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Direct Data Manipulation for Local Decision Analysis
as Applied to the Problem of Arsenic in Drinking
Water from Tube Wells in Bangladesh

Andrew Gelman,'* Matilde Trevisani,” Hao Lu,’ and Alexander van Geen*

A wide variety of tools are available, both parametric and nonparametric, for analyzing spatial
data. However, it is not always clear how to translate statistical inferences into decision recom-
mendations. This article explores the possibilities of estimating the effects of decision options
using very direct manipulation of data, bypassing formal statistical analysis. We illustrate with
the application that motivated this research, a study of arsenic in drinking water in nearly 5,000
wells in a small area in rural Bangladesh. We estimate the potential benefits of two possible
remedial actions: (1) recommendations that people switch to nearby wells with lower arsenic
levels; and (2) drilling new community wells. We use simple nonparametric clustering methods
and estimate uncertainties using cross-validation.
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1. INTRODUCTION

A challenge in statistics for risk analysis is to go
beyond inferences about parameters and estimate the
consequences of decision options. For example, in en-
vironmental statistics, data typically are indexed spa-
tially, and these data can be used in making local de-
cisions. In this article, we explore how the outcomes
arising from some of these decisions can be estimated
very simply, using data manipulations that mimic the
decisions being studied—in this case, switching of
wells and drilling new wells for safe drinking water
in Bangladesh, as we discuss in Section 1.2.
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1.1. Background on Arsenic in Bangladesh

This work was motivated by the immediate prob-
lem of widespread arsenic poisoning from wells used
for drinking water in rural Bangladesh. The arsenic
in these wells is a natural contaminant and can be ex-
tremely high, sometimes more than an order of magni-
tude above the Bangladesh drinking water standard of
50 pg/l and the World Health Organization guideline
of 10 ug/1.M Tronically, most of the wells have been
drilled in the past 10 years, as a response to the high
levels of microbial contamination in surface water.
The wells are so-called tube wells, constructed with
PVC pipe sunk into holes dug in the ground, installed
to draw water with a hand pump from the bottom of
the tube. In our study area, most of the wells tap into
sandy groundwater aquifers that are between 40 and
100 ft deep, although the depths vary from less than 30
ft to more than 300 ft. There are estimated to be over
10 million wells in the country, and the vast majority
have been installed privately.*?

As part of an intensive local public health study,
the arsenic levels in a set of 4,827 wells within
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Araihazar Upazila, were measured in 2000 (see
Fig. 1). In addition, other information was gathered
about each well, including the depth of the well, the
year it was installed, and the number of persons who
were using it for drinking water.(*) These data, which
we analyze here, are an intensive local sample and are
distinct from the much-analyzed British Geological
Survey data.® In total, the wells in our study served
about 55,000 people, with a median number of 11 users
per well.

Arsenic is a cumulative metalloid poison causing
various cancers and has no known safe threshold, and
so it is reasonable to measure public health risk with
total exposure (rather than, e.g., maximum exposure,
or proportion of time exposed above some threshold).
Is the arsenic concentration in the local well a good
measure of a person’s arsenic exposure? To check this,
urine is being gathered from 10,000 local residents,
and its arsenic level, for each person, is being com-
pared to that in the well that the person reported us-
ing for drinking water. A previous study found strong
correlation between arsenic levels in drinking water
and urine,® confirming that it is reasonable to work
with measurements of wells, which we do for the
rest of this article. In addition, field and laboratory
studies have confirmed the accuracy and reliability of
our well-water arsenic measurements.) A study of
3,000 wells over all of Bangladesh estimates serious
public health consequences from arsenic in drinking
water.(®)

A potential concern in studying well arsenic is
the stability of arsenic levels and their measurements.
To our knowledge, there is no credible (i.e., with
adequate quality control) evidence of large fluctu-
ations. Groundwater arsenic appears to be remark-
ably constant.>*® This does not exclude the pos-
sibility of gradual changes in relation to well age
that must be taken into account when installing new
wells.(7)

In this article, we use our intensively sampled
data on tube wells to assess strategies of switch-
ing to safer wells and drilling new wells at depths
such that arsenic levels would be expected to be
low. A variety of other strategies have been pro-
posed to deal with the arsenic problem, including
purification of surface water, rainwater harvesting,
and arsenic removal from groundwater. Here we fo-
cus on well switching and new deep wells because
these have been found effective, at least in the short
run, to lower arsenic levels in drinking water and
urine.*®)
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1.2. Direct Data Manipulation for Decision Analysis

We develop decision recommendations for the
arsenic problem in Araihazar by performing calcu-
lations on our database of 5,000 wells. Although the
particular techniques we use will not be directly ap-
plicable to most decision problems, we believe that
this general approach, bypassing the usual steps of
statistical modeling, can be useful in a variety of prob-
lems involving large data sets that require immediate
local action. For arsenic in Bangladesh, decisions are
made at the village level—where to drill community
wells—and by individual households, which must de-
cide where to get their water and whether to install
privately owned wells.

