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Overview

In statistics, the standard error has a clear technical definition: it is the estimated standard devi-

ation of a parameter estimate. In practice, though, challenges arise when we go beyond the simple

balls-in-urn model to consider generalizations beyond the population from which the data were

sampled. This is important because generalization is nearly always the goal of quantitative studies.

In this brief paper we consider three examples.

What is the standard error when the bias is unknown and changing (my bathroom scale)?

I recently bought a cheap bathroom scale. I took the scale home and zeroed it—there’s a little

gear in front to turn. I tapped my foot on the scale, it went to −1 kg, I turned the gear a bit,

then it went up to +2, then I turned a bit back to get it exactly to zero, and tapped again . . . it

was back at −1. That was frustrating, but I still wanted to estimate my weight. So I got on

and off the scale multiple times. The first few measurements were 66 kg, 65.5 kg, 68 kg, and 67

kg. A lot of variation! To get a good estimate in the presence of variation, it is recommended

to take multiple measurements. So I did so. After 46 measurements, I got bored and stopped.

The resulting measurements had mean 67.1 with standard deviation 0.7, hence a standard error of

0.7/
√

46 = 0.1.

Would I want to use the resulting 95% confidence interval, 67.1±0.2? Of course not! The whole

scale is off by some unknown amount. What, then, to do? One approach would be to calibrate,

either using a known object that weighs in the neighborhood of 67 kg or else my own weight

measured on an accurate instrument. If that is not possible, then I would want a wider uncertainty

interval to account for the uncertainty in the scale’s bias. The usual purpose of a standard error

is to attach uncertainty to an estimate, and for that purpose, the usual standard error formula is

inappropriate.

How do you interpret standard errors from a regression fit to the entire population (all 50
states)?

Sometimes we can all agree that if you have a whole population, your standard error is zero. This

is basic finite population inference from survey sampling theory, if your goal is to estimate the

population average or total. Consider a regression fit to data on all 50 states in the United States.

This gives you an estimate and a standard error. Maybe the estimated coefficient of interest is

only one standard error from zero, so it’s not “statistically significant.” But what does that mean,

if you have the whole population? You might say that the standard error doesn’t matter, but the

internal variation in the data still seems relevant, no?
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One way to think about this is to imagine the regression being used for prediction. For example,

you have all 50 states, but you might use the model to understand these states in a different year.

So you can think of the data you have from the 50 states as being a sample from a larger population

of state-years. It’s not a random or representative sample, though, in that it’s data from just one

year. So to get the right uncertainty you’ll need to use a multilevel model or clustered standard

errors. With data from only one cluster, some external assumptions will be needed to compute the

standard error. Alternatively, one could just use the standard error that pops out of the regression,

which would correspond to an implicit model of equal variation between and within years. Just

because you have an exhaustive sample, that does not mean that the standard error is undefined

or meaningless.

How should we account for nonsampling error when reporting uncertainties (election polls)?

In an analysis of state-level pre-election polls, we have found the standard deviation of empirical

errors—the difference between the poll estimate and the election outcome—to be about twice as

large as would be expected from the reported standard errors of the individual surveys. This sort

of nonsampling error is usual in polling; what is special about election forecasting is that here we

can observe the outcome and thus measure the total error directly. The question then arises: what

standard error should a pollster report? The usual formula based on sampling balls from an urn

(with some correction for weighting or survey adjustment) gives an internal measure of uncertainty

but does not address the forecasting question. It would seem better to augment the standard error

based on past levels of nonsampling error, but then the question arises of what to do in other

sampling settings where no past calibration is available. In election polling we have some sense of

that extra uncertainty; it seems wrong to implicitly set it to zero when we don’t know what to do

about it.

How, then, should we interpret the standard error from textbook formulas or when fitting a

regression? We can think of this as a lower-bound standard error or, more precisely, as a measure

of variation corresponding to a particular model.

Summary

The appropriate standard error depends not just on the data and sampling model but also on the

generalization of interest, and the model of variation across units and over time corresponding to

the uses to which the estimate will be put. Deciding on a generalization of interest in a sampling

or regression problem is similar to the problem of focusing on a particular average treatment effect

in causal inference: thinking seriously about your replications (for the goal of getting the right

standard error) and inferential goals, you might well get a better understanding of what you’re

trying to do with your model.
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