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We present several classroom demonstrations, based on well-known statistical
ideas, that have sparked student involvement in our introductory undergraduate
courses in probability and statistics.

Most statistics courses at the college (or high school) level, whether con-
ducted in departments of statistics, mathematics, psychology, or elsewhere, are
taken as a requirement by students who, unfortunately, often have little interest
in the subject. There are several excellent textbooks at this level, and lecture
time is often used to present examples—including realistic applications of
statistics and also simplified examples to clarify the key issues that are covered
in the text and homeworks. We have found that the simplified examples can be
effectively taught by involving students in participatory demonstrations, rather
than the instructor merely lecturing at the blackboard. For a student who is not
convinced of the relevance of mathematics, it is useful to see the statistical data
or probability distribution actually constructed (rather than simply seeing the
blackboard analysis of previously-gathered data). At this point, when counterin-
tuitive results appear, the students are motivated to learn the methods of prob-
ability and statistics that can be used to explain real-world variation (see, e.g.,
Cobb, 1992; Hogg, 1992).

Here, we present several demonstrations, all based on well-known statistical
concepts, that we and our students have found thought-provoking. They are most
effective for relatively small classes (fewer than 60 students); with a large
lecture course, some of the demonstrations can be done in the discussion
sections. The purpose of this article is to create a convenient resource for
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instructors of introductory probability and statistics by collecting many demon-
strations in one place, focusing on the techniques used to involve students as
active participants. Table 1 lists the demonstrations, the concepts they are
intended to convey, and the additional materials they require. Where possible,
we give references to earlier descriptions of these demonstrations, but we
recognize that many of them have been used by teachers long before they
appeared in any of these cited publications. The Appendix discusses how our
demonstrations fit into a typical one-semester introductory course. The outline
of this course is not specifically tied to educational and behavioral studies, but it
is typical of courses taught for these audiences.

We emphasize that these demonstrations are intended to involve students in
traditional lecture material and are not intended as a substitute for more detailed
student-involved investigations, for which we refer the reader to the statistics
teaching journals and books such as Rossman and Van Oehsen (1997) and
Scheaffer, Gnanadesikan, Watkins, and Witmer (1996).

Some of the demonstrations require random numbers. Near the beginning of
the term, each student in the class is given a 20-sided die on which each of the
digits from 0 to 9 is written twice. (These dice can be bought in a game store for
about 40 cents each.) Rolling the die once gives a random digit, and rolling the
die five times and taking the sum gives a random variable which, as we derive in
class, has mean 22.5 and standard deviation \/41.25 = 6.42, and is approxi-
mately normally distributed (as is apparent from a histogram of the probability
distribution). The students are required to bring their dice to class. They are also
required to bring calculators to class. We have found that creating random
numbers in this way is more compelling to students than looking up in a random
number table and is a convenient way to simulate a different random number for
each student in the class.

First Day of Class: Guessing Ages

In addition to introducing the concepts of probability and statistics, and giving
an overview of what the students will learn during the term, we include two
class-participation demonstrations in the first lecture. We start with an adapta-
tion of a demonstration we found in Charlton and Williamson (1996, p. 76).
Before the class, we obtain 10 photographs of persons whose ages we know but
will not be known by the students (for example, friends, relatives, or non-
celebrities from newspapers or magazines) and tape each photo onto an index
card. We number the cards from 1 to 10 and record the ages on a separate piece
of paper.

As the students are arriving for the first class, we divide them into 10 groups,
labeled as A through J, arranged in a circuit around the room. We pass out one
card to each group and ask the students in each group to estimate the age of the
person in their photograph and to write down that guess along with the number
on the card. Each group must come up with a single estimate, which forces the
students to discuss the estimation problem and also to get to know each other.
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TABLE 1
Concepts that are intended to be conveyed and additional materials required to conduct
the demonstrations

Demonstration Concepts covered Additional materials

Guessing ages data collection, uncertainty, 10 cards with photographs
bias, variance,
experimental design

Estimating a big number approximation, numeracy  Value of an uncertain

quantity
How large is your family? sampling bias none
Lie detectors conditional probability 20-sided dice for all students
Shooting baskets comparison of proportions, 10 tennis balls, 2 trash cans
power, small-sample
variation

