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Donald Rubin (1943–) is a statistician who has made major contributions in statistical mod-
eling, computation, and the foundations of causal inference. He is best known, perhaps, for the
EM algorithm (a mathematical framework for iterative optimization, which has been useful for
mixture models, hierarchical regression, and many other problems for which closed-form solutions
are unavailable); multiple imputation as a method for accounting for uncertainty in statistical
analysis with missing data; a Bayesian formulation of instrumental-variables analysis in economics;
propensity scores for controlling for multiple predictors in observational studies; and, especially,
the potential-outcomes framework of causal inference.

Causal inference is central to social science. The effect of an intervention on an individual
i (which could be a person, a firm, a school, a country, or whatever particular entity is being
affected by the treatment) is defined as the difference in the outcome yi, comparing what would
have happened under the intervention to what would have happened under the control. If these
potential outcomes are labeled as yTi and yCi , then the causal effect for that individual is yTi − yCi .
But for any given individual i, we can never observe both potential outcomes y0j and y1j , thus the
causal effect is impossible to directly measure. This is commonly referred to as the fundamental
problem of causal inference, and it is at the core of modern economics and policy analysis.

Resolutions to the fundamental problem of causal inference are called “identification strate-
gies”; examples include linear regression, nonparametric regression, propensity score matching,
instrumental variables, regression discontinuity, and difference in differences. Each of these has
spawned a large literature in statistics, econometrics, and applied fields, and all are framed in
response to the problem that it is not possible to observe both potential outcomes on a single
individual.

From this perspective, what is amazing is that this entire framework of potential outcomes
and counterfactuals for causal inference is all relatively recent, deriving from three papers by
Rubin in the 1970s (“Estimating causal effects of treatments in randomized and nonrandomized
studies,” Journal of Educational Psychology, 1974; “Assignment to treatment group on the basis
of a covariate,” Journal of Educational Statistics, 1977; “Bayesian inference for causal effects: The
role of randomization,” Annals of Statistics, 1978). Although these ideas seem so natural today, it
was a conceptual leap to consider yT and yC to be two separate variables, given that at most only
one of them can be observed. Like all good ideas, this one has echoes in the past, and connections
have been drawn to a long-forgotten paper from 1923 by mathematician Jerzy Neyman in the Polish
Annals of Agricultural Sciences defining potential outcomes for randomized experiments, a 1943
Econometria paper by Trygve Haavelmo (“The statistical implications of a system of simultaneous
equations”), and a 1951 paper by economist A. D. Roy (“Some thoughts on the distribution of
earnings”) presenting a model for a latent bivariate distribution of skills.

The econometrician Guido Imbens has written, “The potential outcome framework became pop-
ular in the econometrics literature on causality around 1990. See Heckman (1990, American Eco-
nomic Review, Papers and Proceedings, “Varieties of Selection Bias,” 313–318) and Manski (1990,
American Economic Review, Papers and Proceedings, “Nonparametric Bounds on Treatment Ef-
fects,” 319–323). The causality literature is actually one where there is a lot of cross-discipline
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referencing, and in fact a lot of cross-discipline collaborations between statisticians, econometri-
cians, political scientists and computer scientists.”

The potential-outcome or counterfactual-based model of casual inference has led to conceptual,
methodological, and applied breakthroughs in core areas of applied statistics.

The key conceptual advances come from the idea of a unit-level treatment effect, yTi −yCi , which,
although it is unobservable, can be aggregated in various ways. So, instead of the treatment effect
being thought of as a parameter (“β” in a regression model), it is an average of individual effects.
From one direction, this leads to the “local average treatment effect” of Angrist and Imbens, the
principal stratification idea of Frangakis and Rubin, and various other average treatment effects
considered in the causal inference literature. Looked at another way, the fractalization of treatment
effects allows one to determine what exactly can be identified from any study. A randomized
experiment can estimate the average treatment effects among the individuals under study; if those
individuals are themselves a random sample, then the average causal effect in the population is
also identifiable. With an observational study, one can robustly estimate a local average treatment
effect in the region of overlap between treatment and control groups, but inferences for averages
outside this zone will be highly sensitive to model specification. The overarching theme here is
that the counterfactual expression of causal estimands is inherently nonparametric and unbounds
causal inference from the traditional regression modeling framework. The counterfactual approach
thus fits in very well with modern agent-based foundations of micro- and macro-economics which
are based on individual behavior.

