
The Stata Journal (2017)
17, Number 2, pp. 343–357

Fitting Bayesian item response models in Stata
and Stan

Robert L. Grant
BayesCamp
Croydon, UK

robert@bayescamp.com

Daniel C. Furr
University of California at Berkeley

Berkeley, CA

Bob Carpenter
Columbia University

New York, NY

Andrew Gelman
Columbia University

New York, NY

Abstract. Stata users have access to two easy-to-use implementations of Bayesian
inference: Stata’s native bayesmh command and StataStan, which calls the general
Bayesian engine, Stan. We compare these implementations on two important
models for education research: the Rasch model and the hierarchical Rasch model.
StataStan fits a more general range of models than can be fit by bayesmh and uses
a superior sampling algorithm, that is, Hamiltonian Monte Carlo using the no-U-
turn sampler. Furthermore, StataStan can run in parallel on multiple CPU cores,
regardless of the flavor of Stata. Given these advantages and given that Stan is
open source and can be run directly from Stata do-files, we recommend that Stata
users interested in Bayesian methods consider using StataStan.

Keywords: st0477, stan, windowsmonitor, StataStan, bayesmh, Bayesian

1 Introduction

Stata is widely used in the social sciences, economics, and biostatistics. In 2015, it
became possible to routinely fit Bayesian models in Stata by using 1) Bayesian mod-
eling commands introduced in Stata 14, which use the Metropolis–Hastings algorithm
and Gibbs sampler, and 2) StataStan, an interface to the open-source Bayesian soft-
ware, Stan (Grant 2015; Stan Development Team 2016). Previously, Bayesian methods
were available in Stata only through user-written commands to interface with external
software such as BUGS, JAGS, or MLwiN.

At the time of writing, the native Bayes implementation in Stata, bayesmh, allows
a choice among 10 likelihood functions and 18 prior distributions. bayesmh is explic-
itly focused around regression models, although extensions to hierarchical (multilevel)
models are possible with the inclusion of hyperpriors. Additionally, the user may write
customized likelihood functions or customized posterior distributions.

Built for Bayesian inference, Stan is an open-source, collaboratively built software
project that allows general continuous-parameter models, including all the models that
can be fit in Stata’s bayesmh and many others. Stan has been applied to a wide range
of complex statistical models, including time series, imputation, mixture models, meta-

c⃝ 2017 StataCorp LLC st0477



344 Fitting Bayesian item response models in Stata and Stan

analysis, cluster analysis, Gaussian processes, and item response theory. These extend
beyond the current (Stata 14.2) capability of bayesmh. Stan can run from various data
analysis environments such as Stata, R, Python, and Julia and also has a command-
line interface (CmdStan). Stan uses Hamiltonian Monte Carlo (HMC) and the no-U-turn
sampler (Hoffman and Gelman 2014) with the additional options of variational inference
(Kucukelbir et al. 2015) and the L-BFGS optimization algorithm (Nocedal and Wright
2006). The advantages of HMC and the no-U-turn sampler in speed, stability with re-
gard to starting values, and efficiency over Metropolis–Hastings and Gibbs have been
described elsewhere (Neal 2011; Hoffman and Gelman 2014). As a result of the Hamilto-
nian dynamics, HMC is rotation invariant, which makes it well suited to highly correlated
parameters. It is also not slowed down by nonconjugate models.

The languages used by these packages are notably different. In Stan, models are
specified in a series of probability statements specifying prior distributions and likeli-
hoods. bayesmh follows standard Stata syntax to give a compact specification of the
most common regression and related models. Stan works by translating the user’s model
code into C++, then compiling and running the resulting executable file. Stan can run
in parallel on multicore computers if the number of available cores was specified when
installing CmdStan itself.

In this article, we compare bayesmh and StataStan on some item response models.
These logistic regression (or Rasch) models are popular in education research and in
political science, where they are called ideal-point models (Rasch 1960).