Initially, we approached the problem by con-
structing various summaries of the data in order to
estimate the distribution of arsenic levels in Arai-
hazar, as well as the relation between depth of the well
and arsenic level.>* We soon realized that some of
the most important short-term questions could be ad-
dressed by direct computations on our well data, with-
out the need for estimating statistical distributions.
After some data exploration in Section 2, we present
estimates in Section 3 of the effects of a proposed pro-
gram to encourage users of dangerous wells to switch
to nearby safer wells. Section 4 presents recommen-
dations for locations to drill new wells in order to best
serve people who are not near any safe wells. When
drilling new wells, there is a question of how deep to
drill, and here it becomes more useful to model the ar-
seniclevel of a well as a function of location and depth.
We do so using nonparametric clustering methods, es-
timating uncertainty using cross-validation. Finally, in
Section 5, we consider various decision recommen-
dations that would be appropriate for other parts of
Bangladesh, since our analysis here directly applies
only to the small region of our study.

2. EXPLORATORY ANALYSIS
OF THE ARSENIC DATA

We begin by summarizing the arsenic concentra-
tions as a function of the depths of the wells. As is
shown in Fig. 2, two-thirds of the wells in the area stud-
ied are between 40 and 100 ft deep (the PVC tubes
come in 20-ft lengths, which explains the discreteness
in the well depths, typically reported in half tube-
lengths). The figure also shows that, unfortunately,
water from these depths features the highest average
arsenic levels.
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Fig. 1. Tube wells in a section of
Araihazar Upazila, Bangladesh. (The

(0, 0) point on this graph is at latitude
23.8° north and longitude 90.6° east.)
Each dot represents a well, and these are
all the wells in this area. Colors indicate
arsenic levels: blue (less than 10 ug/l),
green (10-50), orange (50-100), red
(100-200), and black (>200). By
comparison, the maximum recommended
levels designated by Bangladesh and the
World Health Organization are 50 and
10 pg/l, respectively.

Fig. 2. Arsenic concentrations (ug/L)
and depths of the 4,827 wells mapped in
Fig. 1. The red line shows average arsenic
concentration as a function of depth.
(Although it plays the role of an
explanatory variable, depth is shown on
the y-axis because of its geographic
interpretation.)

Fig. 3. The wells in Fig. 1, divided into 66
clusters based on the k-means clustering
algorithm. The identifying numbers are
the average arsenic levels of the wells in
each cluster. The colors have no meaning
and are simply to identify the separate
clusters. The clusters were constructed
using only the locations of the wells;
depth and arsenic levels were not used in
the clustering.
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Some people put in the extra effort and cost to
drill deeper wells (beyond 300 ft, a hydraulic pump is
required that is not locally available), and these have
less arsenic, on average, as shown by Fig. 2. How-
ever, it is also clear that depth alone is no guarantee
of low-arsenic water. At the other extreme, the very
shallow wells appear to be relatively safe, although,
once again, with much variation.

The next step is to combine the spatial and depth
information, which we do by dividing the area into
several geographically compact clusters and then plot-
ting arsenic level and depth for the wells in each clus-
ter separately. The area under study includes about
60 villages, which is the level at which local decisions
are made. We defined local groups of wells using the
k-means clustering algorithm® as implemented in
R,(19 which did a good job of grouping the wells into 66
well-defined spatial clusters, as shown in Fig. 3. Given
a specified number of clusters, the algorithm mini-
mizes the average squared distance within clusters—
that is, the average squared distance of points from
cluster centroids. (We do not use depth or arsenic in-
formation in computing the clusters, since our pur-
pose in the clustering is to define localized areas for
the later analysis.) The particular clustering algorithm
chosen is not crucial, since our purpose here is sim-
ply to divide the wells into local groups (see, e.g.,
References 11 and 12 for reviews of clustering meth-
ods). Each cluster in Fig. 3 is labeled with the average
arsenic concentration measured in its wells.

We chose the number of clusters with the goal
of having compact clusters roughly the size of vil-
lages. In general, the choice of cluster size balances
two concerns: (1) smaller clusters are more compact,
and thus it is more reasonable to expect stationarity
in the arsenic levels within any cluster; but (2) larger
sample sizes allow more reliable inferences about ar-
senic levels within each cluster. Most desirable would
be a model that allows the relation between arsenic
concentration and depth to vary spatially in a smooth
way—but before going to this effort it makes sense
to perform exploratory analysis such as done in this
article.

In any case, it would not make sense to attempt
to “estimate” the number of clusters in the data since,
fundamentally, each well is its own cluster, and the
choice of number of clusters depends on a balancing
of inferential goals. In our analysis, the clusters are
created only to allow us to better understand and use
patterns in the relation between arsenic level and well
depth.

Gelman et al.

Fig. 4 shows scatterplots of arsenic level (indi-
cated by colors) as a function of depth and year of
installation, for the wells in each of the 66 clusters.
The plots show that most of the wells were installed
after 1995, and some of the deepest wells have been in-
stalled very recently. However, conditional on depth,
the year of installation does not appear to be infor-
mative in predicting arsenic level.

A careful study of the relation between arsenic
level and depth shows several patterns, only some of
which were apparent in the original map (Fig. 1) and
scatterplot (Fig. 2).

