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Comment

This article is admirable in that it presents a general
framework that allows the user to focus on the pharmacoki-
netic modeling rather than on the computational and statis-
tical details of estimation. The authors set up a seemirgly
reasonable model and obtain a good fit to the pain-relief
data with plausible parameter values, while accounting for
the kind of complications that typically arise in clinical tri-
als. We would like to focus on the following features of this
work: (1) analysis of the missing data (dropouts), (2) the
pharmacokinetic model, (3) checking the fit of the model,
(4) modeling and display of individual variation, and (5)
extrapolation to other dosing strategies.

1. ANALYSIS OF THE DROPOUTS

Although the analysis of dropouts appears to be a major
complication in the analysis, and is certainly a problem of
general interest in this field (see, e.g., Ten Have, Pulkstenis,
Kunselman, and Landis 1997), it is, we believe, a minor con-
cern in this particular example. As noted in the article, the
pain-relief level just preceding dropout was 0 (no pain re-
lief) in nearly all of the cases. Considering the design of the
study (with dropouts allowed to switch to an effective anal-
gesic), it seems reasonable to impute pain-relief scores of 0
for the responses that were unobserved because of dropout.
Our Figure 1 shows the aggregate results for the completed
dataset (including both observed and imputed responses). In
addition to the imputation, we have altered Figure 1 of the
article by separating the “dose = 0” respondents into three
groups corresponding to the three different experiments. We
believe that our Figure 1, with imputations included, gives
a more direct picture of the pain-relief results of the exper-
iment without being contaminated by the dropout behavior.
For example, the diminishing of pain relief at later times is
clear.

Because of the simplicity of the dropout behavior in this
experiment (i.e., essentially all of the unobserved pain relief
measurements can be assumed to be 0), we expect that fit-
ting the pain-relief model directly to the completed dataset
would yield nearly identical results to that of the full model
fit to the censored dataset in the article.

But what about a more complicated scenario, per-
haps including a substantial number of subjects who
drop out early with nonzero pain-relief scores? In that
case, we would recommend fitting the full model as
described in the article, and then going back and im-
puting the censored responses based on their probabili-
ties under the model conditional on the observed data.
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For example, if an unobserved pain relief score has predic-
tive probabilities of .6, .3, and .1 of having the values 0, 1,
or 2, then this would be imputed into the corrected Figure
1 as .6 observations in the pain relief index (PRL) = 0 total,
.3 in the PRL =1 total, and .1 in the PRL = 2 total.

In general, completed-data displays such as the corrected
Figure 1, although not necessary for parameter estimation,
could be quite useful in understanding the experimental re-
sults because the completed data show the best estimate
of the pain-relief results had all subjects stayed with the
assigned doses.

1.1  The Pharmacokinetic Model

We found Figures 2 and 3 in the article very helpful in
understanding the pharmacokinetic model. In fact, it would
have been nice to see more of the workings of the model;
for example, it would be interesting to see a display of
estimates of C,Ce, and fpp(Ce), over time, for different
patients. We also have a specific question about the model.
Figure 3b shows the drug having no effect for the first hour.
Is this contradicted by the bottom row of our Figure 1,
which seems to show that patients with dose = 100 and
200 have more pain relief than the dose = 0 patients, even
after times as short as .25 and .5 hour?

The pharmacokinetic model used in the article is some-
what complicated (at least compared to many standard mod-
els in statistics) and would be difficult, if not impossible,
to fit solely from the given dataset. The authors deal with
this problem by estimating only some of the parameters
from the current data, while setting the other parameters
to fixed values, based on results from other experiments.
Keeping control over the parameters in this way is a key
step in obtaining reasonable model estimates. Continuing in
this direction, we expect further progress could be made by
adapting a Bayesian approach with informative prior distri-
butions on the parameters about which other experimental
data are available (see, e.g., Bois, Gelman, Jiang, Maszle,
and Alexeef 1996 and Gelman, Bois, and Jiang 1996 for an
example from toxicokinetics).