2 Models

We fit the models using data simulated as specified below. We checked that the bayesmh
and StataStan implementations gave the same answer (modulo the inevitable Monte
Carlo error of these stochastic algorithms), then compared the programs on speed and
efficiency in terms of time per the number of effective independent samples.

The Rasch model can be written as

Pr(yip = 1|θp, δi) = logit−1(θp − δi)

θp ∼ N(0,σ2)

where yip = 1 if person p responded to item i correctly and 0 otherwise, and i, p ∈ N;
1 ≤ i ≤ I; 1 ≤ p ≤ P . The parameter θp represents the latent “ability” of person
p, and δi is a parameter for item i. We considered a simple version of the model in
which the abilities are modeled as exchangeable draws from a normal distribution with
scale σ. We assigned a N(0, 10) prior distribution to δi and took two approaches to
priors for σ. First, we matched the Rasch model example in the Stata 14 manual
(see [BAYES] bayesmh), which uses an inverse-gamma prior for σ2, which we do not
recommend (Gelman 2006). Second, we used a preferred approach of uniform priors for
σ, which is the Stan default if a prior is not specified. It is easy in StataStan to add a
line of code to the model to include a different prior on σ or σ2.



R. L. Grant, D. C. Furr, B. Carpenter, and A. Gelman 345

A natural hierarchical extension of the Rasch model adds a hyperprior for δi so that

Pr(yip = 1|θp, δi) = logit−1(θp − δi)

θp ∼ N(0,σ2)

δi ∼ N(µ, τ2)

where µ is the model intercept. Persons and items are regarded as two sets of exchange-
able draws.

3 Methods

We simulated data from the above model with 500 persons each answering 20 items.
For true values of δi, we assigned equally spaced values from −1.5 to 1.5, and we set
the true σ to 1.

We set up the Rasch and hierarchical Rasch models similarly, running four chains
in series in Stan version 2.11 and Stata 14.1. We drew initial values for the chains from
independent uniform distributions −1 to 1 on the location parameters µ(0), δ(0), and
θ(0) and drew uniform distributions from 0 to 2 on the scale parameters σ(0) and τ (0).
We assigned all δi’s identical starting values for each chain and did the same for the θp’s.
The reason for this (admittedly unusual) choice is that this approach is much easier to
use with bayesmh. We used the same starting values for both StataStan and bayesmh
(and in the comparison described below, for JAGS). These item response models were
not sensitive to starting values.

We ran 10 chains for 2,500 discarded warm-up iterations and 2,500 posterior draws
each. For timing purposes, we ran all chains in serial, thus eliminating one of Stan’s
advantages—that it can automatically run multiple chains in parallel on a multicore ma-
chine regardless of the flavor of Stata. However, we made one comparison using parallel
computation, which is described below. We provide the Stan programs and commands
in the appendix. The options specified for bayesmh are nearly identical to those in the
example provided in the Stata manual (see [BAYES] bayesmh). There is a difference
in how the δ and θ parameters are sampled, which plays to the strengths of the differ-
ent algorithms; Hamiltonian Monte Carlo is more efficient with distributions centered
on or close to zero, regardless of correlation, while random walk Metropolis–Hastings
in bayesmh is improved by using the random-effects option (see [BAYES] bayesmh).
This feature, added in Stata 14.1, markedly improves effective sample size for models
amenable to a random-effects parameterization. Other model forms will not benefit
from it, so for comparison, we ran bayesmh both with and without random effects.

We monitored convergence for each parameter using the R̂ statistic, which is a rough
estimate of the square root of the ratio of overall (across chains) posterior variance
to within-chain posterior variance (Gelman et al. 2013). Values of R̂ near 1 indicate
convergence, while greater values indicate nonconvergence. Values less than 1.1 are
generally considered acceptable. The efficiency of the estimations is evaluated by the
seconds per estimated effective sample size, s/n̂eff (Gelman et al. 2013). This reflects the