An experiment that looks  anchoring, experimentation, Survey forms for all students
like a survey blindness, comparison of
means, skewness

Real vs. fake coin flips randomness, sampling Handouts of Figures 2
distributions, hypothesis
testing

Multiple comparisons statistical significance 20-sided dice for all students

A coincidence? statistical significance, “Invisible deck” card trick
hypothesis testing

Coverage of confidence confidence coverage, Hat, slips of paper for all

intervals sampling students, inflatable globe

We then explain that each group will be estimating the ages of all 10 photo-
graphed persons, and that the groups are competing to get the lowest error. Each
group passes its card to the group to its right, then estimates the age on the new
photo, and this is continued until each group has seen all the cards, which takes
about 20 minutes. We then go to the blackboard and set up a two-way table with
rows indicating cards and columns indicating groups. We have a brief discussion
of the expected accuracy of guesses (students typically think they can guess to
within about 5 years) and then, starting with card 1, we ask each group to give
its guess, then reveal the true age and write it at the right margin of the first row
of the table. We do the same for cards 2 and 3. At this point, there is often some
surprise because the ages of some photos are particularly hard to guess (for
example, we have a photo of a 35-year-old woman who is typically guessed to
be about 25 years old). We discuss the concept of error (guesses age minus
actual age) and replace the guessed ages in the first three rows of the table by the
errors. For each of the remaining cards, we simply begin by writing the true age
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at the right margin, then for each element in that row of the table we write the
error of the guess for each group.

When the results for all 10 cards are available, we ask the students in each
group to compute the average absolute error of their guesses (typically some
students make a mistake and forget to take absolute values, which becomes clear
because they get an absurdly low average absolute error, such as 0.9). Typical
average absolute errors, for guessing ages ranging from 8 to 80, have been under
5.0. We have found that—possibly because of the personal nature of age-
guessing, and because everybody has some experience in this area—the students
enjoy this demonstration and take it seriously enough so that they get some idea
of uncertainty, empirical analysis, and data display.

The age-guessing demonstration is extremely rich in statistical ideas, and we
return to it repeatedly during the term. The concepts of bias and variance of
estimation are well illustrated by age guessing: we have found the variance of
guesses to be similar for all the photos, but the biases vary quite a bit, since
some people “look their age” and some do not (see, e.g., George & Hole, 1995,
for discussion and further references on this topic). Later in the course, impor-
tant points of experimental design can be discussed referring to issues such as
the choice of photographs, the order in which each group gets the cards,
randomization, and the practical constraints involved in running the experiment.
This is also an interesting example because, even though the experiment is
randomized, it does not yield unbiased estimates of ages. In addition, the data
from the study can be used as examples in linear regression, the analysis of
two-way tables, statistical significance, and so forth.

First Day of Class: Estimating a Big Number

For our second demonstration, we ask the class to guess how many school
buses operate in the United States. Some students will speak up and guess; we
then ask the students to pair up and for each pair to write a guess on a sheet of
paper. (Students typically work more systematically and give more reasonable
answers when they work in pairs or small groups.) As a motivation, we will give
a prize to the two pairs of students whose guesses are closest to the true value.
How can we check whether these guesses are reasonable and improve upon
them? We lead the class through a discussion: how many people are there in the
United States, how many children of school age, how many of them ride the bus,
how many students per bus, and so forth. The resulting estimate should have a
great deal of uncertainty, but it will probably be closer to the truth than most of
the original guesses, as well as focusing our attention on what parts of the
problem we understand better than others, The students are learning numeracy
(see Paulos, 1988) and the propagation of uncertainty, which are important in
practical uses of statistics. Further discussion here can lead to additional statisti-
cal issues, including the reliability of data sources and the design of data
collection (how could we more accurately estimate the different factors in our
estimate?). We repeat the class-participation exercises a few times during the
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term using other uncertain quantities (for example, how many Smiths are listed
in the Oakland, CA, phone book?) when we have five minutes available at the
end of class. (Incidentally, there are about 360,000 school buses and 1620
Smiths.)

