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A linear regression ofy onx can be approximated by a simple
difference: the average values ofy corresponding to the highest
quarter or third ofx, minus the average values ofy correspond-
ing to the lowest quarter or third ofx. A simple theoretical anal-
ysis, similar to analyses that have been done in psychometrics,
shows this comparison to perform reasonably well, with 80%–
90% efficiency compared to the regression if the predictor is
uniformly or normally distributed. By discretizingx into three
categories, we claw back about half the efficiency lost by the
commonly used strategy of dichotomizing the predictor.

We illustrate with the example that motivated our research:
an analysis of income and voting which we had originally per-
formed for a scholarly journal but then wanted to communicate
to a general audience.
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1. INTRODUCTION

Linear regression is perhaps the most commonly used tool
in statistics and as such is familiar to a diverse range of stu-
dents and researchers. But an even wider segment of the ed-
ucated public does not understand regression or least squares
and thus has to take many statistical results on faith, for exam-
ple accepting results that are labeled as statistically significant
without being able to interpret their numerical values.

We would like to approximate the regression ofy on x by a
simple comparison of the average value ofy when x is high,
compared to the average value ofy whenx is low. This inter-
pretation is immediate for binary predictors, but more generally
one can simplify the interpretation of a regression by discretiz-
ing. In common practice, variables are discretized into two cat-
egories (i.e., the predictorx falling above or below some thresh-
old).

However, as we show here, we can do better by discretiz-
ing x into three values and throwing away the middle category,
thus comparing the average value ofy for x in the high cate-
gory to the average value ofy for x in the low category. After a
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study of the efficiency of this comparison, we make the general
recommendation that the high and low categories each be set to
contain 1/4 to 1/3 of the data, which results in comparisons with
approximately 80%–90% of the efficiency of linear regression
if the predictorx follows a uniform or normal distribution.

A loss of 10%–20% of efficiency is not minor, and so we
do not recommend that the comparisons replace regressions but
rather that they be considered as useful supplementary sum-
maries, especially for the goal of communicating to a general
audience.

1.1 Income and Voting Example

We illustrate with an example from our recent research, a
study of income and voting in United States presidential elec-
tions (Gelman, Shor, et al. 2008). Figure 1 shows the graphs
that begin that article; each displays a time series of estimated
regression coefficients.

The first graph shows, for each election year, the coefficient
of average state incomefor predicting the Republican candi-
date’s proportion of the vote in the state: in recent years, these
coefficients have become strongly negative, indicating that Re-
publicans are doing better in poor states than in rich states. This
regression was estimated using election results and state-level
income data.

The second graph shows coefficients forindividual income
from logistic regressions predicting individual vote (1 for Re-
publican votes, 0 for Democrats), estimated from national sur-
vey data from each election year. Here, the coefficients are pos-
itive, implying that Republican candidates do better among rich
voters than among poor voters.

We will not further discuss here the substantive concerns of
our analyses (see, e.g., Brooks and Brady 1999 and McCarty,
Poole, and Rosenthal 2006, for more on the general topic of
trends in income and voting in the United States), except to
note that these results are of wide interest, not just to political
scientists and election analysts, but also to the general public,
which has been bombarded in recent elections with discussions
of “red-state” and “blue-state” voters.

1.2 Goal of Expressing Regressions as Comparisons that
can be Understood by the General Reader

In order to present our results in a form that is understand-
able to a general audience, we would like to minimize the gap
between the numerical results (e.g., the regression coefficients
shown in Figure 1) and the substantive conclusions (Republi-
cans doing worse in rich states, and so forth). The goal is to
bring the nonstatistical reader closer to a direct engagement
with our findings. Presenting regressions as simple differences
is one step in this process.
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Figure 1. Left plot: Coefficients (±1 standard error) for average state income in a regression predicting Republican vote share by state in a
series of U.S. presidential elections. The model was fit separately for each election year. The negative coefficients in recent years indicate that
richerstatesnow tend to support the Democrats. Right plot: Coefficients for income in logistic regressions of Republican vote, fit to individual
survey data from each election year. The positive coefficients indicate that richervoterscontinue to support the Republicans. These plots are
clear to statistically sophisticated readers, but we would like more transparent data summaries for a general audience.

