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Abstract Bayesian highest posterior density (HPD) inter-
vals can be estimated directly from simulations via empirical
shortest intervals. Unfortunately, these can be noisy (that
is, have a high Monte Carlo error). We derive an optimal
weighting strategy using bootstrap and quadratic program-
ming to obtain a more computationally stable HPD, or in
general, shortest probability interval (Spin). We prove the
consistency of our method. Simulation studies on a range of
theoretical and real-data examples, somewith symmetric and
some with asymmetric posterior densities, show that inter-
vals constructed using Spin have better coverage (relative to
the posterior distribution) and lower Monte Carlo error than
empirical shortest intervals. We implement the new method
in an R package (SPIn) so it can be routinely used in post-
processing of Bayesian simulations.

Keywords Bayesian computation · Highest posterior
density · Bootstrap

1 Introduction

It is standard practice to summarize Bayesian inferences via
posterior intervals of specified coverage (for example, 50%
and 95 %) for parameters and other quantities of interest. In
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the modern era in which posterior distributions are computed
via simulation, we most commonly see central intervals: the
100(1−α)% central interval is defined by the α

2 and 1− α
2

quantiles. Highest posterior density (HPD) intervals [recom-
mended, for example, in the classic book of Box and Tiao
(1973)] are easily determined for models with closed-form
distributions such as the normal and gamma but are more
difficult to compute from simulations.

We would like to go back to the HPD, solving whatever
computational problems necessary to get it to work. Why?
Because for an asymmetric distribution, theHPD interval can
be a more reasonable summary than the central probability
interval. Figure 1 shows these two types of intervals for three
distributions: for symmetric densities (as shown in the left
panel in Fig. 1), central and HPD intervals coincide; whereas
for the two examples of asymmetric densities (the middle
and right panels in Fig. 1), HPDs are shorter than central
intervals (in fact, the HPD is the shortest interval containing
a specified probability).

In particular,when the highest density occurs at the bound-
ary (the right panel in Fig. 1), we strongly prefer the shortest
probability interval to the central interval; the HPD covers
the highest density part of the distribution and also the mode.
In such cases, central intervals can be much longer and have
the awkward property at cutting off a narrow high-posterior
slice that happens to be near the boundary, thus ruling out a
part of the distribution that is actually strongly supported by
the inference.

One concern with highest posterior density intervals is
that they depend on parameterization. For example, the left
endpoint of the HPD in the right panel of Fig. 1 is 0, but
the interval on the logarithmic scale does not start at −∞.
Interval estimation is always conditional on the purposes
to which the estimate will be used. Beyond this, univariate
summaries cannot completely capture multivariate relation-
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Fig. 1 Simple examples of
central (black) and highest
probability density (red)
intervals. The intervals coincide
for a symmetric distribution,
otherwise the HPD interval is
shorter. The three examples are
a normal distribution, a gamma
with shape parameter 3, and the
marginal posterior density for a
variance parameter in a
hierarchical model. (Color
figure online)

ships. Thus, all this work is within the context of routine data
analysis [e.g., Spiegelhalter et al. (2014), Gelman and Shirley
(2011)] in which interval estimates are a useful way to sum-
marize inferences about parameters and quantities of interest
in a model in understandable parameterizations. We do not
attempt a conclusive justification of HPD intervals here; we
merely note that in the pre-simulation era such intervals were
considered the standard, which suggests to us that the current
preference for central intervals arises from computational
reasons as much as anything else.

For the goal of computing an HPD interval from poste-
rior simulations, the most direct approach is the empirical
shortest probability interval, the shortest interval of speci-
fied probability coverage based on the simulations Chen and
Shao (1999). For example, to obtain a 95 % interval from a
posterior sample of size n, you can order the simulation draws
and then take the shortest interval that contains 0.95n of the
draws. This procedure is easy, fast, and simulation consistent
(that is, as n → ∞ it converges to the actual HPD interval
assuming that the HPD interval exists and is unique). The
only trouble with the empirical shortest probability interval
is that it can be too noisy,with a highMonteCarlo error (com-
pared to the central probability interval)when computed from
the equivalent of a small number of simulation draws. This is
a concernwith current Bayesianmethods that rely onMarkov
chain Monte Carlo (MCMC) techniques, where for some
problems the effective sample size of the posterior draws can
be low (for example, hundreds of thousands of steps might
be needed to obtain an effective sample size of 500).