An Experiment That Looks Like a Survey

At the point during the term when we are discussing designs of surveys and
experiments, we hand out a folded survey form to each student in the class. We
ask the students to read the forms, answer the questions independently (not
discussing with their neighbors), and then fold them back up and return them to
the instructor. On each form is printed the following:

We chose (by computer) a random number between 0 and 100. The number
selected and assigned to you is X =

1. Do you think the percentage of countries in the United Nations that are in
Africa is higher or lower than X?

2. Give your best estimate of the percentage of countries in the United
Nations that are in Africa.

A number between 0 and 100 is hand-written on the . In fact, the number
is not chosen at random between 0 and 100; rather, “10” is written on half the
forms and “65” is written on the other half, and the forms are shuffled before
handing them out to the students.

After the students have answered the questions and returned the forms, we
explain to the students that only two values of X were actually assigned’ and that
we were interested in finding the relation between X and the students’ responses
on the second question. We then ask the students what kind of data collection
was happening: survey, experiment, or observational study. In statistical termi-
nology, the units are the students, the treatments are the hand-written values of X
(10 or 65), and the outcome of interest is the response to the second question.
This is adapted from an experiment described in Kahneman and Tversky (1974),
who report that the median responses to the second question are 25 and 45,
given X = 10 and 65, respectively. This is described as an example of the
“anchoring heuristic,” in which an estimate of an unknown quantity is influ-
enced by a previously-supplied starting point. In this example, the value of X
should not effect the outcome (after all, the students were told that X was
randomly generated), yet it does! This is a good point to discuss the principles of
randomization and blindness in experimentation, now that the students have had
it done to them. Incidentally, the actual value of the unknown quantity is
irrelevant for this example—all that we are studying is the differences in
responses between the two groups of students.

In performing this example in our classes, we have replicated the anchoring
effect, although its magnitude has not been so dramatic as found by Kahneman
and Tversky; for example, histograms of responses for a class of 43 students are
given in Figure 1. When the data have been collected, the two groups can
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FIGURE 1. Responses of students in a small introductory probability and statistics
class to the question, “Give your best estimate of the percentage of countries in the
United Nations that are in Africa.” The students were previously asked to compare this
percentage with a specified value X; histogram (a) displays responses for students given
X = 65, and histogram (b) displays responses for students given X = 10. The students
were told that the value of X was chosen at random, and yet it has an effect (on average)
on their responses. Similar results were obtained when the experiment was repeated in
other classes. Adapted from an experiment described in Kahneman and Tversky (1974).

immediately be compared graphically using histograms; typically, as in Figure 1,
the histograms overlap considerably but clearly differ. The dataset can be used
throughout the course to illustrate various points of statistics, including the mean
and median in skewed distributions, methods of testing the statistical signifi-
cance of observed differences between groups, and the distinction between
practical and statistical significance. With classes of about 50 students, we have

89



Gelman and Glickman

found the anchoring effect in this experiment to be on the border of statistical
significance as measured by a ¢ test.

Other examples in which an experiment is embedded in a survey include
studies of question wording, question ordering, and other causes of survey
response bias; see Scheaffer et al. (1996, pp. 284-288), for a related classroom
demonstration. In addition, the experiment given here could be complexified by
randomly ordering the options “higher” and “lower” in the first question of the
survey, thus giving two factors and four possible experimental conditions.

How Large is Your Family?

The following demonstration helps teach principles of survey sampling. Each
student is asked to tell how many children are in his or her family (that is, the
number of brothers and sisters in your family, including yourself). We write the
results on the blackboard as a frequency table and a histogram, and then
compute the mean, which is typically around 3. We tell the students that the
average number of children in families that were having children 20 years ago
(about the age of the students in the class) was about 2.0. Why is the number for
this class so high? Students give various suggestions such as, perhaps larger
families are more likely to send children to college. After some discussion, a
student notes that if the family had zero children, they certainly did not send any
to college. The 2.0 figure is the average number of children when sampling by
Samily; 3.0 is the average number of children when sampling by child. When
sampling by child, a family with n children is n times more likely to be sampled
than a family with 1 child. This illustrates the general point that it is not enough
to say you sampled at random; you must also know the sampling units. It can
also be considered as an example of sampling bias. At this point, we can get the
students further involved by asking the question, how can data be gathered to
estimate the average number of children per household? In discussing the
problem, students can consider the relative difficulties of correcting the data on
students for sampling bias, compared to the direct approach of sampling fami-
lies. The former approach is tricky because it still requires some estimate of the
proportion of families with zero children. The students also have to realize that,
for either approach, a careful definition of “family” is required. This example is
discussed in more detail by Madsen (1981).

