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Abstract	We	have	examined	the	primary	efficacy	results	of	23,551	randomized	clinical	
trials	(RCTs)	from	the	Cochrane	Database	of	Systematic	Reviews	(CDSR).	We	estimate	that	
the	great	majority	of	trials	have	much	lower	statistical	power	for	actual	effects	than	the	
80%	or	90%	for	the	effect	sizes	stated	in	proposals.	Consequently,	“statistically	significant”	
estimates	tend	to	seriously	overestimate	actual	treatment	effects,	“nonsignificant”	results	
often	correspond	to	important	effects,	and	efforts	to	replicate	often	fail	to	achieve	
“significance”	and	may	even	appear	to	contradict	initial	results.	To	address	these	issues,	we	
re-interpret	the	p-value	in	terms	of	a	reference	population	of	studies	that	are,	or	could	have	
been,	in	the	CDSR.	This	leads	to	an	empirical	guide	for	the	interpretation	of	an	observed	p-
value	from	a	“typical”	clinical	trial	in	terms	of	the	degree	of	overestimation	of	the	reported	
effect,	the	probability	of	the	effect’s	sign	being	wrong,	and	the	predictive	power	of	the	trial.	
Such	an	interpretation	provides	additional	insight	about	the	effect	under	study	and	can	
guard	medical	researchers	against	naive	interpretations	of	p-value	and	over-optimistic	
effect	sizes.	Because	many	research	fields	suffer	from	low	power,	our	results	are	also	
relevant	outside	the	medical	domain.	

1 Background 
How	should	applied	researchers	interpret	the	𝑝-value	for	the	null	hypothesis	of	no	effect	
from	a	randomized	clinical	trial?	This	𝑝-value	is	commonly	defined	as	the	probability,	
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under	the	null	hypothesis	and	an	assumed	data-generating	model,	that	an	appropriate	test	
statistic	would	be	as	or	more	extreme	than	what	was	observed.	Here	we	will	consider	the	
absolute	𝑧-statistic.	We	are	interested	in	understanding	the	resulting	two-sided	p-value	
without	changing	its	calculation	or	assuming	that	the	null	hypothesis	is	correct.	Instead,	we	
wish	to	reinterpret	it	in	light	of	background	information	about	studies	with	similar	
statistical	properties.	The	Cochrane	Database	of	Systematic	Reviews	(CDSR)	contains	the	
results	of	more	than	20,000	randomized	clinical	trials	(RCTs)	in	biomedicine.	We	have	
collected	the	absolute	z-statistics	of	the	primary	efficacy	outcome	of	these	RCTs.		

Recall	that	the	z-statistic	is	the	estimated	effect	divided	by	the	standard	error	of	the	
estimate.	We	will	also	consider	the	signal-to-noise	ratio	(SNR)	which	is	the	true	effect	
divided	by	the	standard	error	of	the	effect	estimate.	The	SNR	cannot	be	observed	directly,	
but	there	is	a	very	simple	relation	between	the	SNR	and	the	z-statistic;	the	SNR	is	equal	to	
the	z-statistic	plus	independent,	standard	normal	“noise”.	The	crux	of	our	approach	is	that	
we	can	estimate	the	distribution	of	the	absolute	z-statistics	across	the	CDSR,	and	then	
derive	the	distribution	of	the	absolute	SNRs.	This	allows	us	to	study	a	number	of	important	
statistical	properties	of	the	RCTs	in	the	CDSR.	

We	will	focus	on	three	properties	of	particular	interest	in	this	era	of	reproducibility	
concerns:	the	degree	of	overestimation,	the	probability	that	the	estimated	effect	is	in	the	
same	direction	as	the	true	effect,	and	the	“predictive	power”	of	a	trial	for	obtaining	p	≤	0.05	
in	the	same	direction	for	another	study	with	the	same	underlying	statistical	parameters	as	
the	original	trial,	including	the	same	underlying	effect	size	and	precision,	and	thus	the	same	
power	(an	“exact	replication”	study	in	purely	statistical	terms).	We	present	our	results	in	a	
look-up	table	(Table	3),	which	can	help	researchers	interpret	the	two-sided	p-value	of	the	
primary	efficacy	result	of	a	particular	RCT	in	the	context	of	the	other	RCTs	from	the	CDSR.	