Statisticians have come up with methods of summarizing lo-
gistic regressions and other nonlinear models using predictive
comparisons (see Gelman and Pardoe 2007), but even these
summaries require an understanding of regression which is be-
yond many educated laypersons. For example, taking the differ-
ence between expected values of the outcome when a predic-
tor is set to prechosen high or low values requires understand-
ing the regression model itself. Correlations are another simple
summary but, again, are not readily interpretable to the general
reader.

At the other extreme, simple data summaries can be
appealing—it is common to present electoral results as colored
maps—but such displays are not structured enough for us, as
they are awkward for understanding the relation between two
variables (such as income and voting, in our example). Scat-
terplots are a good way of displaying the relation between vari-
ables, but it is also important to have numerical summaries, both
for their own sake and for comparisons such as the time series
in Figure 1.

1.3 Earlier Work

Our mathematical results are not new; similar calculations
have been performed by psychometricians to address the ques-
tion of designing a study that will be summarized by a differ-
ence; see Kelley (1928, 1939), Cureton (1957), Feldt (1961),
D’Agostino and Cureton (1975), Fowler (1992), and Preacher et
al. (2005). The question of optimal selection of upper and lower
ranges for comparison has also been formulated in the statisti-
cal literature with the goal of simpler computation (Mosteller
1946) and in biostatistics with the goal of efficiently discretiz-

ing data (see Cox 1957 and Morgan and Elashoff 1986). Our
contribution is to frame the question as one of providing an un-
derstandable summary with minimal loss of efficiency, and to
construct a simulation-based method for finding an optimal so-
lution. We also hope that this article will motivate social scien-
tists to consider discretization into three categories instead of
simple binary divisions.

2. METHOD

2.1 Replacing a Regression Slope by a Simple Comparison
of Average Values ofy in the Upper and Lower Quan-
tiles of x

Consider a linear regression ofy on x based onn data points,
where the regression model is assumed to be true; thus,yi =
α + βxi + errori , with errors that are normally distributed with
equal variance and are independent of the predictorx. We shall
compare the least-squares estimateβ̂ to a simple difference of
the mean of data valuesy in the upper and lower quantiles ofx.

More precisely, given a fractionf of data to be kept in the
upper and lower range ofx, we set thresholdsxlower andxupper

to be the( f n)th and((1− f )n+1)th order statistics ofx in the
data, respectively. The fractionf must be greater than 0 (so that
at least some data are kept) and not exceed 0.5 (at which point
we would be comparing the average values ofy corresponding
to the upper and lower half ofx). We discretize the predictor
based on the selected order statistics:

z=






−0.5 if x ≤ xlower

0 if xlower < x < xupper

0.5 if x ≥ xupper.

(1)
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We then summarize the linear relation ofy givenx by

simple comparison:̄yz=0.5 − ȳz=−0.5

=
1

f n




∑

i : zi=0.5

yi −
∑

i : zi=−0.5

yi



 (2)

in place of the estimated regression slope.
This comparison and the regression slope are not on the same

scale, however, and so in comparing efficiencies we shall con-
sider the ratio,

β̂simple=
ȳz=0.5 − ȳz=−0.5

x̄z=0.5 − x̄z=−0.5
=

∑
i : zi=0.5 yi −

∑
i : zi=−0.5 yi

∑
i : zi=0.5 xi −

∑
i : zi=−0.5 xi

(3)
and compare this to the least-squares estimate. Both the com-
parison (2) and the ratio (3) depend through (1) onxlower and
xupper, which themselves are functions of the fractionf of data
kept in the upper and lower ranges of the data. Thus, we can
determine the variance of the estimateβ̂simpleas a function off
and optimize it (under various assumptions).

2.2 Identifying the Estimated Linear Regression Slope as
a Weighted Average of all Paired Comparisons

Before getting to our main findings, we recall a simple alge-
braic identity that expresses the least-squares regression ofy on
x as a weighted average of all pairwise comparisons:

β̂ ls =

∑
i (yi − ȳ)(xi − x̄)
∑

i (xi − x̄)2

=

∑
i, j (yi − yj )(xi − xj )
∑

i, j (xi − xj )2

=

∑
i, j

yi−yj
xi−x j

(xi − xj )
2

∑
i, j (xi − xj )2

.