Most obviously, the wells in some clusters are con-
sistently low in arsenic, whereas the wellsin other clus-
ters are all high. For simplicity we shall refer to wells as
“safe” if their arseniclevelis below 50 ng/l. The depths
of the wells vary dramatically between clusters, and
this may explain somewhat the spatial variation in ar-
senic levels. For example, compare Clusters 9 and 234,
which are near the extremes of average arsenic levels
(recall that the label of the cluster is the average ar-
senic concentration of its wells). The wells in Cluster 9
are all safe (as indicated by the blue and green dots,
their arsenic levels are all below 50 ug/l), and all are at
least 100 ft deep. Conversely, the wells in Cluster 234
are all dangerous and all less than 100 ft deep. This
complete confounding makes it impossible, without
further information, to know how to attribute the dif-
ference in arsenic levels between the two clusters to
geography and well depths.

Some clusters show a dramatic relation between
arsenic concentration and depth. In Cluster 86, for
example, all the wells deeper than 100 ft are safe,
and almost all the shallower wells are dangerous.
Cluster 120 shows a similar threshold at a depth of
70 ft. Similar patterns appear throughout; for exam-
ple, Cluster 7 may have a threshold around 40 ft,
Cluster 11 between 70 and 100 ft, and so on to Clus-
ter 243, with an apparent threshold between 110 and
170 ft.

The patterns are not consistent everywhere, how-
ever. For example, the wells in Clusters 80 and 118
exhibit a range of arsenic levels at all depths. Most
strikingly, Cluster 46 shows a reverse pattern: here,
all the shallow wells are safe, and most of the deep
wells are dangerous. At this point it is useful to
cross-reference with the maps: Figs. 1 and 3 show
that Cluster 46 is separated into two geographic sub-
regions, with the safe (and shallow) wells to the
northeast and the dangerous (and deep) wells to the
southeast.
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Fig. 4. Plots of arsenic level (indicated by color: blue, green, orange, red, and black, as in Fig. 1) as a function of depth and year of installation
of well. (The relatively few wells installed before 1980 are assigned dates of 1980 in these graphs.) Data are displayed separately for each of
the 66 spatial clusters (see Fig. 3). Each cluster is labeled by the average arsenic level of the wells in the cluster. The horizontal lines indicate
estimated safe-depth thresholds (or lower bounds, where thresholds cannot be estimated), as described in Section 4.1 and mapped in Fig. 13.

To summarize our exploratory analysis, the wells
between 50 and 100 ft deep have, on average, the most
arsenic. In many clusters there seems to be a safe
depth, typically between 100 and 200 ft, below which

the water is low in arsenic. However, in other places
even the deepest wells are dangerous. Similarly, the
shallowest wells are consistently safe in some areas
but not in others.
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Fig. 4. Continued.

We now move to more focused analyses to an-
swer the following applied questions: (1) How effec-
tive would be a strategy of encouraging users of dan-
gerous wells to switch to nearby wells that are low
in arsenic? (2) Where should new wells be located
to maximize the number of people served? (3) How
deep should the wells be drilled to ensure they will
be safe? We can answer the first two questions using
direct data manipulations; in attempting to answer
the third question, we shall augment our exploratory
analysis with some modeling and estimation of
probabilities.

1980 2000 1980 2000

3. RECOMMENDATIONS FOR
SWITCHING WELLS

As can be seen from Fig. 1, low- and high-arsenic
wells are mixed throughout the region, and there ap-
pears to be no simple spatial pattern or rule that would
allow one to reliably identify a well as low or high in
arsenic without actually measuring it. This is unfor-
tunate because accurately measuring a well’s arsenic
level requires equipment that is not readily avail-
able in rural Bangladesh. The cost of the field test
is $0.50, but this does not include the salary of the
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Fig. 5. Distribution of distance from the nearest “safe” well (arsenic concentration less than 50 ug/l), for (a) unsafe wells and (b) people
drinking from unsafe wells (i.e., weighting each well by the number of users). These graphs exclude the 48% of wells that are already safe.

tester, the infrastructure needed for training, and the
mapping that would be needed to make the most of
the data. (By way of reference, it costs about $1 per
foot to install a tube well, and the per-capita GNP of
Bangladesh is about $400). The good news, however,
is that most of the people in this area—including those
currently drinking water high in arsenic—Ilive close to
a low-arsenic well.

Fig. 5 summarizes the distance to the nearest safe
well for users of unsafe wells. Almost all the un-
safe wells—and almost all the current users of unsafe
wells—are within 200 m of an existing safe well.

Given this information, a reasonable short-term
arsenic reduction strategy might be to recommend
that people who are currently drinking from high-
arsenic wells switch to nearby low-arsenic wells. Pre-
liminary results from a survey of local residents sug-
gest that about three-fourth of the people who are
drinking from unsafe wells will be willing to walk to
obtain safe water from a nearby well, and that owners
of safe wells will generally be willing to share their wa-
ter with neighbors (A. Pfaff, private communication).

For the region under study, the well-switching
strategy is feasible since the arsenic levels in all the
wells were measured. We began by creating a list, for
each of the dangerous wells (those with arsenic mea-
surements exceeding 50 ug/l), of the locations of the
10 nearest wells, along with their arsenic levels. Inves-
tigators took these lists into the field to guide people
in well switching.®® To estimate the effectiveness of
the well-switching strategy, we compute the expected
reduction in total arsenic exposure under various as-
sumptions about switching behavior.

