalently,
appear to bef = 0.25, that is, comparing the upper and loweE(y), so we can use the same comparison (2) as before. Com-
quartiles. However, if the distribution of the predictor is shorpared to continuous data, binary data represent even clearer can-
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Figure 3. Left panel: Instances of simulated data from linear regression models where the prediaioawn from the uniform, normal,

Laplace (folded-exponential), @ distribution. Fitted regression lines and the optimal comparisons are shown. Right panel: Efficiencies of

comparisons (compared to linear regression), shown as a function of the frédtept at each end, so th&t— 0 corresponds to comparing

the most extreme quantiles, afid= 0.5 corresponds to no trimming (i.e., comparing the upper half of the data to the lower half). The optimal
comparisons for the four scenarios have efficiencies of 89%, 81%, 74%, and 69%, respectively, compared to linear regression. (By compari

simply dichotomizingx yields efficiencies of 75%, 63%, 49%, and 52%, respectively.)
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didates for simple comparisons, since logit and probit coeffiten discretized before entering them into multiple regressions,
cients are themselves difficult to interpret on the scale of theit is a small step to use three categories rather than two.
data (see, e.g., Gelman and Pardoe 2007). Because of the noAinother way to look at this is that, with a single predictor
linearity of the model, however, it is not possible to work out the the simple difference (2) is also the estimated coefficient re-
relative efficiency of the simple comparison as in Section 2.3gressingy on the discretized predictardefined in (1). Thus, if
there is not a single parameter that the difference and the regwasadd further predictors to the model, we can interpret the co-
sion coefficient can both be considered to be estimating. Qyficient for this particulaz as the average difference between
option is to compare the difference to the corresponding prégh and low quantiles, after controlling for the other variables.
dicted difference, By|x > x'PPe) — E(y|x < x!°"") with ex- Similar ideas can be applied in nonlinear regression models
pectations evaluated under the logit or probit regression mogle, e.g., Morgan and Elashoff 1986).
and averaging over the empirical distribution«ih the data. A useful point of comparison is to the common practice
One could similarly summarize ordered logit or probit moaf dichotomizing predictors. Compared to dichotomizing, us-
els by differences, but we do not generally recommend this &mg three categories preserves more information (as shown in
proach when there is a risk of discarding information on no8ection 2.5, regaining about half the information lost by di-
monotonic patterns (e.g., the frequency of a category in the mitietomizing) while preserving the simple interpretation as a
dle of the scale that increases, then decreases, as a functiasoorfparison of high to low values. So, if regression inputs are
x). At some point when a model becomes complicated enougthpe discretized, we recommend three categories rather than
you just have to bite the bullet and figure out how to summiavo. Another option, as always, is to fit the full model with con-
rize it, ideally graphically and then with numerical summarigmuous predictors and then devote some effort into explaining
that can be illustrated in an example graph and then be useth#nmodel and the coefficients.
further comparisons.

3. EXAMPLE
2.8 Multiple Regression

, i ) ) 3.1 Income and Voting
So far we have considered regression with a single predictor.

Various extensions are possible with multiple regression. WithReturning to the example of Section 1.1, we redo Figure 1,
two input variables, we can simply discretize each of them irtftis time comparing the average proportion of Republican vote
three values as in (1) and then report differences for each véoi-states in the upper and lower thirds of income, then com-
able, holding the other constant. With more than two, the bestring the proportion of Republican voters among voters in the
choice perhaps is to discretize the inputs of interest, then runpger and lower thirds of income. Figure 4 shows the results:
regression and express the estimated regression coefficientbeagiraphs look similar to those in Figure 1, but the numbers
differences between the upper and lower quartiles. (This is warg much more directly understood and can be explained with-
we set the values afto 0.5 and—0.5, rather than 1 and-1, in outreference to regression, correlation, or any statistical method
defining the discretized variable in (1), so that a regression cosbre complicated than averaging. We calculate standard errors
ficient onz corresponds to a change from the lower to the upge&gre just using the simple formula for a difference in means.
zone. See Gelman, 2008, for more on this issue.) Variables arln addition, the two analyses—continuous data at the state
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Figure 4. Left plot: For each presidential election year, difference in Republican vote stiastafidard error), comparing states in the upper

third of income to the states in the lower third. Right plot: For each year, difference in proportion of Republican vote, comparing voters in the
upper third of income to voters in the lower third. Compare to Figure 1, which shows similar results using regression coefficients. The results
shown here can be interpreted more directly without reference to regression models.
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Figure 5. Coefficients of income, religious attendance, and their interaction, from a logistic regression of Republican vote preference fit
each presidential election year. Both inputs have been centered and scaled so that the main effects and interactions can all be interpreted
common scale.

level and binary data at the individual level—can be interpretadd the interaction directly as comparisons between high and
on the common scale of vote proportions. By contrast, the lindaw values of the predictors.

and logistic regressions of Figure 1 are on different scales. The¥or an even more direct interpretation, however, that can be
can be put on the same scale—quickly by dividing the logistinderstood by nonstatisticians, we compare high income (upper
regression coefficients by 4, or more precisely by computing éird) to low income (lower third) and religious attendance once
pected predictive differences—but that would represent another week or more (from the data, the upper 36% in recent years)
level of effort and explanation. to religious attendance once per month or less (lower 49%). In
this particular example, the discreteness of the religion scale
made it difficult for us to pick categories that capture a quarter
to a third of the data at each end.

We illustrate how our method can handle a second input VariFigUre 6 shows the reSUltS, which are similar to the IOgiStiC
able by considering how religiosity as well as income predi({@gressions but can be immediately interpreted as differences in
vote choice. The correlation of religious attendance with REoportions. For example, rich people were almost 20% more
publican voting in recent years is well known (see, e.g., Glaeikely than poor people to support George Bush in 2004, reli-
and Ward 2006), but it is not so well understood how this pQLous attenders were about 10% more likely than nonattenders
tern interacts with income. Figure 5 shows the basic result fréfasupport Bush, and the difference between rich and poor is
individual-data regressions: in recent years, the predictors h@ver 20% higher among the religious than the nonreligious. For
had a positive interaction—that is, religious attendance i@ gimilar analysis in an international context, this time compar-
stronger predictor of Republican voting among higher-incorfftg) low to middle income voters, see Huber and Stanig (2007).
Americans (and, conversely, income predicts better among reli-
gious attenders). We have also done state-level analyses but do 4. DISCUSSION
not include them here.

In the analysis leading to Figure 5, both variables have beemiscretization is not generally recommended when the goal
centered to have mean zero and rescaled to have standard geeifficient inference. Royston, Altman, and Sauerbrei (2006)
ation 0.5 (Gelman 2008), so we can interpret the main effeatsd Harrell (2008) discussed drawbacks to categorizing contin-

3.2 Income, Religious Attendance, and Voting

Income Religious Attendance Income x Religious Attendance
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Figure 6. Difference in Republican vote between rich and poor, religious and nonreligious, and their interaction (i.e., the difference in diffe
ences), computed separately for each presidential election year. Compare to Figure 5, which shows similar results using regression coefficie
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