Related issued arise in telephone sampling, when you call a telephone number
at random and then pick a person at random in that household to interview: Is a
person with many phone lines more or less likely to be sampled than a person
with one line? Is a person with many roommates more or less likely to be
sampled than a person living alone (see Gelman & Little, 1998)? Another area in
which size-biased sampling can occur is clinical psychiatry; see Cohen and
Cohen (1984) for an interesting and accessible discussion.
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Lie Detectors and Conditional Probability

In teaching conditional probability, we embed a well-known example in a
dramatic setting to get students directly involved with the problem. The scenario
is as follows. Through accounting procedures, it is known that about 10% of the
employees of a store are stealing. We pick two students to play the role of
“managers,” and the other students in the class are the “employees.” The
managers would like to fire the thieves, but their only tool in distinguishing
them from the honest employees is a lie detector test that is 80% accurate: if an
employee is a thief, he or she will fail the test with probability 0.8, and if an
employee is not a thief, he or she will pass the test with probability 0.8.

To simulate these conditions, each employee rolls a die on which are written
the digits from O to 9. If the die roll is in the range 1-9, the employee is honest;
if it comes up “0,” he or she is a thief. In either case, however, the employee
does not reveal this outcome to anyone else. Instead, he or she rolls the die again
to determine the outcome of the lie detector test. If the die roll is in the range
2-9, the lie detector gives the correct answer (“pass” for an honest employee,
“fail” for a thief); if it comes up “0” or “1,” the lie detector gives the wrong
answer and records “fail” for an honest employee and “pass” for a thief. The
employees who have failed the lie detector test are asked to raise their hands.
For example, in a class of 50 students, one would expect about 50 x 0.26 = 13
students to raise their hands.

The managers are then asked, “How many of those employees do you think
are thieves?” A typical response is that about 80% of those who failed the lie
detector test are thieves. The students who have raised their hands are now asked
to tell their true status—honest or thief—and, in fact, it generally turns out that
most are honest! The mistake made by the managers is the well-known fallacy
of reversing the conditional probability (assuming Pr[A|B] = Pr[B|A]), which is
also explained in terms of neglecting the base rate (Tversky & Kahneman,
1982).

We then explain the correct reasoning by drawing a probability tree that has
branches indicating “honest” or “thief,” each of which has branches indicating
“pass” or “fail.” The total probability of “fail” is (0.1)(0.8) + (0.9)(0.2) = 0.26,
and the conditional probability of “thief,” given “fail,” is Pr(“thief”|“fail”) =
Pr(“thief” and “fail”)/Pr(“fail”) = 0.08/0.26 = 0.31: if you fail the test, there is
only a 31% probability that you are a thief. We also explain by expressing the
possible outcomes of the die rolls as a 10 x 10 table with the row and columns
indicating the results of the first and second die rolls, respectively. The top row
of the table corresponds to the thieves, and the left two columns correspond to
the lie detector giving the wrong answer. It is clear that there are 18 ways to be
honest and fail the lie detector test, but only 8 ways to be a thief and fail.

Another example of this phenomenon of a high false-positive rate, in medical
testing, has been recommended in statistics teaching (see Moore, 1990, pp.
123-124); whatever the context, we recommend that the student-participation
version precede formal presentation of tree diagrams and conditional probability.
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Real Versus Fake Coin Flips

Students often have difficulty thinking about summary statistics as random
variables with probability distributions. This demonstration, which also alerts
students to misconceptions about randomness, nicely motivates the concept of
the sampling distribution.

As discussed by Kahneman and Tversky (1974), people generally believe that
a sequence of coin flips should have a haphazard pattern, including frequent (but
not regular) alternations between heads and tails. In fact, it is quite common for
long runs of heads and tails to appear in sequences of random coin flips.

