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Bayes:  Radical, Liberal, or Conservative?1 

As	a	 lifetime	member	of	 the	 International	Chinese	Statistical	Association,	 I	
am	pleased	to	introduce	a	volume	of	Bayesian	articles.	I	remember	that	 in	graduate	
school,	Xiao-Li	Meng,	now	co-editor	of	 this	 journal,	 told	me	 they	didn't	 teach	
Bayesian	statistics	 in	China	because	the	idea	of	a	prior	distribution	was	contrary	to	
Mao's	quotation,	“truth	comes	out	of	empirical/practical	evidence.”	I	have	no	idea	how	
Thomas	Bayes	would	feel	about	this,	but	Pierre-Simon	Laplace,	who	is	often	regarded	
as	 the	 first	 applied	Bayesian,	was	active	 in	politics	during	and	after	 the	French	
Revolution.

In	 the	 twentieth-century	Anglo-American	statistical	 tradition,	Bayesianism	has	
certainly	been	seen	as	 radical.	As	statisticians,	we	are	generally	 trained	 to	respect	
conservatism,	which	can	sometimes	be	defined	mathematically	(for	example,	nominal	
95%	intervals	that	contain	the	true	value	more	than	95%	of	the	time)	and	sometimes	
with	 reference	 to	 tradition	 (for	example,	deferring	 to	 least-squares	or	maximum-
likelihood	estimates).	Statisticians	are	 typically	worried	about	messing	with	data,	
which	perhaps	 is	one	 reason	 that	 the	Current	 Index	 to	Statistics	 lists	131	articles	
with	“conservative”	in	the	title	or	keywords	and	only	46	with	the	words	“liberal”	or	
“radical.”

Like	 many	 political	 terms,	 the	 meaning	 of	 conservatism	 depends	 on	 its	
comparison	point.	Does	the	Democratic	Party	in	the	U.S.	represent	liberal	promotion	
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of	 free	expression	or	a	conservative	perpetuation	of	government	bureaucracy?	Do	
the	Republicans	promote	a	conservative	defense	of	liberty	and	property	or	a	radical	
revision	of	constitutional	balance?		And	where	do	we	place	seemingly	unclassifiable	
parties	such	as	the	Institutional	Revolutionary	Party	in	Mexico	or	the	pro-Putin	party	
in	Russia?

Such	questions	 are	beyond	 the	 scope	of	 this	 essay,	but	 similar	 issues	 arise	
in	 statistics.	Consider	 the	choice	of	estimators	or	prior	distributions	 for	 logistic	
regression.	Table	1	gives	an	example	of	the	results	of	giving	specified	doses	of	a	toxin	
to	20	animals.	 	Racine	et	al.	 (1986)	fit	a	 logistic	regression	to	 these	data	assuming	
independent	binomial	data	with	the	logit	probability	of	death	being	a	linear	function	
of	dose.		The	maximum	likelihood	estimate	for	the	slope	is	7.8	with	standard	error	of	
4.9,	and	the	corresponding	Bayesian	inference	with	flat	prior	distribution	is	similar	(but	
with	a	slightly	skewed	posterior	distribution;	see	Gelman	et	al.	2003,	Section	3.7).

This	noninformative	analysis	would	usually	be	considered	conservative－perhaps	
there	would	be	some	qualms	about	the	uniform	prior	distribution	(why	defined	on	this	
particular	scale),	but	with	the	maximum	likelihood	estimate	standing	as	a	convenient	
reference	point	and	fallback.		But	now	consider	another	option.

Instead	of	a	uniform	prior	distribution	on	the	logistic	regression	coefficients,	let	us	
try	a	Cauchy	distribution	centered	at	0	with	a	scale	of	2.5,	assigned	to	the	coefficient	
of	 the	standardized	predictor.	 	This	 is	a	generic	prior	distribution	 that	encodes	 the	
information	that	it	is	rare	to	see	changes	of	more	than	5	points	on	the	logit	scale	(which	
is	what	 it	would	 take	 to	shift	a	probability	from	0.01	 to	0.5,	or	 from	0.5	 to	0.99).		
Similar	models	have	been	found	useful	in	the	information	retrieval	literature	(Genkin,	
Lewis,	and	Madigan,	2006).		Combining	the	data	in	Table	1	with	this	prior	distribution	
yields	an	estimated	slope	of	4.4	with	standard	error	1.9.		This	is	much	different	from	
the	classical	estimate;	the	prior	distribution	has	made	a	big	difference.
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Table	1.		Bioassay	data	from	Racine	et	al.	(1986),	used	as	an	
example	for	fitting	logistic	regression.

Dose	(log	g/ml) Number	of	animals Number	of	deaths

-0.86 5 0

-0.30 5 1

-0.05 5 3

0.73 5 5

Is	 this	new	prior	distribution	conservative?	When	coming	up	with	it	(and	using	
it	as	 the	default	 in	our	bayesglm	function	in	R),	we	thought	so.	 	The	argument	was	
that	 true	logistic	regression	coefficients	are	almost	always	quite	a	bit	 less	than	5	(if	
predictors	have	been	standardized),	and	so	this	Cauchy	distribution	actually	contains	
less	prior	information	than	we	really	have.	 	From	this	perspective,	the	uniform	prior	
distribution	is	 the	most	conservative,	but	sometimes	too	much	so	(in	particular,	 for	
datasets	 that	feature	separation,	coefficients	have	maximum	likelihood	estimates	of	
infinity),	and	this	new	prior	distribution	is	still	somewhat	conservative,	thus	defensible	
to	statisticians.