Previous	efforts	studying	these	properties	have	usually	relied	on	Bayesian	prior	
distributions	chosen	for	either	theoretical	or	computational	reasons8	17.		We	instead	base	
our	inferences	on	empirical	results	from	large	collections	of	trials,	the	largest	of	these	being	
the	Cochrane	Database	of	Systematic	Reviews.	

2 Data, methods, and results 
We	used	23,551	randomized	clinical	trials	from	the	Cochrane	Database	of	Systematic	
Reviews	(CDSR),	which	is	arguably	the	most	comprehensive	collection	of	evidence	on	
medical	interventions.	For	simplicity	we	represent	a	clinical	trial	as	a	triple	(𝛽, 𝑏, 𝑠)	where	
𝛽	is	the	effect	measure	(true	effect)	targeted	by	the	analysis	and	𝑏	is	an	estimate	of	β	with	
standard	error	s.	Ignoring	sampling	variability	in	estimating	s,	the	signal-to-noise	ratio	is	
then	SNR=!

"
	and	the	𝑧-statistic	is	𝑧 = #

"
.	The	effect	𝛽	is	usually	a	difference	in	means	if	the	

outcome	of	the	trial	is	a	continuous	measurement;	a	log	odds	ratio	if	the	outcome	is	binary;	
and	a	log	hazard	ratio	if	the	outcome	is	time	to	an	event.	The	precise	choice	does	not	matter	
for	our	purposes,	as	long	as	b	represents	an	estimator	that	is	approximately	normally	
distributed	with	mean	𝛽	(i.e.,	is	approximately	unbiased	for	the	targeted	effect).	
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We	collected	the	𝑧-statistics	of	the	primary	efficacy	outcome	of	each	of	these	trials16.	Under	
the	null	hypothesis	that	the	true	effect	is	zero	(β=0)	and	there	is	no	systematic	error	(bias),	
the	𝑧-statistic	has	approximately	a	standard	normal	distribution.	Thus	a	𝑧-statistic	of	1.96	
or	–1.96	corresponds	to	a	two-sided	𝑝-value	of	0.05,	and	there	is	a	one-to-one	
correspondence	between	the	absolute	𝑧-statistic	and	the	two-sided	𝑝-value.	

van	Zwet,	Schwab	and	Senn21	took	the	set	of	𝑧-statistics	from	the	CDSR	and	fitted	a	mixture	
of	4	zero-mean	normal	distributions	to	them.	The	𝑧-statistic	is	the	sum	of	the	SNR	and	
standard	normal	noise,	so	we	can	obtain	the	distribution	of	the	SNR	by	simply	subtracting	
1	from	the	variances	of	each	of	the	mixture	components.	This	“deconvolution”	is	a	key	step	
in	the	empirical-Bayes	approach3.	The	distributions	of	the	z-statistics	and	the	SNRs	is	given	
in	Table	1	and	shown	in	Figure	1.	It	might	seem	surprising	that	it	is	possible	to	estimate	the	
joint	distribution	of	the	z-statistics	and	the	SNRs	from	observing	only	the	z-statistics.	
However,	this	is	just	a	consequence	of	the	fact	that	there	is	a	very	simple	relation	between	
the	two	distributions.	

The	results	in	the	present	paper	depend	only	on	the	distribution	of	the	absolute	values	of	
the	SNRs.	Using	a	mixture	of	zero-mean	normal	distributions	for	the	z-statistics	means	that	
we	are	assuming	a	mixture	of	half-normal	distributions	for	the	absolute	values	of	the	SNRs.	
Any	mixture	of	half-normal	distributions	has	a	decreasing	density,	so	in	practical	terms	we	
are	assuming	that	smaller	values	are	more	frequent	than	larger	ones.	We	refer	to	our	
earlier	work	where	we	argue	that	this	is	a	realistic	assumption21.	