The demonstration, which is an adaptation of idea suggested to us by Prof.
Philip Stark (see also Gnanadesikan, Scheaffer, Watkins, & Witmer, 1997,
Revesz, 1978, and Schilling, 1990), proceeds as follows. We pick two students
to be “judges” and one to be the “recorder” and divide the others in the class into
two groups. One group is instructed to flip a coin 100 times, or flip 10 coins 10
times each, or follow some similarly defined protocol, and then to write the
results, in order, on a sheet of paper, writing heads as “1” and tails as “0”
(because “H” and “T” look similar and can be confused when reading them off a
sheet of paper). The second group is instructed to create a sequence of 100 “0”’s
and “1”’s that are intended to look like the result of coin flips—but they are to do
this without flipping any coins or using any randomization device (or consulting
with the other group of students)—and to write this sequence on a sheet of
paper. The recorder is instructed to copy these sequences onto two blackboards.
We announce that the instructor and the judges will leave the room for five
minutes while the students create their sequences, and then we will return and
try to guess which sequence is from actual coin flips and which was made up.

We return to the room, examine the sequences written on the two blackboards,
and ask the judges to guess which sequence is real. We then identify the
sequence of real coin flips; invariably the identification is correct, and the
students are impressed. How did we do it? Well, even as the sequences are being
written on the blackboard, the students notice a difference: the sequence of fake
coin flips looks “random” in an orderly sort of way, with frequent switches
between 0’s and 1’s, whereas the sequence of real coin flips has a “streaky” look
to it, with one or more long runs of successive 0’s or 1’s. (Revesz, 1978,
suggests distinguishing between real and fake sequences using a formal rule
based on the longest run length, but we find that we can make the distinction
more effectively based on a visual inspection of the sequences, which implicitly
takes into account much more information.)

We picked out the real sequence using our experience and knowledge of coin
flips. How can this reasoning be formalized? For each of the two sequences on
the blackboards, we count the number of runs (sequences of 0’s and 1’s) and the
length of the longest run. We then hand out copies of Figure 2, which shows the
sampling distributions of these two statistics, as simulated from 2000 indepen-
dent computer simulations of 100 coin flips. The students are instructed to
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FIGURE 2. Length of longest run (sequence of successive heads or successive tails)
versus number of runs (sequences of heads or tails) in each of 2000 independent
simulations of 100 coin flips. Each dot on the graph represents a sequence of 100 coin
flips; the points are jittered so they do not overlap. When plotted on this graph, the results
from an actual sequence of 100 coin flips will most likely fall on a square with a large
number of dots. In contrast, a sequence of heads and tails that is artificially created to
look “random” will probably have too many runs that are not long enough, and hence
will fall on the lower right of this graph.

circle on the scatterplot the locations of the values for the sequences on the
blackboard. All the times we have used this example in class, the sequence of
real coin flips is near the center of the scatterplot, and the sequence of fake coin
flips has too many runs and too short a longest run, compared to this distribu-
tion.

In addition to its “magic trick” aspect, this demonstration is appealing because
it dramatically illustrates an important point for the interpretation of data:
seemingly surprising patterns (long sequences of heads or tails) can occur
entirely at random, with no external cause. Long runs in real coin-flip data
surprise students because they expect that any part of a random sequence will
itself look “random”—that is, typical of the whole. This can be the starting point
of a discussion of the general phenomenon that small samples can be unrepre-
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sentative of a population. Familiar examples include biological data (for ex-
ample, a family can have several boys or girls in a row) and sports (a basketball
player can have “hot” and “cold” streaks that are consistent with random
fluctuation; see Gilovich, Vallone, & Tversky, 1985).

A Coincidence?

We have found a rigged guessing game similar to those described in Eckert
(1994) and Maxwell (1994) to be useful for illustrating the underlying principles
of classical hypothesis testing. The general idea is to have a student guess a
low-probability event and then, through a faked randomization process, find that
the guess is indeed correct. The resulting surprise, followed by skepticism, of the
class leads to an exploration of hypotheses testing and p-values.

Maxwell (1994) presents a demonstration based on a student’s correctly
guessing a series of coin flips (reminiscent of the opening scene of Stoppard,
1967). We have had success using the “Invisible Deck,” a card trick that can be
bought from most magic suppliers for $5-$10 and is fairly simple to perform
with a little practice.

