
Tools for Computing
TOOLS FOR BAYESIAN DATA
ANALYSIS IN R

Jouni Kerman, Novartis Pharma AG, Switzerland

Andrew Gelman, Columbia University, USA

jouni@kerman.com

Introduction

Bayesian data analysis includes but is not limited
to Bayesian inference (Gelman et al., 2003; Kerman,
2006a). Here, we take Bayesian inference to refer to
posterior inference (typically, the simulation of ran-
dom draws from the posterior distribution) given a
fixed model and data. Bayesian data analysis takes
Bayesian inference as a starting point but also in-
cludes fitting a model to different datasets, alter-
ing a model, performing inferential and predictive
summaries (including prior or posterior predictive
checks).

These tasks require a flexible computing envi-
ronment that allows us to fit a Bayesian probability
model (generating simulations from the joint poste-
rior distribution), but also to manipulate and sum-
marize simulations graphically and numerically.

The most general programs currently available
for Bayesian inference are WinBUGS (BUGS Project,
2004) and OpenBUGS, which can be accessed from R
using the packages R2WinBUGS (Sturtz et al., 2005)
and BRugs. In addition, various R packages ex-
ist that directly fit particular Bayesian models (e.g.
MCMCPack, Martin and Quinn (2005)), or emulate
aspects of BUGS (JAGS). In this article, we describe
the ongoing development of two R packages that
perform important aspects of Bayesian data analysis.

Umacs

Umacs (Universal Markov chain sampler) is an R
package (to be released) that facilitates the construc-
tion of the Gibbs sampler and Metropolis algorithm
for Bayesian inference (Kerman, 2006b). Writing
one’s own Gibbs/Metropolis sampler is sometimes
necessary for large problems that cannot be fit using
programs like BUGS.

Two programs implementing Gibbs samplers

Two programs implementing Gibbs samplers
differ essentially just by their updating functions.
Different Metropolis samplers sample from differ-
ent posterior functions, but have a similar pro-
gram structure. Umacs provides the necessary pro-
gram structure around user-supplied Gibbs updat-
ing functions or Metropolis samplers, writing a com-
plete, customized sampler function in R, ready to be
run.

The user supplies data, parameter names, up-
dating functions (which can be some mix of Gibbs
samplers and Metropolis jumps, with the latter de-
termined by specifying a log-posterior density func-
tion), and procedures for generating starting points.
Using these inputs, Umacs generates (writes) a cus-
tomized R sampler function that automatically up-
dates, keeps track of Metropolis acceptances (and

uses acceptance probabilities to tune the jumping
kernels, following Gelman et al. (1995)), monitors
convergence (following Gelman and Rubin (1992)),
summarizes results graphically, and returns the in-
ferences as arrays of simulations, or as simulation-
based random variable objects (see rv, below).

Umacs is customizable and modular, and
can be expanded to include more efficient
Gibbs/Metropolis steps. Current features include
adaptive Metropolis jumps for vectors and matrices
of random variables (which arise, for example, in hi-
erarchical regression models, with a different vector
of regression parameters for each group). Real-time
trace plots can be defined for any scalar parameters
or for the convergence statistics, if desired (Figure 5).

Figure 1 illustrates how a simple Bayesian hier-
archical model (Gelman et al., 2003, page 451) can
be fit using Umacs: y j ∼ N(θ j,σ

2
j), j = 1, . . . , J

(J = 8), where σ j are fixed and the means θ j are
given the prior tν(µ, τ). In our implementation of
the Gibbs sampler, θ j is drawn from a Gaussian dis-
tribution with a random variance component Vj. The
conditional distributions of θ, µ, V, and τ can be cal-
culated analytically, so we update them each by a
direct (Gibbs) update. The updating functions are
to be specified as R functions (here, theta.update,
V.update, mu.update, etc.). The degrees-of-freedom
parameter ν is also unknown, and updated using
a Metropolis algorithm. To implement this, we
only need to supply a function calculating the log-
arithm of the posterior function; Umacs supplies