346 Fitting Bayesian item response models in Stata and Stan

fact that more highly autocorrelated chains of draws from the posterior distributions
give less precise inference, equivalent to a smaller number of effectively independent
samples that neff estimates. We used two versions of timings: an all-in time using the
Stata command timer from the lines of the do-file above and below the bayesmh or
stan command, as well as a simulation-only time obtained from the CmdStan output
and from the value returned to e(simtime) by bayesmh (an undocumented return
value). StataStan’s all-in time includes compiling the model, and bayesmh’s all-in time
includes internal model building before simulation can begin. To run multiple chains
in StataStan, compilation is required only once, and if the data change but a model
does not, a previously compiled executable file can be reused. The total time and
simulation-only times represent opposite ends of a spectrum of performance. In real-
life implementation, if there are many retained iterations compared with the warm-up
iterations, and if compilation (in the case of StataStan) and model building (in the case
of bayesmh) are not needed in every chain, total time will approach the simulation-only
time.

To further investigate the efficiency of the software as models become more demand-
ing, we carried out the same analyses on simulated data with 20 items and 100, 500,
1,000, 5,000, and 10,000 people. We compared StataStan 1.2.1 (calling CmdStan 2.11)
with Stata 14.1’s bayesmh command as above and also with the open-source software
JAGS 4.0.0 (Plummer 2007) with the rjags package in R 3.2.3 and ran four chains in
each instance. We compared s/n̂eff for the hyperparameters σ2, µ, and τ2 and for the
worst parameter (lowest n̂eff , reflecting the frequent need to run the software until all
parameters are adequately estimated) in each model. We ran bayesmh both with and
without the exclude() option on the θ’s to examine the effect of reducing memory
requirements. We also ran StataStan again with parallel chains for 20 items and 1,000
people to examine the increase in speed achieved with 4 CPU cores. All simulations were
conducted on an “early 2015” MacBook Pro laptop running OS X 10.11.6 (El Capitan)
with a 2.7 GHz Intel Core i5 4-core processor and 8 GB of 1867 MHz DDR3 RAM, with
all networking turned off.

4 Results

For the Rasch model, we ran StataStan for 10 chains (in series) of 5,000 iterations (first
half as warm-up) in 16.6 minutes; at that point, R̂ was less than 1.01 for all parameters.
We ran bayesmh for 10 chains of the same length in 15.9 minutes; R̂ was less than
1.01 for all parameters. Convergence appears satisfactory for both. In figure 1, we
compare values of time per effective independent sample for all the parameters in box
plots between StataStan and bayesmh. Table 1 provides the same all-in timing statistics
for the hyperparameters.



R. L. Grant, D. C. Furr, B. Carpenter, and A. Gelman 347

Table 1. Efficiency statistics for the hyperparameters in the two models

Model Parameter Stata 14.1 bayesmh StataStan
neff/sec neff/sec

Rasch σ2 1.44 8.99
Hierarchical Rasch µ 3.80 1.22
Hierarchical Rasch σ2 1.63 5.62
Hierarchical Rasch τ2 3.28 2.66

Results for the hierarchical Rasch model parallel those for the Rasch model. Estima-
tion with StataStan required 24.1 minutes for the same number of chains and iterations,
and R̂ was less than 1.01 for all parameters. bayesmh ran for 16.6 minutes and yielded
values of R̂ less than 1.01 for all parameters. Both estimations appear to have converged.

Figure 1. Box plots of seconds per effective independent sample for parameters in the
Rasch model (top row of plots) and hierarchical Rasch model (bottom row), in each case
fit to simulated data on 500 persons each answering 20 items. Left column shows total
timing, including compilation and simulation; right column shows simulation time only.
When a model is being fit multiple times, simulation-only timing is a more relevant
comparison because the model needs to be compiled only once.



348 Fitting Bayesian item response models in Stata and Stan

In terms of the total time from issuing the command to its completion, StataStan
was more efficient for all parameters in the Rasch model; in the hierarchical Rasch
model, it was more efficient for all θ’s and σ2, similar for the δ’s, slightly less efficient
for τ2, and less efficient for µ. When we compared simulation-only time (not counting
compilation, model building, or warm-up), StataStan’s efficiency was improved, making
all Rasch parameters even more favorable, and all hierarchical Rasch parameters except
µ favor StataStan over bayesmh.