Figure 2 shows the lengths of the empirical shortest 95 %
intervals based on several simulations for the three distrib-
utions shown in Fig. 1, starting from the kth order statistic.
For each distribution and each specified number of indepen-
dent simulation draws, we carried out 200 replications to
get a sense of the typical size of the Monte Carlo error. The
lengths of the 95 % intervals are highly variable when the
number of simulation draws is small.

In this paper, we develop a quadratic programming strat-
egy coupled with bootstrapping to estimate the endpoints of
the shortest probability interval. Simulation studies show that
our procedure, whichwe call Spin, results inmore stable end-

point estimates compared to the empirical shortest interval
(Fig. 3). Specifically, define the efficiency as

Efficiency = MSE (empirical shortest interval)
MSE (Spin)

,

so that an efficiency greater than 1 means that Spin is more
efficient. We show in Fig. 3 that, in all cases that we exper-
imented on, Spin is more efficient than the competition. We
derive our method in Sect. 2, apply it to some theoretical
examples in Sect. 3 and in two real-data Bayesian analysis
problems and 60 BUGS examples in Sect. 4 and 5. We have
implemented our algorithm as SPIn, a publicly available
package in R Development Core Team (2011).

2 Methods

2.1 Problem setup

Let X1,…, Xn
iid∼ F , where F is a continuous unimodal

distribution. The goal is to estimate the 100(1−α)% shortest
probability interval for F .Denote the true shortest probability
interval by (l(α), u(α)). DefineG = 1−F , so that F(l(α))+
G(u(α)) = α.

To estimate the interval, for 0 ≤ " ≤ α, find " such that
G−1(α − ") − F−1(") is a minimum, i.e.,

"∗ = argmin"∈[0,α]{G−1(α − ") − F−1(")}.

Taking the derivative,

∂

∂"
[(1 − F)−1(α − ") − F−1(")] = 0,

we get

1
f (G−1(α − "))

− 1
f (F−1("))

= 0, (1)

where f is the probability density function of X . The min-
imum can only be attained at solutions to (1), or " = 0 or
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Fig. 2 Lengths of 95 % empirical probability intervals from several
simulations for each of three models. Each gray curve shows interval
length as a function of the order statistic of the interval’s lower endpoint;
thus, theminimumvalue of the curve corresponds to the empirical short-
est 95 % interval. For the (symmetric) normal example, the empirical
shortest interval is typically close to the central interval (for example,
with a sample of size 1000, it is typically near (x(26), x(975))). The
gamma and eight schools examples are skewed with a peak near the

le f t of the distribution, hence the empirical shortest intervals are typ-
ically at the le f tend of the scale. The redlines show the lengths of
the true shortest 95 % probability interval for each distribution. The
empirical shortest interval approaches the true value as the number of
simulation draws increases but is noisy when the number of simulation
draws is small, hence motivating a more elaborate estimator. (Color
figure online)

α (Fig. 4). It can easily be shown that if f ′(x) ̸= 0 a.e., the
solution to (1) exists and is unique. Then

l(α) = F−1("∗),

u(α) = G−1(α − "∗).

Taking the lower end for example, we are interested in
a weighting strategy such that l̂ = ∑n

i=1wi X(i) (where∑
wi = 1) has the minimum mean squared error (MSE),

E
(∣∣∣∣∑n

i=1wi X(i) − l(α)
∣∣∣∣2

)
. It can also be helpful to calcu-

late MSE(X([n"∗])) = E
(
||X([n"∗]) − l(α)||2

)
. In practice,

we estimate "∗ by "̂ such that

"̂ = argmin"∈[0,α]{Ĝ−1(α − ") − F̂−1(")}, (2)

where F̂ represents the empirical distribution and Ĝ = 1− F̂ .
This yields thewidely used empirical shortest interval, which
can have a high Monte Carlo error (as illustrated in Fig. 2).
Wewill denote its endpoints by l∗ and u∗. The corresponding
MSE for the lower endpoint is E(||X([n"̂]) − l(α)||2).