VOLUME 17, NO 2, NOVEMBER 2006

) PAGE 9

s <- Sampler(

J = 8,

sigma.y = c(15, 10, 16, 11, 9, 11, 10, 18),

y = c(28, 8, -3, 7, -1, 1, 18, 12),

theta = Gibbs(theta.update,theta.init),

V = Gibbs(V.update, V.init),

mu = Gibbs(mu.update,mu.init),

tau = Gibbs(tau.update, tau.init),

nu = SMetropolis(log.post.nu, nu.init),

Trace("theta[1]")

)

Figure 1: Invoking the Umacs Sampler function to gen-
erate an R Markov chain sampler function s(...). Up-
dating algorithms are associated with the unknown pa-
rameters (θ, V, µ, τ , ν). Optionally, the non-modeled con-
stants and data (here J,σ , y) can be localized to the sam-
pler function by defining them as parameters; the func-
tion s then encapsulates a complete sampling environment
that can be even moved over and run on another computer
without worrying about the availability of the data vari-
ables. The “virtual updating function” Trace displays
a real-time trace plot for the specified scalar variable (thus
updating the the graphical window which acts as a param-
eter).

arithm of the posterior function; Umacs supplies
the code. We have several Metropolis classes for
efficiency; SMetropolis implements the Metropo-
lis update for a scalar parameter. These “updater-
generating functions" (Gibbs and SMetropolis) also
require an argument specifying a function return-
ing an initial starting point for the unknown param-
eter (here, theta.init, mu.init, tau.init, etc.).

The function produced by Sampler runs a given
number of iterations and a given number of chains; if
we are not satisfied with the convergence, we may re-
sume iteration without having to restart the chains. It
is also possible to add chains. The length of the burn-
in period that is discarded is user-definable and we
may also specify the desired number of simulations
to collect, automatically performing thinning as the
sampler runs.

Once the pre-specified number of iterations are
done, the sampler function returns the simulations
wrapped in an object which can be coerced into a
plain matrix of simulations or into a list of random
variable objects (see rv, below), which can be then
attached to the search path.

0 100 200 300 400 500

!
2
0

0
2
0

4
0

6
0

Trace plot of theta[1]

Iterations

th
e
ta
[1
]

Figure 2: Real-time trace plot of the scalar component θ1

in Umacs; different colors refer to different chains. It is
possible to define any number of trace plots for any scalars
in the model. A trace plot behaves conceptually just like
a parameter that is updated during each iteration of the
Gibbs sampler. In practice, we update the graph every 10
or 50 iterations not to slow down the sampler.

rv

rv is an R package that defines a new simulation-
based random variable class in R along with various
mathematical and statistical manipulations (Kerman
and Gelman, 2005). The program creates an object
class whose instances can be manipulated like nu-
meric vectors and arrays. However, each element
in a vector contains a hidden dimension of simula-
tions: the rv objects can thus be thought of being ap-
proximations of random variables. That is, a random
scalar is stored internally as a vector, a random vector

VOLUME 17, NO 2, NOVEMBER 2006

) PAGE 10

scalar is stored internally as a vector, a random vector
as a matrix, a random matrix as a three-dimensional
array, and so forth. The random variable objects are
useful when manipulating and summarizing simu-
lations from a Markov chain simulation (for example
those generated by Umacs). They can also be used
in simulation studies (Kerman, 2005). The number
of simulations stored in a random variable object is
user-definable.

The rv objects are a natural extension of numeric
objects in R, which are conceptually just “random
variables with zero variance”—that is, constants.
Arithmetic operations such as + and ^ and elemen-
tary functions such as exp and log work with rv ob-
jects, producing new rv objects.

These random variable objects work seamlessly
with regular numeric vectors: for example, we can
impute random variable z into a regular numeric
vector y with a statement like y[is.na(y)] <- z.
This converts y automatically into a random vector
(rv object) which can be manipulated much like any

numeric object; for example we can write mean(y) to
find the distribution of the arithmetic mean function
of the (random) vector y or sd(y) to find the distri-
bution of the sample standard deviation statistic.

The default print method of a random variable
object outputs a summary of the distribution repre-
sented by the simulations for each component of the
argument vector or array. Figure 3 shows an example
of a summary of a random vector z with five random
components.