	

Table	1:	Estimated	normal	mixture	distributions	of	the	z-statistics	and	the	signal-to-noise	
ratios	(SNRs)	across	23,551	trials	of	the	CDSR21.	

	

	 1	 2	 3	 4	
proportion	 0.32	 0.31	 0.30	 0.07	
mean	 0.00	 0.00	 0.00	 0.00	
std.	dev.	z-statistic	 1.17	 1.74	 2.38	 5.73	
std.	dev.	SNR	 0.61	 1.42	 2.16	 5.64	
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Figure	1:	Estimated	distributions	of	the	z-statistics	(black)	and	the	signal-to-noise	ratios	
(grey)	across	23,551	trials	of	the	CDSR21.	

	

We	can	use	the	distribution	from	Table	1	to	compute	several	statistical	quantities	that	
should	hold	on	average	across	the	primary	efficacy	outcomes	of	trials	similar	to	those	in	
the	CDSR.	We	use	a	simple	Monte	Carlo	scheme:	

	

	

1. Generate	a	sample	of	size	10$	from	the	estimated	mixture	distribution	of	the	SNR.	
2. To	each	sampled	SNR,	add	independent	standard	normal	noise	to	obtain	𝑧.	
3. Compute	the	two-sided	𝑝-value	as	𝑝 = 2𝛷(−|𝑧|),	where	𝛷	is	the	standard	normal	

cumulative	distribution	function.	
4. To	each	sampled	SNR,	add	another	independent	standard	normal	to	obtain	𝑧%,	which	

represents	the	𝑧-statistic	of	a	hypothetical	“exact	replication”	study.	
	

	

The	result	is	a	sample	of	size	10$	of	sets	of	4	numbers	(SNR,	𝑧,	𝑝,	𝑧%).	Now,	the	statistical	
power	for	the	true	effect	is	a	transformation	of	the	SNR:	

𝑝𝑜𝑤𝑒𝑟 = 𝛷(−1.96 − 𝑆𝑁𝑅) + 1 − 	𝛷(1.96 − 	𝑆𝑁𝑅).	

We	can	thus	easily	transform	our	sample	of	the	SNRs	into	a	sample	of	the	powers,	which	
we	show	in	Figure	2.	We	estimate	that	the	median	power	is	only	13%,	while	just	12%	of	the	
trials	reach	80%	power.	
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Figure	2:	The	estimated	distribution	of	the	power	against	the	true	effect	among	the	trials	in	
the	CDSR.	

	

By	selecting	and	averaging,	we	can	also	compute	the	following	quantities,	conditional	on	𝑝	
falling	in	some	interval	(these	computations	are	provided	in	the	Appendix.)	

1. The	three	quartiles	of	the	exaggeration	factor,	<#
!
< = < &

'()
<.	If	researchers	are	more	

likely	to	report	results	with	𝑝-values	smaller	than	some	(any)	cutoff,	this	induces	an	
upward	bias	in	the	effect	estimate,	sometimes	called	the	“winner’s	curse.”	

2. The	coverage,	the	probability	that	the	95%	confidence	interval	covers	the	true	effect.	
The	true	effect	𝛽	falls	in	the	range	𝑏 ± 1.96 ⋅ 𝑠	if	and	only	if	the	SNR	falls	in	the	range	
𝑧 ± 1.96.	

3. The	probability	of	the	estimate	having	the	correct	sign,	which	is	the	event	𝑏𝛽 > 0	or	
equivalently,	𝑧 ⋅ 𝑆𝑁𝑅 > 0.	

4. The	probability	that	an	exact	replication	study	will	obtain	a	two-sided	𝑝-value	less	
than	0.05	with	the	estimate	in	the	same	direction	as	the	original	study,	that	is,	the	
co-occurrence	of	the	events	𝑧𝑧% > 0	and	|𝑧%| ≥ 1.96.	