2.2 Quadratic programming

Let l̂ = ∑n
i=1wi X(i). Then

MSE(l̂) = E(l̂ − F−1("∗))2

= E (l̂ − E l̂ + E l̂ − F−1("∗))2

= E (l̂ − E l̂)2 + (E l̂ − F−1("∗))2

= Var + Bias2,

where E(l̂) = ∑n
i=1wiEX(i) and Var =

∑n
i=1w

2
i VarX(i)+

2
∑

i< j wiw jcov(X(i), X( j)). It has been shown [e.g., David
and Nagaraja (2003)] that

E(X(i)) = Qi +
piqi

2(n + 2)
Q′′

i + o(n−1),

where qi = 1 − pi , Q = F−1 is the quantile function,
Qi = Q(pi ) = Q(EU(i)) = Q( i

n+1 ), and Q′′
i = Qi

f 2(Qi )
.

Thus,
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Fig. 3 Efficiency of Spin for
95 % shortest intervals for the
three distributions shown in
Fig. 1. For the eight schools
example, Spin is compared to a
modified empirical HPD that
includes the zero point in the
simulations. The efficiency is
always greater than 1, indicating
that Spin always outperforms
the empirical HPD. The jagged
appearance of some of the lines
may arise from discreteness in
the order statistics for the 95 %
interval
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Fig. 4 Notation for shortest probability intervals

E(l̂) .=
n∑

i=1

wi

(
Qi +

piqi
2(n + 2)

Q′′
i

)
. (3)

It has also been shown [e.g., David and Nagaraja (2003)] that

Var X(i) =
piqi
n + 2

Q′2
i + o(n−1)

cov(X(i), X( j)) =
piq j

n + 2
Q′

i Q
′
j + o(n−1), for i < j,

where Q′
i = 1

dpi /dQi
= 1

f (Qi )
( f (Qi ) is called the density

quantile function). Thus,

Var(l̂) =
n∑

i=1

w2
i
pi qi
n + 2

Q′2
i + 2

∑

i< j

wiw j
pi q j

n + 2
Q′

i Q
′
j

+ o(n−1). (4)

Putting (3) and (4) together yields,

MSE(l̂) =
n∑

i=1

w2
i
pi qi
n + 2

Q′2
i + 2

∑

i< j

wiw j
pi q j

n + 2
Q′

i Q
′
j

+
[

n∑

i=1

wi (Qi +
piqi

2(n + 2)
Q′′

i ) − Q("∗)

]2

+ o(n−1). (5)

Finding the optimal weights thatminimizeMSE as defined in
(5) is then approximately a quadratic programming problem.

In this study, we impose triangle kernels centered around
the endpoints of the empirical shortest interval on theweights
for computational stability. Specifically, the estimate of the
lower endpoint has the form,

l̂ =
∑i∗+b/2

i=i∗−b/2
wi X(i),

where i∗ is the index of the endpoint of the empirical shortest
interval, b is the bandwidth in terms of data points, and wi
decreases linearly when i moves away from i∗. We choose
b to be of order

√
n in this study. This optimization problem

is equivalent to minimizing MSE with the following con-
straints:
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i∗+b/2∑

i=i∗−b/2

wi = 1

wi − wi−1

X(i) − X(i−1)
= wi−1 − wi−2

X(i−1) − X(i−2)

for i = i∗− b/2+2, . . . , i∗, i∗+2, . . . , i∗+b/2
wi∗ − wi∗−1

X(i∗) − X(i∗−1)
= wi∗ − wi∗+1

X(i∗+1) − X(i∗)
wi∗−b/2 ≥ 0

wi∗+b/2 ≥ 0

wi∗ − wi∗+1 ≥ 0. (6)

The above constraints reflect the piecewise linear and sym-
metric pattern of the kernel. In practice, Q, f , and "∗ can
be substituted by the corresponding sample estimates Q̂, f̂ ,
and "̂.