The estimated slope is thus equivalent to a weighted average
of difference ratios,

yi−yj
xi−x j

, with each ratio weighted by(xi −

xj )
2. This makes sense since the variance of a difference ratio

is proportional to the squared difference of the predictors.
We shall not directly use this formula in our analysis, but

it is a helpful starting point in reminding us that regressions
can already be expressed as comparisons. Our goal here is to
come up with a simpler and easier-to-understand difference of
means which is still a reasonable approximation to the above
expression.

2.3 Theoretical Derivation of Optimal Fraction of Data to
Keep

We shall work out the asymptotic variance ofβ̂simple in (3)
and check the results using simulations. Asymptotic results are
fine here since we would not expect to be using this procedure
with very small sample sizes. (For example, ifn = 7, we would
just display the regression along with all seven data points, if
necessary. There would not be much of a point to comparing,
for example, the mean of the values ofy corresponding to the

highest two values ofx to the mean of the values ofy corre-
sponding to the lowest two values ofy.)

The asymptotic variance of (3) is easily worked out using
standard sampling-theory formulas for the variance of a ratio
estimate (see, e.g., Lohr 1999):

var(β̂simple) =
σ2

n

×
Pr(x ≥ xupper)+ Pr(x ≤ xlower)

(E(x|x ≥ xupper)Pr(x ≥ xupper)− E(x|x ≤ xlower)Pr(x ≤ xlower))2

=
σ2

n

2

(E(x|x ≥ xupper)− E(x|x ≤ xlower))2 f
, (4)

where f is the fraction of data kept at each extreme, andσ 2 is
the residual variance of the regression ofy onx. By comparison,
the least-squares estimate has sampling variance

var(β̂ ls) =
σ 2

n

1

var(x)
. (5)

The ratio of (5) to (4) is the efficiency of the simple comparison.
We shall determine the optimal fractionf by minimizing (4)

for any particular distributionp(x). It is most convenient to find
the minimum by differentiating the logarithm of the variance:

log var(β̂simple) = log(2σ 2/n)

− log f + 2 log

(∫ ∞

xupper
xp(x)dx−

∫ xlower

−∞
xp(x)dx

)

.

Differentiating with respect tof yields,

d

d f
log var(β̂simple) = −

1

f

+
2

f

xupper− xlower

E(x|x ≥ xupper)− E(x|x ≤ xlower)
. (6)

Here we have used the chain rule when differentiating with
respect toxupper and xlower, plugging in d f/d(xupper) =
−p(xupper) andd f/d(xlower) = p(xlower).

Finally, setting the derivative (6) to zero and rearranging
terms yields,

at optimum f :
E(x|x ≥ xupper)− E(x|x ≤ xlower)

2(xupper− xlower)
= 1. (7)

2.4 Computation of the Optimum

For any specific model, we can numerically solve (7) and thus
compute the optimalf via simulation:

1. Simulate some large even numberm (e.g., 10,000) random
draws fromp(x). Order these simulations from lowest to
highest:x(1), x(2), . . . , x(m).

2. For eachf = 1
m,

2
m, . . . ,

m/2−1
m , 1

2, define lower= f m
and upper= (1− f )m+ 1 and then approximate the left
side of (7) by

1
f m

∑m
i=upperx(i ) −

1
f m

∑lower
i=1 x(i )

2(x(upper) − x(lower))
. (8)
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Figure 2. Results of computing the optimal fractionf for the uniform and normal distributions. For each model, we simulatedm = 10,000
random draws and then, for eachf between 0 and 1/2, computed the difference in order statisticsx(upper) − x(lower) and the difference in
expectations E(x|x ≥ x(upper))−E(x|x ≤ x(lower)) as in (8). For each model, the horizontal line shows where the ratio of these equals 2, which
comes atf = 0.33 whenx is uniformly distributed andf = 0.27 whenx is normally distributed.

3. The above expression should be less than 1 for small values
of f and greater than 1 for large values off . Compute the
optimal f as that where the ratio (8) is closest to 1.