Suppose that people drinking from wells with ar-
seniclevels higher than X were to switch to the nearest
safe well, if there is a safe well less than D m away,
or, if there are no safe nearby wells, to the lowest-
arsenic well within a distance of D. Fig. 6a shows the
proportion of people who would be switching under
this recommendation, and Fig. 6b displays the aver-
age arsenic exposure for all the residents in the area
(not just the residents who switch). Both graphs are
plotted as a function of D, for several values of X. For
each plot, the curves start at D = 0 with zero people
switching and the current mean level of 97 ug/l.

With a simple well-switching strategy, a few wells
will be overburdened—the isolated low-arsenic wells
that are in high-arsenic areas. To avoid overusing any
well, we assume in Fig. 6 that users from no more than
10 “dangerous” wells are allowed to switch to any ex-
isting “safe” well. When a well is full-up, our algo-
rithm switches users to the nearest safe well within a
distance D that is still free.

We also evaluate the effects of the recommen-
dation if it is only partially followed: Fig. 7 displays
the proportion of people who switch and the aver-
age arsenic exposure from well water, assuming that
only half the residents switch (which we believe is a
conservative assumption, given our preliminary sur-
vey findings). Again, these results are shown as a
function of the arsenic threshold X and the distance
threshold D, with the assumption that no more than
10 existing wells are referred to any single “safe”
well.

Based on our formal survey and informal conver-
sations with local residents, we think it isreasonable to
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Fig. 6. (a) Proportion of residents of the studied area who would switch wells and (b) estimated average arsenic exposure (pg/L) of all the
area residents if the following recommendation is followed: all users with arsenic levels exceeding X should switch to the nearest well with
arsenic level below X, if such a well is less than D m away, or else to the safest well within a distance of D. Switching is restricted so that no

well is used by the previous users of more than 10 other wells.

suppose that people in the area will be willing to walk
up to 200 m for safe water.”) By means of flow meters
and interviews with villagers carrying water from six
newly-installed community wells, a study was made of
the extent to which these were used during one year.
The results were compared with household and well
data obtained during a previous survey in the same
area. Many women walked hundreds of meters each
day to fetch water from the wells. On average, 2,200 1
were hand-pumped daily from each community well,
regardless of the season.

Assuming 50 pg/l as the safe-water threshold,
Fig. 7 shows that this recommendation would result
in 26% of the local residents switching, and a new
average arsenic exposure of 60 ug/l (a 38% reduc-
tion in total exposure compared to the existing mean
level).

4. RECOMMENDATIONS FOR
DRILLING NEW WELLS

As discussed in Section 3, switching wells is a
cheap, immediate, and effective method that could
realistically reduce arsenic exposure by nearly 40%
at the cost of having one-quarter of the local resi-
dents having to travel distances of less than 200 m
for drinking water. However, this does not help the
people who live more than 200 m from a safe well,
and so we would like to supplement the switching
strategy with the drilling of some new wells. In ad-
dition, people who are currently drinking from high-
arsenic wells would generally like to use their own
safe wells or community wells, rather than a neigh-
bor’s private well. We are thus led to two decision
questions: (1) where to drill new wells to serve the
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immediate needs of people who are currently drink-
ing high-arsenic water, and (2) how deep to drill new
wells at these and other locations.

4.1. Where to Drill

We would like to drill new wells so as to serve the
maximum number of people currently drinking high-
arsenic water. If we assume that people will walk up
to 200 m to a well, it is a computational problem to
identify the optimum locations. We solve the problem
using a stepwise optimization algorithm, first deter-
mining the best place to put the first well, then the
best location for the second well, and so forth. This
heuristic approach will not in general find the optimal
locations for a set of n wells but is simpler than a gen-
eral optimization.(!¥) At each step of our algorithm,
there is an infinite range of locations to put any given
well, but to figure out the optimal location we need
only evaluate at a finite set of points corresponding
to the intersections of the arcs of circles centered at
each well (see Fig. 8). As the number of wells n in
a data set grows larger, with the density of wells per
square kilometer held constant, the number of such
points of intersection grows linearly with the number
of wells, so this is a feasible computation even for large
data sets. At each point of intersection, we can quickly
evaluate the number of people within 200 m who are
currently drinking water with arsenic concentrations
above 50 pg/l.

Fig. 9a shows where to drill 30 new wells sequen-
tially to maximize the number of people within 200
m who are currently drinking from high-arsenic wells.

Fig. 8. Diagram illustrating the search for the optimal location for
a new well. The circles are centered at each existing well with radii
200 m, the assumed maximal distance a person will travel to get
water. We need only evaluate the points at the intersections of the
circles.
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Fig. 9b shows where to drill the new wells, assuming
that half the users of high-arsenic wells have already
switched, as described in Section 3. We can then evalu-
ate the effectiveness of the new-well-drilling strategy
on average arsenic exposure.