The above quadratic programming problem can be rewrit-
ten in the conventional matrix form,

MSE(l̂) .= 1
2
wTDw − dTw,

where

w = (wi∗−b/2, . . . , wi∗+b/2)
T ,

and D = (di j ) is a symmetric matrix with

di j =

⎧
⎨

⎩

2(Q2
i + pi qi

n+2Q
′2
i ), i = j

2(
Q′
i Q

′
j

n+2 piq j + Qi Q j ), i < j,

dT = 2Q("∗)Qi ,

subject to

ATw ≥ w0,

with appropriateA andw0 derived from the linear constraints
in (6).

2.3 Proof of simulation consistency of the estimated
HPD

The following result ensures the simulation consistency of
our endpoint estimators when we use the empirical distribu-
tion and kernel density estimate.

Under regularity conditions, with probability 1,

lim
n→∞min

w

(
1
2
wT D̂nw − d̂Tn w

)
= min

w

(
1
2
wTDw − dTw

)
,

where D̂n and d̂n are empirical estimates ofD and d based on
empirical distribution function and kernel density estimates.

To see this, we first show that D̂n → D and d̂n → d uni-
formly as n → ∞ almost surely. By the Glivenko–Cantelli
theorem, ||F̂ − F ||∞ a.s.→ 0, which implies Q̂ ! Q almost
surely, where ! denotes weak convergence, i.e., Q̂(t) →
Q(t) at every t where Q is continuous [e.g., Vaart (1998)]. It
has also been shown that

∫
E f ( f̂ (x)− f (x))2dx = O(n−4/5)

under regularity conditions [see, e.g., Vaart (1998)], which
implies that f̂ (x) → f (x) almost surely for all x . The
endpoints of the empirical shortest interval are simulation
consistent Chen and Shao (1999).

The elements in matrix D̂n result from simple arithmetic
manipulations of Q̂ and f̂ , so d̂i j → di j with probability 1,
which implies,

D̂n → D uniformly and almost surely,

given D is of finite dimension. We can prove the almost sure
uniform convergence of d̂n to d in a similar manner.

The optimization problem minw( 12w
T D̂nw − d̂Tn w) cor-

responds to calculating the smallest eigenvalue of an aug-
mented matrix constructed from D̂n and d̂n . The above
uniform convergence then implies,

lim
n→∞min

w
(wT D̂nw − d̂Tn w) = min

w
(wTDw − dTw).

The same proof works for the upper endpoint.

2.4 Bootstrapping the procedure to get a smoother
estimate

Results from quadratic programming as described above
show that, as expected, Spin has a much reduced bias than
the empirical shortest intervals. This is because the above
procedure takes the shape of the empirical distribution into
account. However, the variance remains at the same magni-
tude as that of the empirical shortest interval (as we shall
see in the left panel in Fig. 10), because the optimal weights
derived from the empirical distribution are also subject to
the same level of variability as the empirical shortest inter-
vals. We can use the bootstrap Efron (1979) to smooth away
some of this noise and thus further reduce the variance in
the interval. Specifically, we bootstrap the original posterior
draws B times (in this study we set B=50) and calculate the
Spin optimal weights for each of the bootstrapped samples.
Here we treat the weights as general functions of the pos-
terior distribution under study rather than the endpoints of
HPD interval of the posterior samples. We then compute the
final weights as the average of the B sets of weights obtained
from the above procedure (Fig. 5).
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Fig. 5 Bootstrapping procedure to get more stable weights

2.5 Bounded distributions

As defined so far, our procedure necessarily yields an inter-
val within the range of the simulations. This is undesirable
if the distribution is bounded with the boundary included
in the HPD interval (as in the right graph in Fig. 1). To
allow boundary estimates, we augment our simulations with
a pseudo-datapoint (or two, if the distribution is known to
be bounded on both sides). For example, if a distribution is
defined on (0,∞), then we insert another datapoint at 0; if
the probability space is (0, 1), we insert additional points at
0 and 1.