Figure 2 illustrates the simulation-based optimization for the
uniform distribution, for which the optimal fractionf is 1/3
(easily derived analytically) and the normal, whose optimal
fraction is 0.27. As illustrated by these graphs, the curve of
E(x|x≥x(upper))−E(x|x≤x(lower))− 2(x(upper)− x(lower)) will
always cross zero, since this difference is negative atf = 0
(where the ratio (8) is 1) and positive atf = 0.5 (where
x(upper) − x(lower) = 0). However, there can be some numeri-
cal instability for very heavy-tailed distributions, where extreme
outliers can affect the calculation for small values off .

2.5 Results for Specific Distributions

Having determined the optimal fraction to keep, it is helpful
to simulate an example set of fake data from each of several
models to see how the difference (2) compares to the regression
line. The left column of Figure 3 displays a simple example for
each of four models forx—two with short tails (the uniform and
normal distributions) and two with long tails (the Laplace and
t4 distributions)—illustrating in each case the estimated regres-
sion line and the optimal comparison based on quantiles. The
assumed distributions are symmetric, but data from any particu-
lar simulation will have some skewness, which is why the cutoff
points for the quantiles are not exactly centered in the graphs.

The right column of Figure 3 shows the efficiencies of the
comparisons under each of the assumed distributions forx (as-
suming large sample sizes, and assuming that the linear regres-
sion model is correct). For each model, we take our 10,000 sim-
ulations and compute the efficiency using the ratio of numerical
estimates of (4) and (5) for each value off .

These curves show that the fraction of data kept should not
be too small or too large. A reasonable consensus value would
appear to bef = 0.25, that is, comparing the upper and lower
quartiles. However, if the distribution of the predictor is short-

tailed (such as the uniform or normal), we might preferf =
0.33, that is, comparing the upper and lower thirds of the data.
Either of these simple rules would seem reasonable.

With longer-tailed distributions (such as the Laplace and the
t with low degrees of freedom) it is optimal to keep even less
at each extreme, and the observations in the tails are more in-
formative. In such scenarios, inference will be more sensitive to
the assumed linear form if the full regression model is fit.

As can be seen from the right column of Figure 3, discretiz-
ing x into three categories claws back about half the efficiency
lost by dichotomizing the predictor, while retaining the simple
interpretation as a high versus low comparison.

2.6 Discrete Predictors

We can use our simulation results to guide summaries for dis-
crete predictors as well. Ifx takes on three values with approx-
imately equal numbers of cases in each, we would compare the
average values ofy in the high and low categories ofx (thus,
f = 0.33); and ifx takes on four approximately equally pop-
ulated values, we would again compare the highest and lowest
categories (in this case,f = 0.25). If x takes on five equally
populated levels, we have the choice between comparing high-
est and lowest (f = 0.2), or the highest two versus the lowest
two ( f = 0.4). Based on the simulations, we would probably
compare highest to lowest, which also has the advantage of a
simpler interpretation. If the different levels have different num-
bers of cases, we recommend counting how many cases are in
each category and aggregating to get approximately 1/4 to 1/3
of the data in the high and low categories.

2.7 Discrete Outcomes

Logit and probit regressions can similarly be replaced by the
difference of the proportion of successes in the high and low
categories. This is a comparison of Pr(y = 1) or, equivalently,
E(y), so we can use the same comparison (2) as before. Com-
pared to continuous data, binary data represent even clearer can-
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Figure 3. Left panel: Instances of simulated data from linear regression models where the predictorx is drawn from the uniform, normal,
Laplace (folded-exponential), ort4 distribution. Fitted regression lines and the optimal comparisons are shown. Right panel: Efficiencies of
comparisons (compared to linear regression), shown as a function of the fractionf kept at each end, so thatf → 0 corresponds to comparing
the most extreme quantiles, andf = 0.5 corresponds to no trimming (i.e., comparing the upper half of the data to the lower half). The optimal
comparisons for the four scenarios have efficiencies of 89%, 81%, 74%, and 69%, respectively, compared to linear regression. (By comparison,
simply dichotomizingx yields efficiencies of 75%, 63%, 49%, and 52%, respectively.)
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didates for simple comparisons, since logit and probit coeffi-
cients are themselves difficult to interpret on the scale of the
data (see, e.g., Gelman and Pardoe 2007). Because of the non-
linearity of the model, however, it is not possible to work out the
relative efficiency of the simple comparison as in Section 2.3—
there is not a single parameter that the difference and the regres-
sion coefficient can both be considered to be estimating. One
option is to compare the difference to the corresponding pre-
dicted difference, E(y|x ≥ xupper) − E(y|x ≤ xlower), with ex-
pectations evaluated under the logit or probit regression model
and averaging over the empirical distribution ofx in the data.