> z

name mean sd Min 2.5% 25% 50% 75% 97.5% Max

[1] Alice 59.0 27.3 (-28.66 1.66 42.9 59.1 75.6 114 163)

[2] Bob 57.0 29.2 (-74.14 -1.98 38.3 58.2 75.9 110 202)

[3] Cecil 62.6 24.1 (-27.10 13.25 48.0 63.4 76.3 112 190)

[4] Dave 71.7 18.7 (2.88 34.32 60.6 71.1 82.9 108 182)

[5] Ellen 75.0 17.5 (4.12 38.42 64.1 75.3 86.2 108 162)

Figure 3: The print method of an rv (random variable)
object returns a summary of the mean, standard deviation,
and quantiles of the simulations embedded in the vector.

Standard functions to plot graphical summaries
of random variable objects are being developed. Fig-
ure 4 shows the result of a statement plot(x,y)

where x are constants and y is a random vector with
10 constant components (shown as dots) and five
random components (shown as intervals).

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

midterm

fi
n
a
l

Intervals for predicted examination scores

Figure 4: A scatterplot of fifteen points (x,y) where five
of the components of y are random, that is, represented by
simulations and thus are drawn as intervals. Black ver-
tical intervals represent the 50% posterior intervals and
the gray ones the 95% intervals. This plot was simply ob-
tained by a command plot(x,y) (with appropriate sup-
plementary arguments). The light grey line is a regression
line computed from the ten fixed points, included for ref-
erence.

Many methods on rv objects have been written,
for example E(y) returns the individual means (ex-
pectations) of the components of a random vector y.

A statement Pr(z[1]>z[2]) would give an estimate
of the probability of the event {z1 > z2}.

Random-variable generating functions generate new
rv objects by sampling from standard distributions,
for example rvnorm(n=10, mean=0, sd=1) would
return a random vector representing 10 draws from
the standard normal distribution. What makes these
functions interesting is that we can give them pa-
rameters that are also random, that is, represented

VOLUME 17, NO 2, NOVEMBER 2006

) PAGE 11

rameters that are also random, that is, represented
by simulations. If y is modeled as N(µ,σ2) and
the random variable objects mu and sigma repre-
sent draws from the joint posterior distribution of
(µ,σ)—we can obtain these if we fit the model with
Umacs or BUGS for example—then a simple state-
ment like rvnorm(mean=mu, sd=sigma) would gen-
erate a random variable representing draws from
the posterior predictive distribution of y. A single
line of code thus will in fact perform Monte Carlo
integration of the joint density of (yrep, µ,σ), and
draw from the resulting distribution p(yrep|y) =∫ ∫

N(yrep|µ,σ)p(µ,σ |y) dµ dσ . (We distinguish the
observations y and the unobserved random variable
yrep, which has the same conditional distribution as
y).

Posterior estimates

theta[1]

theta[2]

theta[3]

theta[4]

theta[5]

theta[6]

theta[7]

theta[8]

!20 !10 0 10 20 30 40

!20 !10 0 10 20 30 40

!

!

!

!

!

!

!

!

Figure 5: A posterior interval plot of the vector θ =
(θ1, . . . ,θ8) fitted using Umacs in the previous section;
the resulting object was coerced into an rv object theta,
and then displayed in graphical form using a command
that plots the components of the argument vector verti-
cally. Since the arguments of theta are random variables,
they are plotted as intervals; constants would be plotted
as single points, indicating no posterior uncertainty. The
thick lines in the middle are 50% posterior intervals and
the thinner lines are 95% posterior intervals of the corre-
sponding scalar components of θ. The dots are posterior
means. This kind of a graph is especially useful for dis-
playing estimates from a hierarchical model.

Summary

Most of the work of writing a standard
Gibbs/Metropolis sampler can be produced au-
tomatically; Umacs makes this possible by writ-

ing a customized sampler given only the updating
functions or log-posterior functions relevant to the
model. The user-defined parameters are embedded
into standard looping structures and Metropolis up-
dating routines, saving the trouble of writing the
program from scratch. This saves time and makes
debugging the sampler program easier.

Once posterior simulations are generated, it is
awkward to work with the resulting inferences, dis-
play them graphically, generate posterior probability
statements or generate predictions, since the infer-
ences are in the form of numerical arrays of simula-
tions and not accessible directly as random variables.
The package ‘rv’ provides a new simulation-based
random variable object class, which makes the job of
manipulating and summarizing posterior inferences
easier and provides the foundation of a “Bayesian
programming environment." Using random variable
objects instead of arrays of simulations saves time
and effort in writing—and understanding—program
code.