Table	2	presents	these	quantities	stratified	on	𝑝 > 0.05	and	𝑝 ≤ 0.05.		

	

	

	

	



6	
	

Table	2:	Some	characteristics	of	the	CDSR,	stratified	by	p-value.	We	report	the	proportion	of	
𝑝-values	in	each	stratum.	Q25,	Q50	and	Q75	are	the	quartiles	of	the	exaggeration.	“coverage”	
is	the	coverage	of	the	usual	95%	CI.	“correct	sign”	refers	to	the	probability	that	the	sign	
(direction)	of	the	estimated	effect	is	correct.	“replicate”	is	the	probability	that	an	exact	
replication	study	will	have	a	two-sided	p-value	less	than	0.05,	and	the	direction	of	the	original	
and	replicated	estimate	are	the	same.	

p-value	stratum	 proportion	 Q25	 Q50	 Q75	 coverage	 correct	sign	 replicate	
(0.05,1]	 0.71	 0.60	 1.20	 2.66	 0.97	 0.71	 0.13	
(0,0.05]	 0.29	 1.02	 1.29	 1.92	 0.89	 0.98	 0.60	

Among	other	things,	Table	2	shows	that,	conditionally	on	𝑝 ≤ 0.05,	the	median	
exaggeration	factor	is	1.3	and	the	probability	of	a	sign	error	is	2%.	These	quantities	are	
closely	related	to	the	so-called	type	M	(magnitude)	and	type	S	(sign)	errors6	5.	

Table	3	presents	the	same	quantities,	but	stratified	on	the	𝑝-value	falling	in	smaller	
intervals.	We	also	represent	the	results	of	Table	3	graphically	in	Figure	3.	

	

Table	3:	Some	characteristics	of	the	CDSR,	stratified	by	p-value	in	finer	intervals.	See	the	
caption	of	Table	2	for	details,	and	see	Figure	2	for	a	graph.	

p-value	stratum	 Proportion	 Q25	 Q50	 Q75	 coverage	 correct	sign	 replicate	
(0.9,1]	 0.06	 0.06	 0.12	 0.29	 0.99	 0.52	 0.06	
(0.8,0.9]	 0.06	 0.23	 0.41	 0.89	 0.99	 0.55	 0.07	
(0.7,0.8]	 0.06	 0.39	 0.68	 1.47	 0.99	 0.59	 0.07	
(0.6,0.7]	 0.06	 0.54	 0.95	 2.05	 0.99	 0.63	 0.08	
(0.5,0.6]	 0.06	 0.67	 1.19	 2.55	 0.99	 0.66	 0.10	
(0.1,0.5]	 0.33	 0.95	 1.67	 3.59	 0.97	 0.79	 0.15	
(0.05,0.1]	 0.07	 1.06	 1.74	 3.51	 0.94	 0.91	 0.26	
(0.01,0.05]	 0.10	 1.05	 1.56	 2.81	 0.90	 0.95	 0.37	
(0.005,0.01]	 0.03	 1.04	 1.41	 2.25	 0.87	 0.98	 0.48	
(0.001,0.005]	 0.04	 1.04	 1.35	 1.95	 0.87	 0.99	 0.58	
(0,0.001]	 0.11	 1.00	 1.16	 1.44	 0.89	 1.00	 0.86	

	 	 	 	 	 	 	 	



7	
	

	

	
	

Figure	3:	Graphical	representation	of	Table	3.	As	a	function	of	the	𝑝-value	range	of	a	study	
assumed	to	have	been	drawn	at	random	from	the	corpus,	these	graphs	show:	(top	left)	the	
25%,	50%,	and	75%	quantiles	of	the	exaggeration	factor;	(top	right)	the	actual	coverage	of	
the	standard	95%	confidence	interval;	(bottom	left)	the	probability	of	the	true	effect	having	
the	same	sign	as	the	estimate;	and	(bottom	right)	the	probability	that	a	replicated	study	of	
the	same	size	will	get	p	≤	0.05	(“statistically	significant	at	the	5%	level”)	and	have	the	same	
sign	as	the	estimate	from	the	original	study.	