2.6 Discrete and multimodal distributions

If a distribution is continuous and unimodal, the highest
posterior density region and shortest probability interval
coincide, at least for parameters or quantities of interest with
unimodal or approximately unimodal posteriors, so that a sin-
gle interval is itself a reasonable inferential summary. More
generally, the highest posterior density region can be formed
from disjoint intervals. For distributions with known bound-
ary of disjoint parts, Spin can be applied to different regions
separately and a HPD region can be assembled using the
derived disjoint intervals. When the nature of the underlying
true distribution is unknown and the sample size is small,
the inference of unimodality can be difficult. Therefore, in
this paper, we have focused on estimating the shortest prob-
ability interval, recognizing that, as with interval estimates
in general, our procedure is less relevant for multimodal dis-
tributions.

3 Results for simple theoretical examples

We conduct simulation studies to evaluate the performance
of our methods. We generate independent samples from the
normal, t(5), and gamma(3) distributions and construct 95 %
intervals using these samples. We consider sample sizes of
100, 300, 500, 1000, and 2000. For each setup, we generate
20,000 independent replicates and use these to compute root
mean squared errors (RMSEs) for upper and lower endpoints.
We also construct empirical shortest intervals as defined in

(2), parametric intervals and central intervals for compari-
son. For parametric intervals, we calculate the sample mean
and standard deviation. For the normal distribution, the inter-
val takes the form of mean ± 1.96 sd (for the t distribution,
we also implement the same form as “Gaussian approxima-
tion” for comparison); for the gamma, we use the mean and
standard deviation to estimate its parameters first, and then
numerically obtain the HPD interval using the resulted den-
sity with the two estimates plugged in. The empirical 95 %
central interval is defined as the 2.5th and 97.5th % per-
centiles of the sampled data points. We also use our methods
to construct optimal central intervals (see Sect. 6) for the two
symmetric distributions.

Figure 6 shows the intervals constructed for the standard
normal distribution and the t(5) distribution based on 500
simulation draws. The empirical shortest intervals tend to
be too short in both cases, while Spins have better end-
point estimates. Empirical central intervals are more stable
than empirical shortest intervals, and Spins have comparable
RMSE for N(0, 1) and smaller RMSE for t(5). Our methods
can further improve RMSE based on the empirical central
intervals as shown in the “central (QP)” row in Fig. 6. The
RMSE is the smallest if one specifies the correct parametric
distribution and uses that information to construct interval
estimates, while in practice the underlying distribution is
usually not totally known, and misspecifying it can result
in far-off intervals (the right bottom panel in Fig. 6).

Figure 7 shows the empirical shortest, Spin, and paramet-
ric intervals constructed from 500 samples of the gamma
distribution with shape parameter 3. Spin gets more accurate
endpoint estimates than empirical shortest intervals. Specif-
ically, for the lower end where the density is relatively high,
Spin estimates are less variable, and for the upper end at the
tail of the density, Spin shows a smaller bias. Again, the low-
est RMSE comes from taking advantage of the parametric
form of the posterior distribution, which is rarely practical in
real MCMC applications. Hence, the RMSE using the para-
metric form represents a rough lower bound on the Monte
Carlo error in any HPD computed from simulations.

Figure 8 shows the intervals constructed for MCMC nor-
mal samples. Specifically, the Gibbs sampler is used to draw
samples from a standard bivariate normal distribution with
correlation 0.9. We use this example to explore how Spin
works on simulations with high autocorrelation. Two chains
each with 1000 samples are drawn with Gibbs sampling. For
one variable, every ten draws are recorded for Spin construc-
tion, resulting in 200 samples, which is roughly the level of
the effective sample size in this case. This is a typical scenario
in practice when MCMC techniques are adopted for mul-
tivariate distributions. Again Spin greatly outperforms the
empirical shortest interval in case of highly correlated draws.

We further investigate coverage probabilities of the differ-
ent intervals constructed (Fig. 9). Empirical shortest intervals
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Fig. 6 Spin for symmetric
distributions: 95 % intervals for
the normal and t(5)
distributions, in each case based
on 500 independent draws. Each
horizontal bar represents an
interval from one simulation.
The histograms of the lower
ends and the upper ends are
based on results from 20,000
simulations. The dotted vertical
lines represent the true
endpoints of the HPD intervals.
Spin greatly outperforms the
raw empirical shortest interval.
The central interval (and its
quadratic programming
improvement) does even better
for the Gaussian but is worse for
the t(5) and in any case does not
generalize to asymmetric
distributions. The intervals
estimated by fitting a Gaussian
distribution do the best for the
normal model but are disastrous
when the model is wrong