One could similarly summarize ordered logit or probit mod-
els by differences, but we do not generally recommend this ap-
proach when there is a risk of discarding information on non-
monotonic patterns (e.g., the frequency of a category in the mid-
dle of the scale that increases, then decreases, as a function of
x). At some point when a model becomes complicated enough,
you just have to bite the bullet and figure out how to summa-
rize it, ideally graphically and then with numerical summaries
that can be illustrated in an example graph and then be used in
further comparisons.

2.8 Multiple Regression

So far we have considered regression with a single predictor.
Various extensions are possible with multiple regression. With
two input variables, we can simply discretize each of them into
three values as in (1) and then report differences for each vari-
able, holding the other constant. With more than two, the best
choice perhaps is to discretize the inputs of interest, then run a
regression and express the estimated regression coefficients as
differences between the upper and lower quartiles. (This is why
we set the values ofz to 0.5 and−0.5, rather than 1 and−1, in
defining the discretized variable in (1), so that a regression coef-
ficient onz corresponds to a change from the lower to the upper
zone. See Gelman, 2008, for more on this issue.) Variables are

often discretized before entering them into multiple regressions,
so it is a small step to use three categories rather than two.

Another way to look at this is that, with a single predictor
x, the simple difference (2) is also the estimated coefficient re-
gressingy on the discretized predictorz defined in (1). Thus, if
we add further predictors to the model, we can interpret the co-
efficient for this particularz as the average difference between
high and low quantiles, after controlling for the other variables.
Similar ideas can be applied in nonlinear regression models
(see, e.g., Morgan and Elashoff 1986).

A useful point of comparison is to the common practice
of dichotomizing predictors. Compared to dichotomizing, us-
ing three categories preserves more information (as shown in
Section 2.5, regaining about half the information lost by di-
chotomizing) while preserving the simple interpretation as a
comparison of high to low values. So, if regression inputs are
to be discretized, we recommend three categories rather than
two. Another option, as always, is to fit the full model with con-
tinuous predictors and then devote some effort into explaining
the model and the coefficients.

3. EXAMPLE

3.1 Income and Voting

Returning to the example of Section 1.1, we redo Figure 1,
this time comparing the average proportion of Republican vote
for states in the upper and lower thirds of income, then com-
paring the proportion of Republican voters among voters in the
upper and lower thirds of income. Figure 4 shows the results:
the graphs look similar to those in Figure 1, but the numbers
are much more directly understood and can be explained with-
out reference to regression, correlation, or any statistical method
more complicated than averaging. We calculate standard errors
here just using the simple formula for a difference in means.

In addition, the two analyses—continuous data at the state

States

Year

D
iff

 in
 P

ro
po

rt
io

n 
of

 R
ep

 V
ot

e

1960 1980 2000

-0
.2

0.
0

0.
2

Individuals

Year

D
iff

 in
 P

ro
po

rt
io

n 
of

 R
ep

 V
ot

e

1960 1980 2000

-0
.2

0.
0

0.
2

Figure 4. Left plot: For each presidential election year, difference in Republican vote share (±1 standard error), comparing states in the upper
third of income to the states in the lower third. Right plot: For each year, difference in proportion of Republican vote, comparing voters in the
upper third of income to voters in the lower third. Compare to Figure 1, which shows similar results using regression coefficients. The results
shown here can be interpreted more directly without reference to regression models.
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Figure 5. Coefficients of income, religious attendance, and their interaction, from a logistic regression of Republican vote preference fit to
each presidential election year. Both inputs have been centered and scaled so that the main effects and interactions can all be interpreted on a
common scale.

level and binary data at the individual level—can be interpreted
on the common scale of vote proportions. By contrast, the linear
and logistic regressions of Figure 1 are on different scales. They
can be put on the same scale—quickly by dividing the logistic
regression coefficients by 4, or more precisely by computing ex-
pected predictive differences—but that would represent another
level of effort and explanation.