3 Interpretation  
The	interpretation	of	𝑝-values	is	usually	discussed	without	reference	to	a	particular	study	
design	or	research	area.	By	referring	to	the	CDSR,	we	may	state	the	implications	of	
observing	a	particular	nominal	two-sided	𝑝-value	(or	equivalently,	an	absolute	𝑧-statistic)	
in	a	typical	clinical	trial,	without	conditioning	on	the	usually	unreasonable	null	hypothesis	
of	exactly	zero	effect.	The	use	of	a	two-sided	p-value	also	means	we	do	not	have	to	worry	
about	the	sign	of	the	effect,	which	has	been	a	contentious	issue	in	past	studies	of	empirical	
p-value	distributions18.	
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The	compilation	of	𝑧-statistics	from	the	CDSR	allows	us	to	estimate	properties	of	interest	
that	have	heretofore	been	thought	possible	only	if	we	had	a	Bayesian	prior	on	the	true	
effect	size.	The	true	effect	size	can	be	viewed	as	a	property	of	nature.	A	𝑧-statistic	depends	
on	both	the	true	effect	size	and	the	trial	design	-	including	the	sample	size	-	and	thus	does	
not	have	a	direct	biological	meaning.	However,	the	distribution	of	𝑧-statistics	across	the	
CDSR	does	reflect	the	effect	sizes	that	are	being	investigated	and	the	designs	of	the	clinical	
trials	that	are	used	in	practice.	RCTs	are	expensive,	and	investigators	typically	limit	their	
planned	size	to	what	is	needed	to	detect	plausible	or	important	anticipated	effects.	A	
standard	sample	size	calculation	with	two-sided	alpha=5%	and	power=90%	sets	the	“effect	
of	interest”	as	equal	to	3.2	SEs.	We	can	derive	from	the	distribution	of	𝑧-statistics	that	the	
median	power	across	the	CDSR	for	the	true	effect	is	in	fact	only	13%,	corresponding	to	a	far	
lower	SNR21.	

Tables	2	and	3	contain	several	other	quantities	that	can	be	derived	directly	from	the	
observed	distribution	of	the	𝑧-statistics.	These	results	may	be	interpreted	as	follows.	
Suppose	we	choose	a	trial	from	the	CDSR	at	random,	and	find	its	two-sided	𝑝-value	for	the	
primary	efficacy	outcome	is	between	0.01	and	0.05.	Then	we	estimate	that	there	is	a	75%	
probability	that	the	magnitude	of	the	effect	is	overestimated	by	at	least	5%,	a	50%	
probability	that	it	is	overestimated	by	at	least	56%,	and	a	25%	probability	that	it	is	
overestimated	by	at	least	181%.	This	phenomenon	is	like	the	infamous	“winner’s	curse”	in	
auctions2.	Its	connection	to	results	of	randomized	trials	has	been	pointed	out	by	several	
authors11	5	19.	Moreover,	conditionally	on	0.01	<	p	<	0.05,	the	probability	that	the	95%	
confidence	interval	covers	the	true	effect	is	only	90%.	Also,	the	probability	that	an	exact	
replication	study	will	yield	a	𝑝-value	less	than	0.05	is	only	37%.	Fortunately,	the	
probability	that	the	direction	(or	“sign”)	of	the	estimated	effect	is	correct	is	95%.	

Under	our	assumptions,	Tables	2	and	3	tell	us	what	it	means,	on	average,	to	observe	a	
particular	𝑝-value	in	a	study	drawn	at	random	from	the	population	represented	by	the	
CDSR.	Here	are	a	few	striking	features	of	Table	3:	

• The	overestimation	of	the	effect	is	already	severe	in	the	stratum	from	0.5	to	0.05.	
Thus,	the	“winner’s	curse”	is	something	of	a	misnomer	in	the	sense	that	the	
overestimation	is	not	tied	to	getting	p	≤	0.05.	

