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Statisticians often discuss the virtues of simple models and procedures for extracting a simple 

signal from messy noise.  But in my own applied research I constantly find myself in the 

opposite situation:  fitting models that are simpler than I would like—models that clearly miss 

important features of the data and, more importantly, important features of the underlying system 

I am modeling—because of computational limitations. 

 

In some sense, “computational limitations” correspond to limited CPU time and memory.  But in 

this age of gigabytes and more, it’s only fair to describe these as limitations on our 

computational procedures.  I am routinely in the position of wanting to fit a model that can’t be 

fit using existing software, even though I know—know—that a simple enough algorithm must be 

out there to fit it using much less than the capabilities of a modern desktop PC. 

 

The sorts of models I’m talking about include hierarchical models for parallel time series (for 

example, trends in public opinion in each of 50 states, or models for stochastically aligning tree 

ring data) and varying-intercept, varying-slope logistic regressions (that is, models where several 

coefficients can vary by group, in which case a covariance matrix needs to be modeled for the 

group-level structure). 

 

In practice when fitting such models I lurch between various approximate methods based on 

point estimates, and full Gibbs-Metropolis which can be slow if not guided well.  These two 

approaches can meet in the middle:  approximations can be iteratively adjusted, leading 

ultimately to a Gibbs-like stochastic procedure, and Markov chain simulation can be made more 

efficient and reliable when guided by approximations that have been tailored to the problem at 

hand.  

 

I welcome the article by Rue, Martino, and Chopin because it provides a more general way to 

construct these approximations.  I suspect that, in addition to being a competitor to Gibbs and 

Metropolis, this approach ultimately can be used to make these stochastic algorithms more 

efficient. 

 

As noted in the article, a challenge remains with problems with many hyperparameters, which 

are often themselves modeled hierarchically.  As with the EM algorithm, it appears to be tricky 

to apply this method to a hierarchy with more than three levels, and I look forward to these 

researchers’ future efforts in this area.  It might help to model the hyperparameters explicitly 

rather than to consider them as unconstrained in some potentially large space. 

 

I conclude with a remark on the comment in Section 7 of the article, that MCMC is often 

perceived to be “exact” even though in practice it is not.  Fifteen or twenty years ago, MCMC 

itself had to fight this misconception in another form.  At the time, importance sampling was 



viewed as an exact method with MCMC as a sometimes necessary but unfortunate 

approximation.  There was much discussion of how MCMC and importance sampling could 

work together, and ideas about starting with MCMC and then finishing up with importance 

sampling to get an exact result.  Fortunately these ideas have subsided, as computational 

statisticians realized that actually existing importance sampling is not exact but can instead be 

viewed as just another iterative simulation method, and one that has no particular advantages 

over the Metropolis algorithm or other more clearly iterative approaches (Gelman, 1991).  
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