What if these new wells are drilled with, let us
assume, arsenic levels of 5 ug/1? Fig. 10 shows the
proportion of people affected and the average reduc-
tion in arsenic exposures. A glance at the y-axes of the
figures shows that the proportion of people affected
and the average reduction is impressive: considering
there are about 5,000 existing wells, these numbers
represent good value from installing no more than 30
new wells.

Fig. 11 shows the consequences if half the users
of high-arsenic wells have already switched to nearby
wells with lower arsenic concentration, as described
in Section 3. The benefits of the community wells is
slightly less than if no users had switched (compare
to Fig. 10) but is still a substantial benefit for drilling
only 30 wells.

4.2. How Deep to Drill

Ifnew wells are to be drilled, it is crucial to have an
idea of how deep to drill them. As indicated in Figs.
2 and 4, shallow or deep wells appear safe in some
areas but not others. We cannot hope for certainty,
but we would like to give better recommendations
than simply, “Drill as deep as necessary.” To this end,
we attempt to estimate a “safe-depth” threshold—a
depth below which the arsenic level will be less than
50 pg/l—in each of the 66 clusters into which we have
divided our data.

In estimating the safe-depth thresholds, we do not
set up a full statistical model of arsenic levels, but
we construct an inferential procedure based on the
patterns we see in the data in Fig. 4: most notably, that
in many clusters there appears to be a sharp threshold,
below which all the wells are safe—blue and green
dots in the graphs. Sometimes, however, there is a
single exception—a dangerous well mixed with the
safe deep wells, as in Cluster 194—which is consistent
with there being an imperfect safe-depth threshold or
with a depth that was reported in error.

In the next section, we present two statistical tech-
niques for estimating such safe-depth thresholds: a
search algorithm that we first used to identify thresh-
olds, and a matching algorithm that yields similar
results. We developed the search algorithm with the
decision problem in mind, whereas the matching algo-
rithm is closer in spirit to statistical hypothesis testing.



1606

Optimal locations for 30 new safe wells
(assuming no switching has occured yet)

Gelman et al.

Optimal locations for 30 new safe wells
(assuming 50% of eligible people have switched already)
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Fig. 9. Optimal locations for 30 new wells to be drilled in sequence, with the goal of maximizing the number of people who can be within
200 m of a safe well (arsenic less than 50 ug/l), under two different assumptions: (a) assuming that no one has switched wells yet; (b) assuming
that half the users of high-arsenic wells have already switched to the nearest safe well, if it is within 200 m. In each map, the locations are
numbered in decreasing order of priority. Light and dark dots show existing safe and unsafe wells, respectively.

4.2.1. Estimating Safe-Depth Thresholds

To allow for the possibility of aberrations or out-
liers, we construct the following search algorithm to
estimate safe-depth thresholds D. For each cluster
of wells, we start with the deepest wells (the bottom
of each of the graphs in Fig. 4) and move up until
we identify the deepest unsafe well (i.e., with arsenic
level exceeding 50 ng/l). We label its depth as U; and
denote the depth of the shallowest safe well that is
(strictly) deeper than U;—if such a well exists in this
cluster—as S;. We then move up to the next-deepest
unsafe well, labeling its depth as U,, and correspond-
ingly look for the shallowest safe well that is (strictly)
deeper than U,, denoting its depth as S,. The left pan-
els of Fig. 12 illustrate the application to two of the 66
clusters. In Cluster 189, the deepest unsafe well is at

U = 200 ft but we cannot find any safe well deeper
than 200 ft; the next-deepest unsafe well (also indi-
cated by a black dot) is at U, = 135 ft but again
no safe well exists below it. Turning to Cluster 194,
U, =190 ft, and here we can find a deeper safe well
(a blue dot on the graph) at S; = 200 ft, the next-
deepest unsafe wells (two dots, one red and the other
black) are at U, = 105 ft, and the shallowest safe well
below them is at S, = 118 ft (a green dot). We plot
the wells identified so far in the central panels of the
figure, with x-axis corresponding to the distance of
the wells from the cluster centroid. In these central fig-
ures, the bottom left arrows indicate the N-S/E-W di-
rections of the wells relative to the cluster centroid. In-
formation on distance and direction is not used by the
search algorithm so far implemented. However, when
putting some results into practice, such information
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Fig. 10. Consequences of adding up to 30 new safe wells at the locations indicated in Fig. 9a. The graphs show the number of people who
would benefit and the average arsenic (ug/L) levels among all 55,000 people in the area (including those not affected by the new wells).
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Fig. 11. Replication of Fig. 10, but assuming that the new community wells are assigned in the locations shown in Fig. 9b, and under the

assumption that half the people have already switched wells.

may help in assessing well location with respect to the
cluster: if the well is for some reason considered non-
representative of the area we are about to drill, it can
be eventually discarded from the search procedure.

Having identified U; and U,, we consider two
possible threshold configurations, which are defined:
(1) as any depth within (Uy, S1] and (2) as any depth
within the (U,, S, ] interval (in practice, we will set D at
S1 or S,—the shallow endpoint of the finally selected
interval). We evaluate these choices on the basis of the
associated probability that a well drilled deeper than
the estimated threshold actually has arsenic concen-
tration less than 50 ug/l.