We tell the class that before leaving the office, we chose a card at random,
turned it upside down, and replaced it back in the deck. We then select a student
at random. It is essential that it is clear the student was selected randomly (for
example by choosing the student with highest “IQ” from the previous demon-
stration).

The student is asked to guess the hidden card and write the guess on the
blackboard. We then fan the special deck of cards showing that there is a single
card that is face down while the rest of the cards are face up. We remove the
card without showing its face and attach it to the blackboard with a piece of
masking tape. Up to this point, the students think that we have simply removed
the card that we turned face down before coming to class, when, in actuality, we
have used the trick to remove the card named by the student.

Suppose the student named the Jack of Spades. We remind the class that
because the student had no knowledge of the card we reversed before coming to
class, the probability that the face-down card is the Jack of Spades is 1/52. We
then ask the students if they would be nonetheless surprised that the face-down
card was the same color as the Jack of Spades, that is, black. After the class says
no, we ask them to explain why they think it would not be surprising. Depending
on the responses, we usually clarify that there is a 1/2 probability that the card
would be black, assuming the student naming the Jack of Spades had no
previous knowledge of the card, and that nothing else “strange” was going on.
We then ask if it would be surprising that the face-down card had the same suit
(Spades). Students agree that this would not be too surprising, but certainly more
surprising than if it were merely black. What if the card were a Jack? This would
be even more surprising. At this point, we begin to arouse suspicion that a
surprising event is about to happen. We finally ask what if the card was the Jack
of Spades. This would be very surprising, indeed. We remind the class that if the
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card actually were the Jack of Spades, then they would have a choice of two
conclusions. Either a very unlikely event occurred, namely one with a probabil-
ity of 1/52, or our original assumption (that the process of the student naming
any card and our reversing a card before coming to class were unrelated) was
wrong. After a dramatic pause, we pull the taped card off the board to reveal the
Jack of Spades. We then admit this demonstration was a card trick, though the
students were well aware of this fact by the middle of the demonstration. The
card trick is then followed by a more formal discussion of hypotheses testing.

We find the demonstration useful in motivating students to think about
concepts of hypothesis testing, particularly at a foundational level. One reason is
that the exercise involves a null hypothesis that appears undeniably true, and
that it may be difficult to imagine how the alternative hypothesis could be
correct. This emphasizes the asymmetry of the hypothesis testing framework in
which we would not abandon the null hypothesis unless provided with strong
evidence to the contrary. In addition, students have let us know in their com-
ments that they find the consideration of several null hypotheses easier to grasp
in the context of a classroom demonstration than in a textbook presentation.

Coverage of Confidence Intervals

At the beginning of the lecture, the students are given identical slips of paper;
they are told to write their weights (in pounds) on their slips and put them in a
hat that is passed around the room. When the hat is filled, it is then passed
around again. Each student is told to mix up the slips in the hat, pick out four
slips at random, write down the numbers, put the slips back in the hat, and pass
the hat to the next student. The student should then use the four numbers to
create a 90% confidence interval for the average weight of all the students in the
class (with a sample size of only 4, the r interval may be only a rough
approximation, but at least the students can do their computations fairly
quickly). This can be all done while the lecture is proceeding. When all the
students are done, they go up to the board one at a time and plot their confidence
intervals on an axis (as horizontal segments, stacked vertically). Approximately
90% of these should contain the true value, which is . . . (the teaching assistant
quickly computes the mean of all the numbers in the hat), which we can draw as
a vertical line on the blackboard display. The students should realize that the
exact number of intervals that contain the true value should follow the binomial
distribution. This demonstration dramatizes the fact that the confidence interval
is itself a random quantity, subject to sampling variability. It is often recom-
mended in statistics teaching to use stacked intervals to picture the sampling
distribution of a confidence interval (see, e.g., Moore, 1990, pp. 130-131); we
find the display particularly compelling when the sampling distribution is cre-
ated by the students themselves.