From the substantive viewpoint of the ketorolac analy-
sis, it would be useful to see the data used by the authors
to get their pharmacokinetic parameter values, or at least
the references to those data. Ketorolac kinetics are an in-
teresting case, because the commercial product is in fact a
mixture of two enantiomers—molecules of the same atomic
composition but different symmetries—with different phar-
macokinetic behavior (see Hayball, Wrobel, Tambly and
Nation 1994; Vakily, Corrigan, and Jamali 1995). It would
also be nice to see some reference in the article to the state-
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Figure 1. Frequencies of Pain Relief Responses at Different Doses and Different Times. This is a revised version of Figure 1 of Sheiner, Beal,
and Dunne, with the following changes: (1) The three experiments at dose = 0 are separated, so that each row of the figure shows the results of
a single experiment; (2) responses after dropout are imputed as 0 (no pain relief); (3) the time scales of the graphs are aligned.

ment that two-compartment Kinetics are appropriate here
(the cited Gibaldi and Perrier 1982 reference is not specific
to ketorolac). Such details are perhaps not necessary for a
general article in JASA, but it is worth noting that estimat-
ing the pharmacokinetic parameters in a new application
requires substantive research. The variability of the param-
eters for ketorolac might be assessed using several studies
(e.g., Hayball et al. 1994, Jung, Mroszczak, and Bynum
1988, Jung et al. 1989, and Lucker, Bullingham, Hooftman,
Lloyd, and Mroszczak 1994). Consideration of covariates
such as age would also strengthen the results, as the elderly
tend to show reduced elimination of the drug (see Jallad,
Garg, Martinez, Mroszczak, and Weidler 1990). Along sim-
ilar lines, the internal workings of the model could be better
understood if blood samples could be taken from some of
the subjects as well—although perhaps this would not be
recommended in a pain-relief study.

1.2 Model Checking

A crucial part of working with a complicated model, es-
pecially when communicating with statisticians without de-
tailed subject matter knowledge, is to build confidence by
understanding the behavior of the parameters and the fit to
data. Figures 3-8 serve these purposes excellently. On the
theory that one cannot have too much of a good thing, we
would like to suggest further steps to understanding and
checking the model.

First, as discussed earlier, we believe that Figure 1, along
with Figures 5, 6, and 7, would be more relevant to the pain-
relief aspect of the experiment if the censored responses
were imputed appropriately rather than excluded. We em-
phasize that there is nothing wrong with the existing figures,
but they are tricky to interpret because they mix pain-relief
and dropout behavior.

Second, there should be a way to check the fit of the
model to individual pain-relief responses. For example, for
each observation, one can obtain an expected pain-relief
score under the model and compare it to the actual response.
Our Figure 2 shows a plot of the average residual (actual—
predicted) versus average predicted response for all of the
individual responses aggregated, binned into 20 equal-sized
categories. From the plot, it is clear that when the model
predicts very low pain or very high pain scores, the pre-
dictions tend to be too low or too high. (Separate plots did
not show this pattern to be concentrated at any particu-
lar dose.) This particular pattern seems fairly minor, and
it is not clear what affect it has on the substantive ques-
tions of interest—but it suggests another direction in model
checking.

1.3

A related issue is the display of individual variation.
The model has random effects and is fit to individual-level
data—but the plots in the article (and our discussion also)

Individual Variation
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Figure 2. Plot of Average Residuals Versus Expected Pain Scores,
With Responses Divided Into 20 Equal-Sized Bins Defined by Ranges of
Expected Pain Scores. The prediction errors are relatively small, but with
a consistent pattern that low predictions are too low and high predictions
are too high.

display only aggregate results. At the very least, it would
be informative to see the spread of the estimated random
effects in the context of the estimated aggregate placebo
and drug effects. In addition, the random effects could be
used for further model checking. For example, an analysis
of variance could be performed on the estimated random ef-
fects to see whether the differences seem to be real between
the three experiments at dose = 0 (see our Fig. 1). Perhaps
of more general interest, individual-level covariates could
be included in the model as well, as discussed by Wake-
field (1996). With regard to all of these model checks, a
Bayesian analysis that summarizes results by posterior dis-
tributions of parameter estimates would also allow one to
test the model using more general discrepancy measures
(see Gelman, Meng, and Stern 1996).

1.4 Extrapolation

As the authors stress, a key reason for going to the trou-
ble of fitting a pharmacokinetic model is that such mod-
els (if their parameters have reasonable values) should al-
low reasonable extrapolation to untried dose patterns, in a
way that traditional hypothesis-testing methods cannot. Of
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course, once the model is fit and made a prediction made,
it would be gratifying to see it tested. The cross-validation
shown in Figure 7 is an excellent start in that direction.
We wonder whether any tests are planned for ketorolac at
the authors’ recommended dosing regimen (25 mg at time
0 and at 4 hours). This would be a sensible check on the
model and, to the extent that the model does not fit, would
suggest ways in which it could be refined.
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