N(0,1)

empirical shortest

Spin

empirical central

central (QP)

Gaussian
 approximation

lower end upper end lower end upper end

RMSE(ub) =  0.162RMSE(lb) =  0.163

RMSE(ub) =  0.117RMSE(lb) =  0.118

RMSE(ub) =  0.118RMSE(lb) =  0.118

RMSE(ub) =  0.113RMSE(lb) =  0.112

-3 -2 -1 0 1 2 3

RMSE(ub) =  0.077RMSE(lb) =  0.076

t(5)
RMSE(ub) =  0.271RMSE(lb) =  0.272

RMSE(ub) =  0.213RMSE(lb) =  0.215

RMSE(ub) =  0.224RMSE(lb) =  0.227

RMSE(ub) =  0.22RMSE(lb) =  0.224

-6 -4 -2 0 2 4 6

RMSE(ub) =  0.771RMSE(lb) =  0.771

have the lowest coverage probability, which is as expected
since they are biased toward shorter intervals (see Figs. 6,
7). Coverage probabilities of Spin are closer to the nominal
coverage (95 %) for both normal and gamma distributions.
Comparable coverage is observed for central intervals. As
expected, parametric intervals represent a gold standard and
have the most accurate coverage.

Figure 10 shows the bias–variance decomposition of dif-
ferent interval estimates for normal and gamma distributions
under sample sizes 100, 300, 500, 1000, and 2000. We
average lower and upper ends for the normal case due to
symmetry. For both distributions, Spin has bothwell-reduced
variance and bias compared to the empirical shortest inter-
vals. The upper end estimates of empirical central intervals
for the gamma have a large variance since the corresponding
density is low so the observed simulations in this region are
more variable. It is worth pointing out that the computational
time for Spin is negligible compared to sampling, thus it is a
more efficient way to obtain improved interval estimates. In
the normal example shown in the left panel in Fig. 10, rather
than increasing the sample size from 300 to 500 to reduce
error, one can spend less time to compute Spin with the 300
samples and get a even better interval.

We also carried out experiments with even bigger sam-
ples and intervals of other coverages (90 and 50 %), and got
similar results. Spin beats the empirical shortest interval in
RMSE (which makes sense, given that Spin is optimizing
over a class of estimators that includes the empirical shortest
as a special case).

4 Results for two real-data examples

In this section,we apply ourmethods to two applied examples
of hierarchical Bayesianmodels, one from education and one
from sociology. In the first example, we show the advantages
of Spin over central and empirical shortest intervals; in the
second example, we demonstrate the routine use of Spin to
summarize posterior inferences.

Our first example is a Bayesian analysis from Rubin
(1981) of a hierarchical model of data from a set of exper-
iments performed on eight schools. The group-level scale
parameter (which corresponds to the between-school stan-
dard deviation of the underlying treatment effects) has a
posterior distribution that is asymmetric with a mode at zero
(as shown in the right panel of Fig. 1). Central probability
intervals for this scale parameter (as presented, for example,
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Gamma(3)

empirical shortest

Spin

parametric

lower end upper end

RMSE(ub) =  0.283RMSE(lb) =  0.135

RMSE(ub) =  0.257RMSE(lb) =  0.089
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Fig. 7 Spin for an asymmetric distribution. 95 % intervals for the
gamma distributions with shape parameter 3, as estimated from 500
independent draws. Each horizontal bar represents an interval from
one simulation. The histograms are based on results from 20,000 simu-
lations. The dotted vertical lines represent the true endpoints of theHPD
interval. Spin outperforms the empirical shortest interval. The interval
obtained from a parametric fit is even better but this approach cannot
be applied in general, rather, it represents an optimality bound for any
method

in the analysis of these data by Gelman et al. (1995)) are
unsatisfying in that they exclude a small segment near zero
where the posterior distribution is in fact largest. Figure 11
shows the 95 % empirical shortest intervals and Spin con-
structed from 500 draws. The results of empirical shortest
intervals for 8 schools are from including the zero point in
the simulations. Spin has smaller RMSE than both empirical
shortest and central intervals (Figs. 11, 12).