3.2 Income, Religious Attendance, and Voting

We illustrate how our method can handle a second input vari-
able by considering how religiosity as well as income predicts
vote choice. The correlation of religious attendance with Re-
publican voting in recent years is well known (see, e.g., Glaeser
and Ward 2006), but it is not so well understood how this pat-
tern interacts with income. Figure 5 shows the basic result from
individual-data regressions: in recent years, the predictors have
had a positive interaction—that is, religious attendance is a
stronger predictor of Republican voting among higher-income
Americans (and, conversely, income predicts better among reli-
gious attenders). We have also done state-level analyses but do
not include them here.

In the analysis leading to Figure 5, both variables have been
centered to have mean zero and rescaled to have standard devi-
ation 0.5 (Gelman 2008), so we can interpret the main effects

and the interaction directly as comparisons between high and
low values of the predictors.

For an even more direct interpretation, however, that can be
understood by nonstatisticians, we compare high income (upper
third) to low income (lower third) and religious attendance once
per week or more (from the data, the upper 36% in recent years)
to religious attendance once per month or less (lower 49%). In
this particular example, the discreteness of the religion scale
made it difficult for us to pick categories that capture a quarter
to a third of the data at each end.

Figure 6 shows the results, which are similar to the logistic
regressions but can be immediately interpreted as differences in
proportions. For example, rich people were almost 20% more
likely than poor people to support George Bush in 2004, reli-
gious attenders were about 10% more likely than nonattenders
to support Bush, and the difference between rich and poor is
over 20% higher among the religious than the nonreligious. For
a similar analysis in an international context, this time compar-
ing low to middle income voters, see Huber and Stanig (2007).

4. DISCUSSION

Discretization is not generally recommended when the goal
is efficient inference. Royston, Altman, and Sauerbrei (2006)
and Harrell (2008) discussed drawbacks to categorizing contin-
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Figure 6. Difference in Republican vote between rich and poor, religious and nonreligious, and their interaction (i.e., the difference in differ-
ences), computed separately for each presidential election year. Compare to Figure 5, which shows similar results using regression coefficients.
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uous variables, including loss of power and sensitivity to the
choice of cutpoints. One point of theirs with which we agree
completely is that it is risky to estimate cutpoints for discretiza-
tion based on the outcome,y, and we also agree that even when
cutpoints are set based onx, there is generally a loss of effi-
ciency compared to fitting a regression model.

However, discretization can be effective in aiding the com-
munication of regression results. Our key recommendation is
that dividing into three categories can be much more effective
than a binary split, without sacrificing the interpretability that is
the proper motivation for categorization in the first place.

Comparing the average value of the outcome for the upper
and lower third or quarter of the predictor is a quick and con-
venient summary that, as we have shown, loses little in effi-
ciency compared to linear regression on the original continuous
predictor. We recommend these simple differences for displays
and summaries for general audiences, perhaps reserving the full
regression results for appendixes or presentation in specialized
journals. The ideas of this article should illuminate the connec-
tion between regression and simple differences and ultimately
allow a greater understanding of the former in terms of the lat-
ter. In the particular example of income and voting discussed
in this article, we used the division-into-thirds idea to present
our findings in a book intended for general audiences (Gelman,
Park, et al. 2008).

Finally, we performed our theoretical analysis in Section 2.3
under the assumption that the linear regression model was true.
One could consider other models—for example, discretization
could perform particularly well if the underlying regression
were a step function, or particularly poorly if the regression
slope increased sharply at the ends of the range ofx. Our ap-
proach as described in this article is most relevant for summa-
rizing relationships that are monotonic and not far from linear—
that is, the settings where linear regression would be routinely
used. More generally, discretization can be used to capture non-
linear patterns, as discussed by O’Brien (2004).

[Received July 2007. Revised July 2008.]
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