
Top journals in psychology routinely publish 
ridiculous, scientifically implausible claims, 

justified based on “p < 0.05”. Recent examples of such 
silliness include claimed evidence of extra-sensory 
perception (published in the Journal of Personality and 
Social Psychology), claims that women at certain stages 
of their menstrual cycle were three times more likely 
to wear red or pink clothing and 20 percentage points 
more likely to vote for the Democratic or Republican 
candidate for president (published in Psychological 
Science), and a claim that people react differently to 
hurricanes with male and female names (published in 
the Proceedings of the National Academy of Sciences). 

All these studies had serious flaws, to the extent 
that I (and others) found the claims to be completely 
unconvincing from a statistical standpoint, matching 
their general implausibility on substantive grounds.

It is easy to dismiss these particular studies, one at 
a time. But, to the extent that they are being conducted 
using standard statistical methods, this calls into question 
all sorts of more plausible, but not necessarily true, claims 

– claims that are supported by this same sort of evidence. 
To put it another way: we can all laugh at studies of ESP, 
or ovulation and voting, but what about MRI studies of 
political attitudes, or embodied cognition, or stereotype 
threat, or, for that matter, the latest potential cancer cure? 
If we cannot trust p-values, does experimental science 
involving human variation just have to start over? 

Figure 1 (page 34) demonstrates what can happen 
with classical hypothesis testing. A study is performed 
in which the underlying parameter of interest (typically 
a causal effect or some other sort of comparison 
in the general population) is relatively small, and 
measurements are noisy and biased (not uncommon in 
a psychology setting in which the underlying constructs 
are often not clearly defined). 

The particular example we were considering when 
constructing this graph is a published study claiming 
that, in the 2012 US presidential election, “Ovulation 
led single women to become more liberal, less religious, 
and more likely to vote for Barack Obama. In contrast, 
ovulation led married women to become more 

Working through 
some issues
Psychologists have long wrestled with 
the problem of replicability. Bayesian 
inference and a break with the 
deterministic model of science might offer 
some respite, says Andrew Gelman
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conservative, more religious, and more likely 
to vote for Mitt Romney.” 

This dramatic set of claims was supported 
by a statistically significant comparison: 
an interaction effect estimated at about 20 
percentage points that was more than two 
standard errors away from zero (a standard error 
being 8.1 percentage points in this example). 
Based on pre-election survey data, however, 
we believe that very few people changed their 
vote intentions during this campaign. A more 
plausible size of this menstrual-cycle effect 
would be 2 percentage points or less.

Hence, in Figure 1, the blue line 
indicating true effect size is at 2 percentage 
points, which is at the high end of any 
plausible effect here, and the bell-shaped curve 
shows the distribution of possible differences 
in the data that could be observed given this 
assumed effect size. Due to the high level of 
variation between people, the distribution 
is broad, indicating a wide range of possible 
data that could arise in such a study. The 
areas shaded red under the curve indicate the 
probability that the observed difference is 
“statistically significant”—that is, more than 
two standard errors away from zero. As the 

diagram indicates, a statistically significant 
finding here actually has a high probability 
of being in the wrong direction (a “Type S 
(sign)” error) and in any case will be at least 
16 percentage points – that is, at least eight 
times higher than the assumed true effect of 
2. In this sort of problem, classical hypothesis 
testing is a recipe for exaggeration.

When applied to the scientific process 
more generally, the result of all these 
hypothesis tests is a flow of noisy claims 
which bear only a weak relation to reality, but 
which attain statistical significance, which 
is, conventionally, a necessary and sufficient 
condition for publication, if said result is 
paired with any story that is qualitatively 
justified by a substantive theory.

Various researchers in psychology and 
medicine have made the following linked 
points: statistical significance cannot generally 
be taken at face value;1 a scientific publication 
system based on null hypothesis significance 
tests leads to large-scale errors in reporting; 
and these problems are particularly severe in 
the context of low signal and high noise.2

Psychology is particularly subject to such 
problems, for several reasons:

• The objects of study (mental states, 
personality traits, cognitive and social 
abilities) are inherently latent and can 
typically not be precisely defined.

• Theories are correspondingly vague (in 
comparison with physics or chemistry, 
say, or even medicine), in that the 
magnitude and even the direction of 
effects cannot always be predicted 
based on theoretical grounds.

• Variation between people is typically 
large, as is variation across repeated 
measurements within people; indeed, 
analysis of this variation is often a 
central research goal.

• The stakes are low so that it is easy 
to quickly do a small study and 
write up the conclusions. Unlike in 
medical research, there is no hurdle to 
performing a publishable study. This 
is not to say that psychology research 
is trivial; our point here is just that, 
compared to much medical research, 
typical studies in psychology have low, 
if any, risks to the participants, so the 
barriers to performing and publishing 
a study are minimal.

The resulting proliferation of studies with 
small effect sizes and high noise, along with 
a willingness of high-profile, prestigious 
journals such as Psychological Science and the 
Proceedings of the National Academy of Sciences 
to publish surprising, newsworthy findings 
based on statistically significant comparisons, 
has led us to a crisis in scientific replication.