But	from	another	perspective－that	of	prediction－our	prior	distribution	is	not	
particularly	conservative,	and	the	flat	prior	is	even	less	so!		Let	us	explain.		We	took	
the	software	of	Genkin,	Lewis,	and	Madigan	(2005),	which	fits	 logistic	regressions	
with	a	variety	of	prior	distributions	and	found	that	a	Gaussian	prior	distribution	with	
center	0	and	scale	2.5	performed	quite	well	as	measured	using	predictive	error	from	
five-fold	cross	validation,	generally	beating	the	corresponding	Cauchy	model	(as	well	
as	the	maximum	likelihood	estimate)	 in	predictive	error,	when	evaluated	on	a	large	
corpus	of	datasets.	 	The	conclusion	may	be	 that	 the	Gaussian	distribution	 is	better	
than	the	Cauchy	at	modeling	the	truth,	or	at	 least	 that	 this	particular	Gaussian	prior	
distribution	is	closer	in	spirit	to	what	cross-validation	is	doing:		hiding	20%	of	the	data	
and	trying	to	make	predictions	using	the	model	built	on	the	other	80%.
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This	result	is	consistent	with	the	hypothesis	that	our	Cauchy	prior	distribution	has	
more	dispersion	than	the	actual	population	of	coefficients	that	might	be	encountered.		
But	is	 it	conservative?	 	From	the	computer	scientist’s	standpoint	of	prediction,	 it	 is	
the	Gaussian	prior	distribution	that	 is	conservative,	 in	yielding	the	lowest	expected	
predictive	error	for	a	new	dataset	(to	the	best	of	our	knowledge).

Thinking	about	binary	data	more	generally,	the	most	conservative	prediction	of	all	
is	0.5	(that	is,	guessing	that	both	outcomes	are	equally	likely).	From	this	perspective,	
one	starts	with	the	prior	distribution	and	then	uses	data	 to	gain	efficiency,	which	is	
the	opposite	of	the	statistician’s	approach	of	modeling	the	data	first.	Which	of	these	
approaches	makes	more	sense	depends	on	the	structure	of	the	data,	and	more	generally,	
one	can	use	hierarchical	approaches	that	fit	prior	distributions	from	data.	 	Our	point	
here	is	 that,	when	thinking	predictively,	weak	prior	distributions	are	not	necessarily	
conservative	at	all,	and	as	statisticians	we	should	think	carefully	about	the	motivations	
underlying	our	principles.

Statistical	arguments,	like	political	arguments,	sometimes	rely	on	catchy	slogans.		
When	I	was	 first	 learning	statistics,	 it	 seemed	 to	me	 that	proponents	of	different	
statistical	methods	were	talking	past	each	other,	with	Bayesians	promoting	“efficiency”	
and	“coherence”	and	non-Bayesians	bringing	up	principles	such	as	“exact	inference”	
and	“unbiasedness.”		We	cannot,	unfortunately,	be	both	efficient	and	unbiased	at	the	
same	time	(unless	we	perform	unbiased	prediction	 instead	of	estimation,	 in	which	
case	we	are	abandoning	the	classical	definition	of	unbiasedness	that	conditions	on	the	
parameter	value).

Statistics,	unlike	 (say)	physics,	 is	a	new	field,	and	 its	depths	are	close	 to	 the	
surface.	 	Hard	work	on	 just	 about	 any	problem	 in	applied	 statistics	 takes	us	 to	
foundational	challenges,	and	this	is	particularly	so	of	Bayesian	statistics.	 	Bayesians	
have	sometimes	been	mocked	for	their	fondness	of	philosophy,	but	as	Bayes	(or	was	
it	Laplace?)	once	said,	“with	great	power	comes	great	responsibility,”	and,	indeed,	the	
power	of	Bayesian	inference－probabilistic	predictions	about	everything－gives	us	
a	special	duty	to	check	the	fit	of	our	model	to	data	and	to	our	substantive	knowledge.		
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In	the	great	tradition	of	textbook	writers	everywhere,	I	know	nothing	at	all	about	the	
example	of	Racine	et	al.	(1986)	given	in	Table	1,	yet	I	feel	reasonably	confident	that	
the	doses	in	the	experiment	do	not	take	the	true	probability	of	death	from	0.003	to	0.999	
(as	would	result	 from	the	odds	ratio	 implied	by	 the	maximum	likelihood	estimate	
of	7.8).	 	It	seems	much	more	conservative	to	me	to	suppose	this	extreme	estimate	to	
have	come	from	sampling	variation,	as	is	in	fact	consistent	with	the	model	and	data.		
Ultimately,	 it	would	be	even	better	 to	have	more	realistic	models	that	appropriately	
combine	information	from	multiple	experiments－a	goal	that	is	facilitated	by	technical	
advances	such	as	those	presented	in	the	papers	in	this	volume.	
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