To estimate such a probability, we adopt an ap-
proximate Bayesian approach.(!¥ Our prior informa-
tion consists of the evidence (see Fig. 2) that there are
on average lower arsenic levels both in the shallowest
and deepest strata. In addition, related discussion in
Reference 4 suggests synthesizing a general pattern
by dividing the range of well depths into three strata:
<30, 30-100, and >100 ft, which have proportions of
safe wells in our data of 0.76, 0.35, and 0.83, respec-
tively. From these premises, we set up a Beta («;, 8;)
prior distribution for the probability 6; that a well
sunk into stratum j is safe, with j = 1, 2, 3 indexing (in
the same order) our depth strata, and («;, B;) set at
(3, 2), (1, 1), (3, 2), respectively. These hyperparam-
eters imply prior probabilities of a well being safe as
3/5,1/2, and 3/5 in stratum 1, 2, and 3, thus roughly re-
flecting the general pattern in the area being studied,
with low degrees of freedom so that data from a rea-
sonable number of wells will dominate the inference
in any cluster.

The data we have at hand are for each cluster the
number of safe and total wells sunk into stratum j and
below Uy—that is, y;x and nj;, with sums y, = )~ j Vik
and ng = Z]» Njk.

To choose one threshold configuration (Uy, Sk]
out of the two possibilities k = 1, 2, we calculate the
posterior probability that a new well drilled deeper
than Uy in the given cluster is safe. To this end, we first
calculate the predictive probability that a new well
at depth dUj is safe: Pr(y =1|d > Up) = [, Pr(y =
1\d > Uy, 6)Pr(d > Ui | 8)p(0)d6. We suppose that
d can (uniformly) assume only values correspond-
ing to depths at which the surveyed wells were ac-
tually drilled. The reasoning underneath such as-
sumption is that so far we have not tested whether
drilling at other depths than those of already existing
wells is feasible: it might not be so because of some
(still unknown) limiting geological characteristics.
Hence Pr(j =11d > Ux) = 1= 3y 3p4,-1; Jo PT(F =
11d = d,, 6)p(6)de, and, having modeled y having
d within stratum j as a Bernoulli (¢ ;), we obtain

ol
o + ﬁj '
(1)
with wj = nj/ni. At this point, we can specify a
Beta (ay, Bx) prior distribution for the probability 6
that a well below Uy is safe, with «; and Sy solving
Pr(3 =11d > Uy) = ar/(ax + Br). (We fix ay = 1 if
expression (1) is less than 1/2, and set a; = 2 other-
wise: such a choice is made in order that prior opinion
has more weight if more of the n; wells are in Strata
1 and 3 rather than Stratum 2; that was implicitly as-
sumed also for the «;’s defined above.)
We are now able, after setting a binomial (6|ny)
model for yy, to update Equation (1) to the posterior
probability Pr(7 = 1|d > Uy, yx), which yields

Pr(y = 1|d~> Uy) = ijkE(e) = ijk
J )

ok + Vi

S b @)
ag + B+ ng

Pk
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Fig. 12. Diagrams showing how we estimate “safe-depth” thresholds for each of the 66 clusters in the data set. The central plots show the
search: the dots represent the deepest wells, the horizontal lines show the estimated thresholds (the bottom left arrows indicate the N-S/E-W
directions of the wells with respect to the cluster centroid, and the distances from the center are the abscissas of the dots). The rightmost
plots represent the matching algorithm explained in the text. In Cluster 189 no safe-depth threshold can be estimated, so we assign a lower
bound. In Cluster 194 the threshold is set at Sy, the depth of the first safe well below the second deepest unsafe well, since p2 > py.

a well-known result of the beta-binomial model (see,
for instance, Reference 20, ch. 2). Finally, we estimate
D = S if p; > p,, otherwise D = ;.

The search algorithm can be described formally
in terms of steps s and exit points e; for each
cluster,

s0—Search for Uj: if U; does not exist then go
to el, otherwise go to s1;

s1—Search for S;: if 1 does not exist (i.e., the
deepest well is unsafe) then go to s2, other-
wise go to s3;

s2—Search for Us: if does not exist then go to el,
otherwise if S, < U; exists then D = S, else
go to e2;

s3—Search for U,: if U, does not exist then S, is
the shallowest depth else search for S, (<51);
go to e3;
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el—D is the shallowest depth;

e2—D is censored (i.e., is estimated to be deeper
than U, but that is all);

e3—D =S if p; > p,, otherwise D = §,.

Turning to our example, Cluster 189 is a case of
censored safe threshold (in fact, y, = 0); in Cluster
194 the safe threshold has been set at S, = 118 ft as
p> = 0.84 exceeds p; = 0.69.

The rightmost graphs of Fig. 12 show the applica-
tion of another method, which we call the matching
algorithm, to estimate D. Sorting the n well depths
of each cluster from the deepest, d;, to the shallow-
est, d,, we calculate for eachi,i =1,..., n, the nor-
malized difference z; between the proportions of safe
wells below and above d; given by z; = (3 — ¥/)/si,
where y; = y;/n; and y; and n; denote the number of
safe and total wells counted from 1 to i (with depth >
d;). Similarly, yi = yf/n{ with y{ and n{ indicating the
complementary quantities, that is the number of safe
and total wells counted from i + 1 to n (with depth <
d;). Moreover, s; = /y:(1 — y;)/n; + yf (1 — y5)/n§ is
an estimate of the standard error of the difference.