• The	coverage	of	the	95%	confidence	interval	is	greater	than	95%	for	large	𝑝-values	
and	less	than	95%	for	small	𝑝-values.	

• The	probability	of	the	correct	sign	is	already	high	in	the	stratum	from	0.05	to	0.01.	
• The	probability	of	a	replication	study	yielding	𝑝 ≤ 0.05	in	the	same	direction	is	

small,	even	in	the	stratum	from	0.005	to	0.001.	Thus,	a	replication	with	p	>	0.05	
does	not	imply	that	the	original	finding	was	a	fluke—at	least	not	in	the	context	of	
historical	clinical	trials	–	just	as	p	≤	0.05	in	the	original	study	does	not	imply	that	the	
initial	conclusion	was	correct,	especially	when	p	is	near	0.05.	

Elsewhere	we	have	studied	the	same	quantities	as	in	Tables	2	and	3,	and	found	similar	
results	despite	using	an	entirely	different	method	of	computation21	22	20.	In	those	papers	we	
conditioned	on	the	exact	𝑧-statistic	instead	of	stratifying	on	intervals.	
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For	the	most	common	p-values	when	“statistically	significance”	is	declared	(𝑝-values	from	
0.001	to	0.05),	we	expect	high	exaggeration	factors	(overestimating	effect	sizes	by	around	
50%	on	average),	mediocre	coverage	(nominal	95%	intervals	containing	the	true	value	
approximately	90%	of	the	time;	that	is,	double	the	nominal	error	rate),	and	a	probability	of	
successful	replication	of	p	≤	0.05	in	the	same	direction,	using	the	same	sample	size,	of	only	
a	little	over	40%.	Given	that	applied	researchers	still	commonly	interpret	results	in	terms	
of	“statistical	significance,”	we	believe	that	this	sort	of	empirical	calibration	can	yield	a	
helpful	grounding	in	reality,	either	as	a	corrective	to	naive	beliefs	about	95%	coverage	and	
replicability,	or	as	a	starting	point	for		a	more	targeted	Bayesian	analysis,	i.e.	with	a	
context-specific	prior.		

4 Discussion	
The	results	of	Tables	2	and	3	show	for	example	that	an	initial	p-value	between	0.001	and	
0.005	implies	a	only	a	58%	chance	of	getting	p	≤	0.05	upon	attempted	replication.	Some	
may	find	such	a	result	surprising.	We	suspect	that	this	surprise	stems	from	the	mistaken	
idea	that	a	small	p-value	confirms	that	the	original	trial	had	high	power	(80%	or	even	90%)	
and	that	it	is	therefore	likely	to	be	confirmed	in	a	subsequent	trial.	Nonetheless,	our	results	
show	that	a	p-value	between	0.001	and	0.005	indicates	the	estimated	effect	is	probably	a	
substantial	exaggeration	of	the	actual	effect,	making	the	actual	power	much	lower	than	it	
would	seem.	

Figure	1	shows	that	most	trials	have	low	power	against	the	true	effect.	This	should	not	be	a	
surprise,	given	that	medical	studies	can	be	expensive	and	difficult	to	run,	outcomes	are	
often	unpredictable,	and	there	are	clear	incentives	to	be	optimistic	about	effect	sizes	when	
designing	a	study.	If,	contrary	to	Figure	1,	studies	often	did	have80%	power,	then	we	would	
routinely	see	p-values	ranging	from	0.42	to	0.0000016,	and	we	would	see	p-values	less	
than	0.0005	at	least	a	quarter	of	the	time7.	As	it	is,	a	p-value	between	0.001	and	0.005	
should	not	be	taken	as	confirmation	that	a	study	was	highly	powered	relative	to	the	true	
effect	it	was	estimating.		