We hope these packages will be useful and also
will motivate future work by others, so that Bayesian
inference can be performed in the interactive spirit of
R.

Acknowledgements

We thank Tian Zheng, Shouhao Zhao, Yuejing Ding,
and Donald Rubin for help with the various pro-
grams and the National Science Foundation for fi-
nancial support.

Bibliography

BUGS Project. BUGS: Bayesian Inference Us-
ing Gibbs Sampling. http://www.mrc-bsu.cam.

ac.uk/bugs/, 2004.

A. Gelman and D. Rubin. Inference from iterative
simulation using multiple sequences (with discus-
sion). Statistical Science, 7:457–511, 1992.

VOLUME 17, NO 2, NOVEMBER 2006

) PAGE 12

A. Gelman, G. Roberts, and W. Gilks. Efficient
Metropolis jumping rules. In J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith, editors,
Bayesian Statistics 5. Oxford University Press, 1995.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data Analysis. Chapman & Hall/CRC,
London, 2nd edition, 2003.

J. Kerman. Using random variable objects to com-
pute probability simulations. Technical report, De-
partment of Statistics, Columbia University, 2005.

J. Kerman. An integrated framework for Bayesian
graphic modeling, inference, and prediction. Tech-
nical report, Department of Statistics, Columbia
University, 2006a.

J. Kerman. Umacs: A Universal Markov Chain Sam-
pler. Technical report, Department of Statistics,
Columbia University, 2006b.

J. Kerman and A. Gelman. Manipulating and sum-
marizing posterior simulations using random vari-
able objects. To appear in Statistics and Comput-
ing.

A. D. Martin and K. M. Quinn. MCMCpack 0.6-6.
http://mcmcpack.wustl.edu/, 2005.

S. Sturtz, U. Ligges, and A. Gelman. R2WinBUGS:
A package for running WinBUGS from R. Journal
of Statistical Software, 12(3):1–16, 2005. ISSN 1548-
7660.

Jouni Kerman
Methodology Biostatistics, Novartis Pharma AG,
Switzerland

Andrew Gelman
Department of Statistics
Columbia University, NY, USA

WANTED: NEWSLETTER CO!EDITOR,
STATS GRAPHICS

The Statistical Computing and Graphics Newsletter
#SCGN$ needs a new co&Editor on the Stat Graphics
side. This is a great opportunity to serve the Statistical
Graphics Section and the ASA in general. Co&editing it is
a volunteer job with many rewards.

The Newsletter is a joint product of the Statistical Com&
puting and Statistical Sections of the ASA, hence having
two editors, one for Stats Computing and another for
Graphics. There are two issues per year: one in the Fall
and one in the Spring. The spring issue contains a lot of
information about the upcoming ASA meetings, other
meetings sponsored by the two sections, announcements
of the competition awards and feature articles that an&
ticipate future trends in Stats Computing and Graphics.
The Fall issue talks about what happened in those past
meetings, announces the competitions and also contains
feature articles of high interest. Both the Fall and the
Spring issues contain other interesting news and the
Chair(s columns plus some special columns, depending on
availability of contributions for them.

The Editors of SCGN select contributions from di%er&
ent authors after extensive review and decide the *nal
contents of the newsletter and what format the newslet&
ter will have. They follow up on authors to guarantee a
timely delivery once their article is accepted, collect
news, gather columns from contributors and make sure
that everything is done in a timely fashion and appropri&
ately. All this material is then edited and entered into a
newsletter semi&template #currently in Pages, a product
of Apple(s iWorks, but not necessarily so for ever$. After
the Executive Committees of both sections have ap&
proved, and the authors have proofed their pieces, the
Newsletter is then posted online and Section members
are noti*ed that it is ready. Lately we have also been
sending a postcard through regular mail, and will con&
tinue to do so.

This is a volunteer job with lots of room for creativity
and for making the ASA sections you are part of visible
to a wider group of statisticians.

 If you are interested in becoming a Co&editor, please
contact the Statistics Graphics Chair, Paul Murrell by
email. His email address is

p.murrell@auckland.ac.nz

VOLUME 17, NO 2, NOVEMBER 2006

) PAGE 13