In the rightmost panels of Fig. 12, 7 for each clus-
ter is represented by a black line. Starting from the
bottom dy, the line drifts to the left or to the right, each
time that an unsafe well or a safe well, respectively,
is found as the computation moves toward shallower
depths. In Cluster 189, U = d; so that z; < 0, corre-
spondingly; in Cluster 194, z sharply turns to the left
(i.e., decreases) both at U; and Us.

With the same reasoning as before, we consider
the two depths, S; and S, (if they exist) strictly below
U; and U, as candidates for D. But this time we use
as decision criterion the posterior estimate Ay of the
normalized difference of proportions of safe wells be-
low and above Uy—that is, (6x — 65)//var(6x — 65),
for k=1, 2. We do not adopt a full model but resort
to an empirical Bayesian approach to obtain A. In
particular, we estimate it as

_ Pe— Dk

Ag
Sk

, k=12, 3)

where py and pj, are the posterior probabilities that a
well below and, respectively, above Uy is safe. Equa-
tion (2) gives px while p§ is computed as py but by
a “mirror” procedure (i.e., considering in Equations
(1) and (2) the wells with depths less than Uy). More-
over, s% is produced by substituting px and p§ to yi
and y;, in the formula above for s; with i = k. Again,
we estimate the safe-depth threshold as S7 if A} > A,
or S, otherwise.
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In the formal description of the search algorithm
above, only e3 item has to be changed (by substituting
p with A). After that, the matching algorithm yields
the same estimates for D over all the clusters. In par-
ticular, turning to Fig. 12, D is censored in Cluster 189
while Ay > Aj then D = S, in Cluster 194 (Ag, k =
1, 2, is plotted as a square point at the respective Sk
depth).

We have displayed the estimated safe-depth
thresholds (or bounds) in Fig. 4, overlain with the well
data, for each of the 66 clusters. Fig. 13 shows how
the safe-depth thresholds vary spatially. The different
shades of green on the map indicate where safe depths
are estimated to be less than 100, 100-150, 150-200,
and deeper than 200 ft, and the different shades of
brown show where the safe-depth estimates are cen-
sored. This graph shows some patterns that were not
apparent in the map of arsenic concentrations (see
Fig. 1)—the areas with lowest safe-depth thresholds
do not always coincide with the areas with the safest
wells.

The relation between arsenic, depth, and geo-
graphic location is complex, as can be seen by com-
paring the map of arsenic levels in Fig. 1 with the es-
timated thresholds in Fig. 4. For example, consider
Cluster 120 (in the northwest part of the sampled
area): it has one of the higher average arsenic levels,
but its estimated safe-depth threshold is only 70 ft. By
comparison, the wells in nearby Cluster 9 have very
low arsenic, but perhaps only because they are almost
all below 100 ft deep. In contrast, Cluster 118 in the
southwest provides evidence that drilling below 100 ft
is no guarantee of low arsenic. Finally, when consider-
ing high-arsenic areas, it might be useful to distinguish
between clusters such as 276 (in the east), where no
wells have been drilled below 150 ft, and nearby clus-
terssuch as 189, where even very deep wells have been
tried but with no success.

4.2.2. Estimating the Probability that
a Deep Well Is Safe

Before using the estimated safe-depth thresh-
olds in decision making, it is useful to have some
sense of our confidence in them. To this end we es-
timate, in any cluster, the probability pp that a well
drilled deeper than the estimated threshold D actu-
ally has arsenic concentration less than 50 ug/l, as
max (p1, p2), following the estimation procedure de-
scribed in Section 4.2.1. The estimated probability for
each cluster is shown in Fig. 13.

We then perform a cross-validation, removing
each well from the data set and reestimating the
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safe-depth threshold for its cluster (for simplicity, we
keep the regions fixed). We then consider the ex-
cluded well: Is it deeper than the estimated safe-depth
threshold, and is it actually safe? Counting these for
each well in turn yields a cross-validated probability
for each cluster. We create a calibration curve by bin-
ning these estimated probabilities into nine intervals
(from (0.6, 0.7] to (0.975, 1], with wider ranges in the
sparser lower-probability classes) and calculating the
average empirical probability within each bin. Fig. 14
plots these as a function of the estimated probabilities
(the midpoints of the above intervals, that is 0.65 up
to 0.9825).

So, how deep should new wells be drilled? Fig. 13
gives minimum depths, and in some places we are
quite confident that wells deeper than this will be
safe. But in areas where we only have a minimum
for the safe depth, or where the estimated probability
of encountering a dangerous well is high, community
wells can be drilled under expert supervision and the
sediment monitored until, for geological reasons, it is
plausible that the water will be safe, and then it can
be tested. In Araihazar, it has been necessary to drill
between 200 and 500 ft in some places to obtain safe
water.(7)

5. DISCUSSION
5.1. Further Study of Arsenic in Bangladesh

We have analyzed data on nearly 5,000 wells to
make some recommendations about switching wells

o
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Fig. 14. Calibration of the probability estimates for the safe-depth
thresholds, using cross-validation. The 45° line shows the ideal of
perfect calibration.
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and drilling new wells in a region in Araihazar,
Bangladesh. What can be done about the rest of the
country? A national program supported by the World
Bank claims that all wells in approximately half the
country (about 5 million wells) have been tested. The
actual response of villagers to this information, com-
municated by painting the spout of a well red or green
(with paint that remains visible for only one year) is
largely unknown. We hope this article will lead to a
closer examination of patterns in the existing data to
direct mitigation activities at the village scale.