The instructor can of course replace “weight” by the response to some more
controversial question about which the students might be particularly curious.
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An alternative form of this demonstration uses an idea that was told to us by
Lisa Sullivan (see also Burrill & Cobb, 1994, and Johnson, 1997), which can be
used for several purposes depending on its presentation—for example, as an
application of the Law of Large Numbers or, as we describe here, to illustrate
confidence coverage. We ask the class how they might estimate the proportion
of the earth covered by water. After several responses, we bring out an inflatable
globe. If we were to take a random sample of points on the globe, then the
proportion of the points that touched water would be a reasonable estimate of the
overall proportion of water covering the earth. Better yet, we can use a confi-
dence interval to provide an interval estimate of the overall proportion. We
explain that the globe will be tossed around the class, and instruct students to hit
the globe with the tip of their index finger when it comes to them. When they
do, they are to shout “water!” if their finger touched water, or “land!” if their
finger touched land. After the class starts to tire of volleyball, we can use the
results to construct a 90% confidence interval for the proportion. A discussion
can follow this demonstration about the interpretation of the interval, and about
possible biases in the sampling procedure (what are we assuming about consecu-
tive hits of the globe, the weighting of the globe, and so forth), leading to a
formal connection with Bernoulli trials, independence, and the applicability of
the binomial distribution in practical problems.

Shooting Baskets and Statistical Power

We introduce the comparison of proportions with the following demonstra-
tion. We ask for two volunteers: one student who considers herself good at
basketball shooting and one who considers herself a poor shot. They will take
twenty shots each, throwing a tennis ball into a trash can. We also pick two
students from the class to be “judges”; they will decide who is the better shooter.
We pull out a bag of ten tennis balls, set up two trash cans at opposite sides of
the room, and stand each shooter 13 feet away from a can. One shooter takes ten
shots, then the other takes ten, then they repeat. We keep score on the black-
board while the judges gather up the missed shots. The results for the two
shooters are compared; a typical outcome is 8/20 successes for one shooter and
9/20 for the other.

Do the judges conclude that the second shooter is better? Suppose the shots
are independent with probabilities of success p, and p,. The students are led to
constructing a confidence interval for (p; — p,). What do they conclude? Who
would they bet would make more shots in the next 20 tries? The next 200? If
Bayesian methods are being covered, the students can discuss how to use the
information that the students’ initial self-evaluations differed.

If, as typically happens, the difference between the success rates is not
statistically significant, this is a good time to introduce the idea of the statistical
power of an experiment. We ask the class how many tries would be necessary to
be likely to find a statistically significant result. 50? 100? 200? The class is led
through a power calculation, beginning with guesses of the true probabilities. It
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becomes clear that, even if the true difference is quite large, 20 is most likely too
small a sample to distinguish between the abilities of the two shooters?. This has
obvious consequences for experiments in other contexts (such as medical treat-
ments) as well as real-life conclusions that we draw from small samples.
Conversely, when discussing the possible results from very large samples, the
students can discover the distinction between statistical and practical signifi-
cance: with a huge sample size, even tiny differences can become statistically
significant.

Multiple Comparisons

In the general population, IQ is normally distributed with a mean of 100 and a
standard deviation of 15. We tell the students that we will determine their IQ’s.
But instead of giving each student a test—that would take a lot of time—we’ll
have each student roll dice to simulate a random draw from the distribution.
They know how to use five die rolls to simulate a draw from the normal
distribution with mean 22.5 and standard deviation 6.42 (see introduction); what
is the transformation required to get a mean of 100 and standard deviation of 15?
After some discussions, the students recognize that subtracting 22.5, multiplying
by 15/6.42, and adding 100 will do the trick. The students roll the dice and
compute their IQ’s. It might not be the right number for each student, but the
distribution is right. Now we do some comparisons. If we were to compare the
average IQ of men versus women in this group, would we find a difference?
Yes—the difference would almost certainly not be exactly zero. Would it be
statistically significant at the 5% level? After some discussion, the students
realize that if the experiment were performed many times, with the same number
of students, only 5% of the samples would have differences extreme enough to
be “statistically significant.” What about comparing freshman versus upperclass-
men? Front row versus back row? Same answer. We now ask the students with
IQ’s above 115 to hold up two hands, those between 85 and 115 to hold up one
hand, and those below 85 to hold up no hands. Given this information, we
construct a division of the class that has almost all the high-IQ students on one
side and almost all the low-IQ students on the other. It is important that the
divisions of the class be based on some external criteria such as position in class,
whether students wear glasses, hair color, etc. (for example, comparing men in
the front row to women in the back two rows). We get the 1Q’s for the two
groups and compare and, sure enough, the difference is statistically significant!
We can construct an amusing story to explain the difference (for example, the
smarter women sit in the back rows because they do not need to follow the
lectures carefully, etc.). But of course it is not real; the IQ’s were created by
rolling dice. We discuss the well-known implications of “data dredging” for
scientific studies. (For example, consider a drug company that is testing 1000
new treatments. Even if they all have no effect, 50 of them will appear to be
statistically significant at the 5% level. This is a motivation for formal multiple-
comparisons methods such as the Bonferroni procedure.)
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Conclusions