When we ran the models with the preferred StataStan priors and with sampling
standard deviations rather than variances, results did not change much. Total compu-
tation time was somewhat faster at 11.1 minutes for the Rasch model and 22.6 minutes
for the hierarchical Rasch model, but times per neff were very similar at 0.08 seconds
for Rasch σ, 0.16 seconds for hierarchical Rasch σ, and 0.29 seconds for τ . However,
the efficiency of µ improved to 0.49 seconds per neff .

Table 2. Efficiency statistics for hyperparameters in increasingly large models

Total time Simulation-only time
bayesmh StataStan bayesmh StataStan

Model Parameter P sec/neff sec/neff sec/neff sec/neff

Rasch σ2 100 0.143 0.069 0.137 0.007
500 0.536 0.105 0.502 0.025
1,000 1.460 0.230 1.319 0.062
5,000 9.333 1.649 6.404 0.576
10,000 350.164 4.539 334.916 1.487

H. Rasch µ 100 0.212 0.168 0.204 0.023
500 0.211 0.760 0.197 0.287
1,000 0.457 1.131 0.413 0.571
5,000 2.682 22.025 1.847 11.331
10,000 49.533 67.812 46.660 37.400

H. Rasch σ2 100 0.146 0.061 0.140 0.008
500 0.595 0.177 0.558 0.067
1,000 1.809 0.340 1.634 0.172
5,000 11.941 4.508 8.225 2.319
10,000 186.637 13.236 175.813 7.300

H. Rasch τ2 100 0.094 0.095 0.090 0.013
500 0.350 0.385 0.328 0.145
1,000 0.904 0.608 0.817 0.307
5,000 5.145 8.237 3.544 4.237
10,000 76.556 26.884 72.116 14.827



R. L. Grant, D. C. Furr, B. Carpenter, and A. Gelman 349

10s

1min
2min

30min
1hr

4hr

12hr
24hr
48hr

T
o

ta
l t

im
e

100 500 1000 5000 10000
Number of thetas in model (P)

bayesmh−ex bayesmh

StataStan rjags

Rasch Hierarchical Rasch

Figure 2. Total time per effective independent sample (worst efficiency across all pa-
rameters) in increasingly large Rasch and hierarchical Rasch models

10s

1min
2min

30min
1hr

4hr

12hr
24hr
48hr

S
im

u
la

tio
n

 t
im

e

100 500 1000 5000 10000
Number of thetas in model (P)

bayesmh−ex bayesmh

StataStan rjags

Rasch Hierarchical Rasch

Figure 3. Simulation time per effective independent sample (worst efficiency across all
parameters) in increasingly large Rasch and hierarchical Rasch models



350 Fitting Bayesian item response models in Stata and Stan

In testing with increasingly large models, all three packages showed similar total
execution times. StataStan had faster simulation-only time in all Rasch models (from
3% to 61% of the bayesmh times) and mixed results in hierarchical Rasch models (from
26% to 235%). The charts show the efficiency for the parameter with the lowest neff

in each case, for total time (figure 2) and simulation-only time (figure 3). In these line
charts, the form of bayesmh that uses the exclude option is denoted by bayesmh-ex;
we found this had similar speed and efficiency to bayesmh without exclude and so did
not assess it further in the most time-consuming models (P = 10000) or in terms of
simulation-only time. JAGS does not provide simulation-only timings. In total time per
neff , no one software option dominated, though from this limited simulation, it appeared
that StataStan was more efficient in the smallest models and bayesmh was more efficient
in the largest (figure 2). In simulation-only time per neff , StataStan was more efficient
than bayesmh, up to 10 times more so in most models and sizes of P . However, in some
cases, they were similar, with bayesmh being slightly better (figure 3).