For our second example, we fit the social network model
of Zheng et al. (2006) using MCMC and construct 95 %
Spins for the overdispersion parameters based on 200 poste-
rior draws. The posterior is asymmetric and bounded below
at 1. Figure 13 is a partial replot of Fig. 4 from Zheng et al.
(2006) with Spins added. For this type of asymmetric pos-
terior, we prefer the estimated HPDs to the corresponding
central intervals asHPDsmore precisely capture the values of
the parameter that are supported by the posterior distribution.

5 Results for BUGS examples

In this section, we apply our methods to 60 examples from
BUGS Spiegelhalter et al. (2014). The 60 examples include
5398 parameters. For each parameter, 1000 MCMC samples

Fig. 8 Spin for MCMC
samples. 95 % intervals for
normal samples from Gibbs
sampler, in each case based on
200 draws. Each horizontal bar
represents an interval from one
simulation. The histograms are
based on results from 20,000
simulations. The dotted vertical
lines represent the true
endpoints of the HPD intervals.
Spin greatly outperforms the
raw empirical shortest interval.
The central interval (and its
quadratic programming
improvement) does even better.
Again the intervals estimated by
fitting a Gaussian distribution do
the best

empirical shortest

Spin

empirical central

central (QP)

Gaussian
 approximation

lower end upper end

RMSE(ub) =  0.317RMSE(lb) =  0.316

RMSE(ub) =  0.283RMSE(lb) =  0.282

RMSE(ub) =  0.26RMSE(lb) =  0.259

RMSE(ub) =  0.242RMSE(lb) =  0.242

-3 -2 -1 0 1 2 3

RMSE(ub) =  0.181RMSE(lb) =  0.181

Normal from Gibbs Sampler
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Fig. 9 Distribution of coverage
probabilities for Spin and other
95 % intervals calculated based
on 500 simulations for the
normal and gamma(3)
distributions
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Fig. 10 Bias–variance decomposition for 95 % intervals for normal
and gamma(3) examples, as a function of the number of simulation
draws. Because of the symmetry of the normal distribution, we aver-

aged its errors for upper and lower endpoints. Results fromSpinwithout
bootstrap are shown for normal for description purpose. (Color figure
online)

are drawn using Stan StanDevelopment Team:RStan (2014),
and upper and lower endpoints of empirical HPD and Spin
intervals are estimated. The above procedure is conducted
for 100 times and the Monte Carlo variance is calculated.
Since we do not know the true endpoints of the intervals, we
define the efficiency only based on variance as

Efficiency = Var (empirical shortest interval)
Var (Spin)

,

We compute the average computational efficiency for all the
parameters in each of the 60 models. Figure 14 shows the
efficiency of Spin against HPD intervals versus the average
computation time (in seconds per effective sample size). It
can be seen that almost all the examples result in efficiency
greater than 1. We investigate the example corresponding to
the lowest point. It turns out that many of the parameters in
this specific example are not from unimodal distributions,
under which cases, HPD is actually not reasonable.

6 Discussion

We have presented a novel optimal approach for constructing
reduced error shortest probability intervals (Spin). Simula-
tion studies and real-data examples show the advantage of
Spin over the empirical shortest interval. Another commonly
used interval estimate in Bayesian inference is the central
interval. For symmetric distributions, central intervals and
HPDs are the same; otherwise we agree with Box and Tiao
(1973) that the HPD is generally preferable to the central
interval as an inferential summary (Fig. 1). In our exam-
ples, we have found that for symmetric distributions Spin and
empirical central intervals have comparable RMSEs and cov-
erage probabilities (Figs. 6, 9, 10). Therefore, we recommend
Spin as a default procedure for computing HPD intervals
from simulations, as it is as computationally stable as the
central intervals which are currently standard in practice.