The methodological advances have come in estimation and in identification. The first innovation
was propensity score matching (Rosenbaum and Rubin, 1983, 1984) which allowed researchers to
control for imbalance in observational studies, under certain assumptions. Later work by statistician
Jennifer Hill, economist Susan Athey, and others has moved to nonparametric models, bringing in
modern tools of machine learning and prediction to attack longstanding issues of model dependence
in regression-based causal estimates. Advances in causal identification have come from deeper un-
derstanding of the relationships between information and inference in the causal setting. Important
work here includes the Bayesian formulation of instrumental variables from Angrist, Imbens, and
Rubin (1996) and recent work on regression discontinuity and difference in differences estimation by
many different econometricians. Again, this all takes place within the potential-outcome framework
and the estimation of local average treatment effects and treatment interactions.

On the applied side, social science has moved in the past forty years to a much greater concern
with causality, and much greater rigor in causal measurement, what in economics is called “identifi-
cation.” Traditionally, in statistics, identification comes from the likelihood, that is, from the para-
metric statistical model. The counterfactual model of causal effects has shifted this: with causality
defined nonparametrically in terms of latent data, there is a separation between (a) definition of
the estimand, and (b) the properties of the estimator—a separation that has been fruitful both in
the definition of causal summaries such as various conditional average treatment effects, and in the
range of applications of these ideas. Organizations such as MIT’s Poverty Action Lab and Yale’s
Innovations for Poverty Action have revolutionized development economics using randomized field
experiments, and similar methods have spread within political science. Within micro-economics,
identification strategies have been used not just for media-friendly “cute-o-nomics” but also in ar-
eas such as education research and the evaluation of labor and trade policies where randomized
experiments are either impossible or impractical to do at scale. In psychology and medicine there
are longstanding traditions of experimentation, but there the potential outcome framework has
been useful in addressing real-world complexities such as dropout and noncompliance.

In addition to his aforementioned contributions to the theory and methods of causal inference,
Rubin has made several other major advances in statistical methods which have been impactful
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in social science. The EM algorithm, presented in a 1977 paper by Dempster, Laird, and Rubin,
is a general framework for maximum likelihood estimation with missing data and has been used
in thousands of examples, most notably mixture models and latent variable models. Rubin’s 1976
paper on inference and missing data introduced the concept of missingness at random, and later
work by Rosenbaum and Rubin delineated the related concept of ignorability, thus making rigorous
various previously unclear notions of when it was necessary to account for selection in data analysis.
Rubin also, with Rod Little, wrote the standard textbook on statistics with missing data, and
did all this in the context of active applications in education research, economics, and public
health. Finally, and in addition to all of this foundational work, Rubin was a key contributor (with
Lindley, Novick, Dempster, and a few others) in the Bayesian hierarchical-modeling or random-
effects revolution in statistical analysis, which has had major impacts in education and sociology
(for example, the study of school, neighborhood, and other “contextual” effects) and which is
beginning to make its way into economics with the study of varying treatment effects in experiments
and observational studies. Indeed, Rubin has had a major influence in social science just by virtue
of being a coauthor of the leading textbook on Bayesian statistics. Rubin has also been influential
within the field of Bayesian statistics through his work on posterior predictive checking, which
generalizes the classical composite hypothesis testing problem to the scenario in which no pivotal
quantity is available.

This article about Donald Rubin’s contributions to social research should not be taken as a den-
igration of the work of many others in this area. Indeed, Rubin has throughout his career engaged
in longstanding collaborations with the psychologist Robert Rosenthal, the statisticians Arthur
Dempster and Roderick Little, the economist Guido Imbens, and many students and others. And,
just keeping the focus on causal inference, important related work has been done by the economists
James Heckman, Charles Manski, Joshua Angrist, and Guido Imbens, the epidemiologist Sander
Greenland and biostatistician James Robins, the computer scientist Judea Pearl, the statistician
Paul Rosenbaum, the psychometrician Kenneth Bollen, and many others. Rubin has been at the
center of this revolution and has helped focus it on the interaction between statistical models and
applied problems, with others working in more theoretical directions or in specific application areas.

Finally, one mark of Rubin’s influence in applied statistics are the terms that he and his col-
leagues introduced, including “missing at random,” “ignorability,” “propensity scores,” “potential
outcomes,” and “Bayesian data analysis.” All these terms are now standard in statistics and
represent a particular attitude toward statistical modeling and inference.
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