StataStan consistently had the better efficiency (s/neff) for σ2 in both Rasch and
hierarchical Rasch models but mixed results for τ2, although four out of five models
favored StataStan in simulation-only time (table 2). In the Rasch model, StataStan
was 2.1 to 77.1 times faster than bayesmh to achieve the same neff for σ2 in total
time and 11.1 to 225.2 times faster in simulation-only time. In the hierarchical Rasch
model, StataStan was 2.4 to 14.1 times faster for σ2 in total time and 3.5 to 24.1 times
faster in simulation-only time. StataStan was 0.6 to 2.8 times faster for τ2 in total
time and 0.8 to 6.9 times faster in simulation-only time. The µ hyperparameter in the
hierarchical Rasch models was more efficiently sampled by bayesmh at most values of
P , with StataStan being 0.1 to 1.3 times faster in total time and 0.2 to 8.9 times faster
in simulation-only time (table 2). All models, with all software, could be fit with the
same laptop computer without running out of memory.

The random-effects option in bayesmh provided a considerable improvement in both
effective sample size and speed. When we ran the I = 20, P = 100 models without
random effects, total time was 206 seconds for Rasch and 211 seconds for hierarchical
Rasch, while simulation-only times were 200 and 204 seconds, respectively, which is
about 2.5 times slower than the same model with random effects. The time per effective
independent sample was considerably increased. In the Rasch model, it rose from 0.143
to 69 seconds for σ2. In the hierarchical Rasch model, it rose from 0.146 to 30 seconds
for σ2, from 0.212 to 53 seconds for µ, and from 0.094 to 23 seconds for τ2.

A further consideration is the speed-up obtained by running StataStan chains in
parallel even without Stata/MP. We found that the Rasch model with I = 20 and
P = 1000 had total time 383 seconds running in parallel compared with 734 seconds
running in series and simulation-only time of 78 seconds compared with 198 seconds.
The hierarchical Rasch model of the same size had total time 850 seconds compared
with 1,520 seconds and simulation-only time of 303 seconds compared with 768 seconds.
This would make parallel StataStan on a quad-core computer roughly twice as efficient
as serial StataStan, while bayesmh will not run parallel chains without Stata/MP.



R. L. Grant, D. C. Furr, B. Carpenter, and A. Gelman 351

5 Discussion

We found that most of the Rasch models we compared were more efficiently sampled by
StataStan than bayesmh and that this was more favorable to StataStan because the fixed
overhead of compiling the model into an executable file was outgrown by the simulation.
This suggests that longer chains of draws from the posterior distribution, precompiled
models, and parallel chains will all favor StataStan, and the total time comparisons here
represent a worst-case scenario for StataStan. We would expect the results we found
to apply to generalized linear mixed models, given that these include the Rasch models
as a special case (Rijmen et al. 2003; Zheng and Rabe-Hesketh 2007). In practice, the
adaptive Markov chain Monte Carlo algorithm featured in bayesmh (Stata 14.1) also
has a number of features that improve its performance notably over JAGS or Stata 14.0.
We found that the same models without the reffects option took 200 to 500 times
longer to achieve the same effective sample size on bayesmh, which users should keep in
mind when considering models outside the Rasch family and without random effects.

StataStan provides a simple interface, operating by writing specified variables (as
vectors), matrices, and scalars from Stata to a text file and calling the command-line
implementation of Stan. The user can specify a wide variety of priors, and the algorithm
is less sensitive to the prior than that used in bayesmh. In these Rasch models, we found
it simple and more intuitive to sample the hyperparameters as standard deviations
rather than variances or precisions, and we used uniform priors as the Stan default
without any impact on efficiency. We give the alternative programs in the appendix.
Progress is displayed inside Stata (even under Windows), and there is the option to
write the Stan model inside a comment block in the Stata do-file. Results can then
be read back into Stata for diagnostics, generating other values of interest, or saving
in .dta format. StataStan can be installed from Statistical Software Components by
typing

ssc install stan

Windows users should also type

ssc install windowsmonitor

In conclusion, we find StataStan to be generally faster than bayesmh, which is no surprise
given Stan’s advanced algorithms and efficient autodifferentiation code. Given that Stan
is open source, offers a wider range of models than bayesmh, and can be run directly from
Stata using StataStan, we recommend that Stata users interested in Bayesian methods
consider StataStan for Bayesian modeling, especially for more complicated models.