The	results	in	Tables	2	and	3	hold	not	only	for	a	randomly	selected	RCT	from	the	CDSR,	but	
also	for	a	randomly	selected	trial	from	the	population	of	all	trials	that	are	“exchangeable”	
with	those	in	the	CDSR,	i.e.,	trials	that	could	have	been	in	the	CDSR.		Although	authors	of	
systematic	reviews	are	encouraged	to	use	only	studies	that	are	sufficiently	rigorous,	there	
are	no	specific	inclusion	or	exclusion	criteria	for	the	CDSR13.	The	inclusion	of	a	trial	in	the	
CDSR	largely	depends	on	whether	someone	happens	to	be	interested	in	a	particular	
treatment	or	intervention,	so	the	CDSR	is	not	a	random	sample	from	the	population	of	all	
trials.	In	practical	terms,	“exchangeability	with	the	CDSR”	means	that	a	priori,	we	have	no	
reason	to	expect	the	statistical	properties	of	a	particular	trial	of	interest	to	differ	from	a	
randomly	selected	trial	from	the	CDSR.	As	such,	we	think	that	Tables	2	and	3	provide	a	
useful	frame	of	reference	to	interpret	the	result	of	a	randomized	clinical	trial.	

The	CDSR	represents	common	properties	of	trials,	in	particular	the	tendency	to	have	low	
power	against	the	true	effect.	This	background	information	is	important	when	interpreting	
the	result	of	a	particular	trial.	However,	we	will	always	have	information	about	a	particular	
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trial	that	sets	it	apart	from	all	other	trials;	the	disease,	treatment,	population,	trial	design,	
sponsor,	etc.	We	may	choose	to	ignore	that	information	or,	as	an	alternative,	incorporate	it	
into	a	prior	distribution	derived	from	other	available	studies	on	the	topic	and	do	a	fully	
Bayesian	analysis.	

We	used	the	z-statistics	as	we	found	them	in	the	CDSR,	which	means	in	almost	all	cases	that	
the	study	treatment	is	compared	to	some	control.	However,	we	do	not	know	if	a	particular	
outcome	or	event	is	good	or	bad	for	the	patient.	So,	we	do	not	know	which	direction	of	the	
effect	favors	the	study	treatment	which	means	that	we	do	not	have	access	to	the	one-sided	
p-values.	We	thus	used	the	two-sided	p-values,	or	equivalently,	the	absolute	values	of	the	z-
statistics.	As	a	result,	Tables	2	and	3	do	not	depend	on	the	direction	(sign)	of	the	effect	or	
whether	the	study	treatment	tends	to	be	superior	to	the	control	condition.		

While	our	quantitative	results	cannot	be	applied	directly	to	other	fields,	we	think	they	are	
qualitatively	relevant	for	fields	in	which	the	signal-to-noise	ratio	tends	to	be	low.	For	
example,	in	those	fields	𝑝-values	between	0.05	and	0.001	will	be	associated	with	
exaggerated	effect	estimates	and	low	replication	of	estimate	size	and	“statistical	
significance”	–	manifestations	of	the	familiar	phenomenon	of	regression	to	the	mean.		

We	have	assumed	that	the	sample	size	in	the	replication	study	is	the	same	as	that	in	the	
original	study.	Similar	calculations	show	that,	to	have	a	reasonable	chance	of	replicating	
(say)	p	≤	0.05,	follow-up	clinical	trials	must	be	many	times	larger	than	the	original	study20.	
A	large	number	of	scientific	fields	suffer	from	studies	with	inadequate	sample	sizes,	and	
use	p	≤	0.05	as	an	arbiter	of	claims.	It	is	thus	no	surprise	that	“replication	failure”	is	
commonly	reported.	Our	results	thus	reinforce	the	many	objections	to	equating	p	≤	0.05	or	
“statistical	significance”	with	effect	discovery	or	replication,	or	using	them	as	publication	
criteria23	12	1	14	24	15	10	9.		

5 Availability of data and code 
The	data	on	which	our	results	are	based	are	available	through	the	Open	Science	
Framework16.	R	code	to	reproduce	our	results	is	provided	in	the	Appendix.	
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