In the arsenic study, one must balance several
costs: most obviously, the health effects of arsenic ex-
posure, but also the inconvenience of regularly car-
rying drinking water a distance of perhaps several
hundred meters, and the financial cost of drilling new
wells. Going beyond the studied region to elsewhere
in Bangladesh, a key issue is the cost of measuring ar-
senic in drinking water. If all the estimated 10 million
wells in the country can be measured, then it should
be possible to generalize the switching and drilling
strategies in this article to the other high-arsenic areas
in the country. However, if it is infeasible or expen-
sive to measure all the wells, then a more sophisticated
strategy of sampling would be appropriate.

It is perhaps a concern that, if people rush to
switch to “safe” wells, that a few wells will be over-
burdened, and they may, in fact, draw out arsenic that
otherwise would have gone into an existing “danger-
ous” well. We suspect this will not be a problem in
most wells, because most of the well water in this area
is in fact used for irrigation, not drinking. However,
we plan to follow up the well-switching recommenda-
tions with arsenic measurements of a sample of wells
that we expect to have a sharp increase in use. In the
short term, it might also be useful to identify areas
such as Clusters 45 and 121 where shallow wells are
safe.

Perhaps most importantly in the long run is the
research goal of understanding where the arsenic is
coming from and what characteristics of a well can
block it from entering the drinking water. A limited
number of sediment cores collected in the study area,
and previous work elsewhere in Bangladesh, show a
fairly consistent relation between local geology and
the distribution of groundwater arsenic.>* Deeper
wells that are low in arsenic typically tap into the
so-called Dupi Tila formation, which is recognizable
from the orange-brown coatings of the sand grains. In
contrast, sediment cuttings recovered during drilling
of shallower wells, which are often high in arsenic, are
typically gray. These two types of deposits are often,
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but not always, vertically separated by a thick imper-
meable clay layer. Within our relatively small study
area, the depth of this transition ranges from about
100 to 500 ft. Such spatial variability indicates the fu-
tility of establishing a single “safe” depth for arsenic
at anything beyond the village level. From Fig. 4, we
see gaps in well depths, below which wells are safe,
in several clusters (e.g., those labeled 55, 243, and
273), and we plan to take more core samples to study
this.

Unfortunately, geological factors cannot directly
be used to determine good locations for wells. Geo-
logical and hydrological characteristics are at least as
spatially variable as well-arsenic concentrations and
much more difficult to document by drilling and map-
ping using various geophysical tools.?) Our group is
very active in this respect, but the information is avail-
able only in a handful of test areas at this point—
nowhere near the spatial resolution of the well-arsenic
data.

For other parts of the country, more data must be
gathered, at enough of a sampling density to identify
areas where many people are at risk for high arsenic
exposure.® The appropriate sampling density will de-
pend on the relative costs of measurement and drilling
new wells. Setting up a sampling and decision plan for
the rest of Bangladesh is an important next step in this
research.

5.2. General Comments on Decision Analysis
with Spatial Data

Decisions in public health and social policy typi-
cally are made at both aggregate and local levels. For
example, in Bangladesh a national policy might be de-
veloped to encourage measurement of existing wells
and drilling of new safe wells, possibly with some pu-
rification of surface water. At the same time, even with
outside help, a local resident must decide whether to
invest money and labor in drilling a deep tube well.
In such a situation in which decisions are locally dis-
persed, one of the most important things a govern-
ment or international organization can do is to pro-
vide information, both on the dangers of arsenic and
on the potential benefits of remediation strategies.

There is a well-developed and longstanding
theory of decision analysis using Bayesian infer-
ence.1*15) A special feature of spatial data, compared
with other sorts of information that can be used for
decision analysis, is that they can be directly adapted
for local decisions. In a Bayesian inferential setup,
this leads to hierarchical modeling—as illustrated in
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Reference 16; assigning a parameter to each local area
allows for local decision recommendations. The im-
plicit spatial character of hierarchical modeling is cap-
tured in the term “small area estimation,”!”) which is
used for hierarchical modeling of survey data. Here,
we have explored the strategy of going straight to
the decisions without formally modeling, but what-
ever statistical method is used, it is important for it to
capture the spatial structure of the data.

From a statistical point of view, the methods used
in this article are not very sophisticated—but we think
there is something new here, in that we are apply-
ing data analytic techniques directly to the decision
problem. A more standard approach would be to esti-
mate distributions, correlation functions, variograms,
and so forth, in order to understand the spatial struc-
ture.(1819 Our approach is almost a spatial version of
a “spreadsheet” analysis in business, using the data to
directly draw conclusions about potential outcomes.
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