6 Acknowledgment

We thank the Institute of Education Sciences for partial support of this work.



352 Fitting Bayesian item response models in Stata and Stan

7 References
Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis 1: 515–534.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, eds.
2013. Bayesian Data Analysis. 3rd ed. Boca Raton, FL: CRC Press.

Grant, R. L. 2015. StataStan. https://github.com/stan-dev/statastan.

Hoffman, M. D., and A. Gelman. 2014. The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15:
1593–1623.

Kucukelbir, A., R. Ranganath, A. Gelman, and D. M. Blei. 2015. Automatic variational
inference in Stan. ArXiv Working Paper No. arXiv:1506.03431.
https://arxiv.org/abs/1506.03431.

Neal, R. M. 2011. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain
Monte Carlo, ed. S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, 113–162. Boca
Raton, FL: Chapman & Hall/CRC.

Nocedal, J., and S. J. Wright. 2006. Numerical Optimization. 2nd ed. Berlin: Springer.

Plummer, M. 2007. JAGS. http://mcmc-jags.sourceforge.net/.

Rasch, G. 1960. Probabilistic Models for Some Intelligence and Attainment Tests.
Copenhagen: Danmarks Pædagogiske Institut.

Rijmen, F., F. Tuerlinckx, P. De Boeck, and P. Kuppens. 2003. A nonlinear mixed
model framework for item response theory. Psychological Methods 8: 185–205.

Stan Development Team. 2016. Stan Modeling Language: User’s Guide and Reference
Manual. http://mc-stan.org/documentation/.

Zheng, X., and S. Rabe-Hesketh. 2007. Estimating parameters of dichotomous and
ordinal item response models with gllamm. Stata Journal 7: 313–333.

About the authors

Robert Grant is a statistician who runs a training and consultancy startup called BayesCamp.
He was senior lecturer in health and social care statistics at Kingston University and St
George’s, University of London, and previously worked on clinical quality and safety data
for the Royal College of Physicians and evidence-based guidelines for the National Institute for
Clinical Excellence. Besides Bayesian modeling, he specializes in data visualization.

Daniel Furr is a graduate student in the Graduate School of Education at the University of
California, Berkeley. He is the developer of edstan, an R package for Bayesian item response
theory modeling using Stan, and the author of several related case studies. He specializes in
item response theory and predictive methods.



R. L. Grant, D. C. Furr, B. Carpenter, and A. Gelman 353

Bob Carpenter is a research scientist in computational statistics at Columbia University. He
designed the Stan probabilistic programming language and is one of the Stan core developers.
He was professor of computational linguistics (Carnegie Mellon University) and an industrial
researcher and programmer in speech recognition and natural language processing (Bell Labs,
SpeechWorks, LingPipe) and has written two books on programming language theory and
linguistics.

Andrew Gelman is a professor of statistics and professor of political science at Columbia Uni-
versity and the author of several books, including Bayesian Data Analysis.

Appendix

Here is the code for the models, starting with the Rasch Stan program, which matches
bayesmh:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma_sq; // variance of the thetas (random intercepts for people)
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
transformed parameters {

real<lower=0> sigma;
sigma = sqrt(sigma_sq); // SD of the theta random intercepts

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
sigma_sq ~ inv_gamma(1, 1); // prior for variance of thetas
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = delta_unit * sqrt(10); // convert normalized deltas to deltas (mean 0)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}



354 Fitting Bayesian item response models in Stata and Stan

This is our preferred Stan program:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma; // SD of the thetas (random intercepts for people)
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = delta_unit * sqrt(10); // convert normalized deltas to deltas (mean 0)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}

Here is the Stata call for the Rasch model:

bayesmh y=({theta:}-{delta:}), likelihood(logit) ///
redefine(delta:i.item) redefine(theta:i.person) ///
prior({theta:i.person}, normal(0, {sigmasq})) ///
prior({delta:i.item}, normal(0, 10)) ///
prior({sigmasq}, igamma(1, 1)) ///
mcmcsize(`mcmcsize´) burnin(`burnin´) ///
notable saving(`draws´, replace) dots ///
initial({delta:i.item} `=el(inits`jj´, `c´, 1)´ ///