We have found student-participation demonstrations to be effective in drama-
tizing concepts that students often find difficult (for example, numeracy, condi-
tional probability, the difference between an experiment and a survey, statistical
and practical significance, the sampling distribution of confidence intervals).
Students are made aware that they and others are subject to cognitive illusions
(in the lie detector, anchoring, and coin-flipping examples); for more on this,
see, e.g., Kahneman et al. (1982) and Goldstein and Hogarth (1997). In addition,
the experiments that involve data-gathering illustrate general concerns of bias
and variance (in the age-guessing example) and also involve important practical
issues such as time trends (shooting baskets), displaying data (experiment on
anchoring, guessing exam scores), experimental protocol (age-guessing, the
“United Nations” survey/experiment), and the relation between models and data
(family size, sampling). One reason that we believe these demonstrations are
important is that the role-playing settings emphasize that statistics is, in reality, a
participatory process with many actors (typically, different people design a
study, collect data, are experimental subjects, analyze data, interpret results,
etc.). Finally, the demonstrations get all the students involved and help to create
an environment where students feel free to participate and ask questions in class.

Appendix

The Demonstrations in the Context of a One-Semester Statistics Course

The demonstrations in this paper are presented as separate modules so that the
reader can easily use any or all of them. In any given course, however, we want
to avoid the impression of statistics as a set of unrelated methods and examples.
This appendix illustrates how we intergrate our demonstrations and other teach-
ing material into a standard non-calculus-based thirteen-week one-semester in-
troductory course based on a textbook such as Moore and McCabe (1998). For
each week, we outline the course material and the relevant demonstrations.

1. Introduction; data in one dimension (guessing ages; estimating a big
number)

2. Data in two dimensions: scatterplots and least-squares

3. Data in two dimensions: log transformations (discussion of estimating a big
number)

4. Data in two and three dimensions: correlation and categorical data

5. Causal inference and experiments (an experiment that looks like a survey)

6. Sampling; statistical inference; bias and variance (how large is your family;
also, discussion of the data from guessing ages)

7. Probability trees and conditional probability (lie detectors)

8. Random variables in one and two dimensions

9. Sums of random variables; binomial distribution

10. Confidence intervals and significance tests (real versus fake coin flips; a
coincidence)
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11. The ¢ distribution; applications to surveys and experiments (coverage of
confidence intervals)

12. Inference for proportions and simple linear regression (shooting baskets)

13. Statistical communication: how to lie and tell the truth with statistics
(multiple comparisons)

During the weeks in which none of the demonstrations in this article is sched-
uled, we set aside some class time for students to work together on problems in
small groups (see, e.g., Magel, 1998). Whenever possible, we motivate and
introduce the topics through examples that involve the students, and then we
develop the relevant statistical methods. In addition, in later lectures, we often
refer back to the demonstrations as well as to other data-collection exercises
from students’ exams (see Gelman, 1997).

Notes

'If the experiment were actually performed with random numbers, the analysis would
be somewhat more complicated, because there would then be a continuous range of
possible treatments. '

2For example, if the true probabilities of success of the two students are 0.4 and 0.5,
and each student shoots 100 baskets, then the standard deviation of the observed differ-
ence in proportions is \/ (0.4)(0.6)/100+(0.5)(0.5)/100 = 0.071, so that the true differ-
ence is still less than two standard errors away from zero.
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