Based on the considerations discussed 
above, I would say that the most important 
way that statistics can help solve the 
replication crisis is to recognise the 
fundamental nature of the problem: if effects 
are small and measurements are biased and 
noisy, there is no way out, other than to put 
effort into taking measurements that are more 
valid and reliable, most notably in psychology 
studies by using more carefully designed 
instruments and performing within-person 
comparison where possible to reduce variance.

Once better data have been collected, 
how can statistical inference help? Given the 
problems with classical significance testing, 
there should be something better. Some have 
suggested replacing hypothesis tests with 
confidence intervals, but this by itself will 
not solve any problems: checking whether a 
95% interval excludes zero is mathematically 

Figure 1. A study has low power when the population difference or effect size is small, while variation and 
measurement are also small. In low-power studies, the “Type S (sign) error rate” – the probability that the 
observed difference is in the opposite direction to the true effect or population difference – can be high, even 
if the estimate is statistically significant. And the “exaggeration ratio” – the factor by which the observed 
estimate exceeds the true parameter value being estimated – can be huge. The particular numbers in this graph 
come from a study of a difference in political attitude, comparing women at different times in their menstrual 
cycles, for which we know, based on substantive grounds, that the true population effect size could be at 
most 2 percentage points. The bell-shaped curve represents the distribution of estimates that could occur in a 
study with this precision. The shaded red areas indicate the probability of obtaining a statistically significant 
effect (the “power”, which in this case is 6%). Given the precision of this particular study, for an estimate to 
be statistically significant it would have to be at least 16 percentage points (that’s two standard errors away 
from zero), hence at least eight times larger than any true effect. And the probability that an estimate in this 
example is the wrong sign, if it is statistically significant, is 24% – the proportion of the red shaded areas on 
the negative side of the graph

An example of a "power = 0.06" study.  Get used to it.

Estimated effect size
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True
effect size
(assumed
to be 2% in
this example)

Type S error probability:
If the estimate is
statistically significant,
it has a 24% chance of
having the wrong sign.

Exaggeration ratio:
If the estimate is
statistically significant,
it must be at least 16%
in this example:  at
least 8 times higher
than the true effect size.

An example of a “power = 6%” study 
(get used to it!).
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equivalent to checking whether p < 0.05. And, 
just as statistically significant results can be 
huge overestimates, confidence intervals can 
similarly contain wildly implausible effect 
sizes, estimates that happen to be consistent 
with the data at hand but make no sense in 
the context of subject-matter understanding. 

One direction for statistical analysis 
that appeals to me is Bayesian inference, an 
approach in which data are combined with 
prior information (in this case, the prior 
expectation that newly studied effects tend to 
be small, which leads us to downwardly adjust 
large estimated effects in light of the high 
probability that they could be coming largely 
from noise). I do see a potential Bayesian 
solution using informative priors and models 
of varying treatment effects,3 but these steps 
will not be easy because they move away from 
the usual statistical paradigm in which each 
scientific study stands alone.

To resolve the replication crisis in science 
we may need to consider each individual 
study in the context of an implicit meta-
analysis. And we need to move away from a 
simplistic deterministic model of science with 
its paradigm of testing and sharp decisions: 
accept/reject the null hypothesis and do/don’t 
publish the paper. To say that a claim should 
be replicated is not to criticise the original 
study; rather, replication is central to science, 
and statistical methods should recognise this. 
We should not get stuck in the mode in which 
a “data set” is analysed in isolation, without 
consideration of other studies or relevant 
scientific knowledge. We must embrace 
variation and accept uncertainty.
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Psychology 
and statistics, 
continued…

Readers respond to the 
BASP ban on p-values

Andrew Gelman is not alone in questioning the way 
p-values are used in psychology. Earlier this year the 
journal Basic and Applied Social Psychology (BASP) 
decided to ban the null hypothesis significance testing 
procedure (NHSTP) from the papers it published.
The decision was motivated by “the logical invalidity 
of the NHSTP”, said BASP editor David Trafimow 
– his argument being that p-values say nothing about 
the probability of a null hypothesis being false, so they 
should not be used to reject it. Our April report of the 
story prompted a handful of responses from readers, 
two of which are published below.

Though I agree with the criticisms and 
cautions that have been raised about the 
NHSTP, I feel, as others do, that an outright 
ban on its use is unwarranted, and I hope the 
editors of BASP reconsider their decision. 

In my opinion, the controversy 
regarding the NHSTP partly misplaces the 
locus of the problem. I believe a big difficulty 
with the current use of the NHSTP is the 

exaggerated practical implications that have 
come to be attached to its results. It seems 
to me that the debate on the NHSTP is 
implicitly fuelled by the excessive weight 
given to whether a study’s primary results 
are statistically significant in determining 
whether the study gets reported in the 
literature. A study with non-significant 
findings is often considered a “failure” not 
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