{theta:i.person} `=el(inits`jj´, `c´, 2)´ ///
{sigmasq} `=el(inits`jj´, `c´, 3)´) ///

block({sigmasq})

And here is the JAGS code for the Rasch model:

model {
for (i in 1:I) {

delta[i] ~ dunif(-1e6, 1e6)
}
inv_sigma_sq ~ dgamma(1,1)
sigma <- pow(inv_sigma_sq, -0.5)
for (p in 1:P) {

theta[p] ~ dnorm(0, inv_sigma_sq)
}
for (n in 1:N) {

logit(inv_logit_eta[n]) <- theta[pp[n]] - delta[ii[n]]
y[n] ~ dbern(inv_logit_eta[n])

}
}



R. L. Grant, D. C. Furr, B. Carpenter, and A. Gelman 355

Here is the hierarchical Rasch model in Stan, matching bayesmh:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma_sq; // variance of the thetas (random intercepts for people)
real<lower=0> tau_sq; // variance of the deltas (random intercepts for items)
real mu; // mean of the deltas
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
transformed parameters {

real<lower=0> sigma;
real<lower=0> tau;
sigma = sqrt(sigma_sq); // SD of the theta random intercepts
tau = sqrt(tau_sq); // SD of the delta random intercepts

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
mu ~ normal(0, sqrt(10)); // prior for the mean of the deltas
sigma_sq ~ inv_gamma(1, 1);
tau_sq ~ inv_gamma(1, 1);
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = mu + (delta_unit * tau); // convert normalized deltas to deltas (mean mu)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}



356 Fitting Bayesian item response models in Stata and Stan

This is our preferred Stan model:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma; // SD of the thetas (random intercepts for people)
real<lower=0> tau; // SD of the deltas (random intercepts for items)
real mu; // mean of the deltas
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
mu ~ normal(0, sqrt(10)); // prior for the mean of the deltas
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = mu + (delta_unit * tau); // convert normalized deltas to deltas (mean mu)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}

Here is the Stata call for the hierarchical Rasch model:

bayesmh y=({theta:}-{delta:}),likelihood(logit) ///
redefine(delta:i.item) redefine(theta:i.person) ///
prior({theta:i.person}, normal(0, {sigmasq})) ///
prior({delta:i.item}, normal({mu}, {tausq})) ///
prior({mu}, normal(0, 10)) ///
prior({sigmasq} {tausq}, igamma(1, 1)) ///
block({sigmasq} {tausq} {mu}, split) ///
initial({delta:i.item} `=el(inits`jj´, 1, 1)´ ///

{theta:i.person} `=el(inits`jj´, 1, 2)´ ///
{sigmasq} `=el(inits`jj´, 1, 3)´ ///
{tausq} `=el(inits`jj´, 1, 4)´ ///
{mu} `=el(inits`jj´, 1, 5)´) ///

mcmcsize(`mcmcsize´) burnin(`burnin´) ///
saving(`draws´, replace) dots



R. L. Grant, D. C. Furr, B. Carpenter, and A. Gelman 357

And here is the JAGS code for the hierarchical Rasch model:

model {
inv_sigma_sq ~ dgamma(1,1)
sigma <- pow(inv_sigma_sq, -0.5)
for (p in 1:P) {

theta[p] ~ dnorm(0, inv_sigma_sq)
}
inv_tau_sq ~ dgamma(1,1)
tau <- pow(inv_tau_sq, -0.5)
for (i in 1:I) {

delta[i] ~ dnorm(0, inv_tau_sq)
}
mu ~ dunif(-1e6, 1e6)
for (n in 1:N) {

logit(inv_logit_eta[n]) <- mu + theta[pp[n]] - delta[ii[n]]
y[n] ~ dbern(inv_logit_eta[n])

}
}