We set the bandwidth parameter b in (6) to
√
n, which

seems to work well for a variety of distributions. We also

123



818 Stat Comput (2015) 25:809–819

8 schools

lower end upper end

Spin

empirical shortest

RMSE(ub) =  0.946RMSE(lb) =  0.022

0 5 10 15 20

RMSE(ub) =  0.918RMSE(lb) =  0.018

Fig. 11 Spin for the group-level standard deviation parameter in the
eight schools example, as estimated from 500 independent draws from
the posterior distribution (which is the right density curve in Fig. 1, a
distribution that is constrained to be nonnegative and has a minimum
at zero). The histograms in this figure are based on results from 20,000
simulations. The dotted vertical lines represent the true endpoints of
the HPD interval as calculated numerically from the posterior density.
Spin does better than the empirical shortest interval, especially at the
left end, where its smoothing tends to (correctly) pull the lower bound
of the interval all the way to the boundary at 0

carried out sensitivity analysis by varying b and found that
largeb tends to result inmore stable endpoint estimateswhere
the density is relatively high but can lead to noisy estimates
where the density is low. This makes sense: in low-density
regions, adding more points to the weighted average may
introduce noise instead of true signals. Based on our experi-
ments, we believe the default value b = √

n is a safe general
choice.

Our approach can be considered more generally as a
method of using weighted averages of order statistics to con-
struct optimal interval estimates. One can replace Q("∗) in
(5) by the endpoints of any reasonable empirical interval esti-
mates, and obtain improved intervals by using our quadratic
programming strategy (such as the improved central intervals
shown in Fig. 6).

One concern that arises is the computational cost of per-
forming Spin itself. Our simulations show Spin intervals to
have better simulation coverage and appreciably lower mean
squared error compared to the empirical HPD, but for simple
problems inwhich one can quickly draw direct posterior sim-
ulations, it could be simpler to forget Spin and instead just
double the size of the posterior sample. Many times, though,
we find ourselves computing Bayesian models using elabo-
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Fig. 12 Bias–variance decomposition for 95 % intervals for the eight
school example, as a function of the number of simulation draws
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Fig. 13 95 % central intervals (black lines) and Spins (red lines) for
the overdispersion parameters in the “How many X’s do you know?”
study. The parameter in each row is a measure of the social clustering
of a certain group in the general population: groups of people identified
by first names have low overdispersion and are close to randomly dis-
tributed in the social network, whereas categories such as airline pilots
or American Indians are more overdispersed (that is, non-randomly dis-
tributed). We prefer the Spins as providing better summaries of these
highly skewedposterior distributions.However, the differences between
central intervals and Spins are not large; our real point here is not that
the Spins are much better but that they will work just fine in routine
applied Bayesian practice, satisfying the same needs as were served by
central intervals but without that annoying behavior when distributions
are highly asymmetric. (Color figure online)

rate Markov chain simulations for which it can take many
steps of the algorithm, or for which each step is computa-
tionally expensive (for example, in models with differential
equation solvers), so that hours or even days of computing
time are required to obtain an effective sample size of a few
hundred posterior simulation draws. In such cases, the com-
putational cost of Spin is relatively small. Thus, we think

123



Stat Comput (2015) 25:809–819 819

Fig. 14 Computational efficiency (ratio of Monte Carlo variances in
repeated simulations) of Spin compared to empirical HPD intervals,
plotted versus average computation time (in seconds per effective sam-
ple size), for each of 60 BUGS examples. Spin outperforms empirical
HPD intervals in almost all the cases, typically with computational effi-
ciency around 1.7. The one point at the bottom of the graph comes from
a model which has many parameters with bimodal posterior distribu-
tions, in which case the highest posterior density interval can be difficult
to interpret in any case

Spinmakes sense as a default option for posterior summaries,
especially with simulations that are costly.

We have demonstrated that our Spin procedure works well
in a range of theoretical and applied problems, that it is sim-
ulation consistent, computationally feasible, addresses the
boundary problem, and is optimal within a certain class of
procedures that include the empirical shortest interval as a
special case. We do not claim, however, that the procedure is
optimal in any universal sense.We see the key contribution of
the present paper as developing a practical procedure to com-
pute shortest probability intervals from simulation in a way

that is superior to the naive approach and is competitive (in
terms of simulation variability) with central probability inter-
vals. Now that Spin can be computed routinely, we anticipate
further research improvements on posterior summaries.
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