
Some Issues in Monitoring Convergence of Iterative SimulationsStephen Brooks and Andrew GelmanAbstract:In this paper, we discuss some recent results andopen questions concerning monitoring convergenceof iterative simulations. We begin by discussing thevarious approaches to convergence assessment pro-posed in the literature, grouping the methods ac-cording to their underlying principles. We then dis-cuss how MCMC simulations can be constructed sothat convergence monitoring is simpli�ed. Finally,we discuss some new convergence assessment ideasthat are the focus of current work.Key Words: Markov chain Monte Carlo; Conver-gence Diagnosis; Inference.1. IntroductionIterative simulations, especially Markov chainMonte Carlo (MCMC) methods, have been increas-ingly popular in statistical computation, most no-tably for drawing simulations from Bayesian poste-rior distributions, see Gilks et al (1996) and Brooks(1998a) for example. In addition to any implementa-tional di�culties and computing resources required,iterative simulation presents two problems beyondthose of traditional statistical methods. First, whenrunning an iterative algorithm, one must decidewhen to stop the iterations or, more precisely, onemust judge how close the algorithm is to convergenceafter a �nite number of iterations. Secondly, MCMCsimulation converges to a target distribution, ratherthan a target point. This leads to many practicaldi�culties; see Kass et al (1997) for example.1.1 Monitoring Convergence of IterativeSimulation in General, not just MCMCConvergence problems apply quite generally to it-erative simulation algorithms, not just to MCMCalgorithms. For example Gelman (1992) discusseshow importance sampling methods are in fact iter-ative and, in general, result in draws from the tar-get distribution only in the limit as the number ofStephen Brooks, Department of Mathematics, Univer-sity Walk, Bristol, BS8 1TW, UK. (Steve.Brooks@bris.ac.uk).Andrew Gelman, Department of Statistics, Columbia Univer-sity, New York, USA. (gelman@stat.columbia.edu). We thankthe U.S. National Science Foundation for grants SBR-9708424and Young Investigator Award DMS-9796129.

iterations approaches in�nity. One way of seeingthis approximate nature of importance sampling isto note that ratio estimates of importance-weightedmeans, Pni=1 wih(�i)=Pni=1 wi are unbiased only inthe limit as n ! 1, and that this convergence (aswell as more practical issues of the variance of theestimate in a �nite sample) depends upon the up-per tail of the distribution of the weights wi. Liu etal (1998) note the duality between this \importanceweight in�nity" and the \waiting time in�nity" ofMCMC and rejection sampling.1.2 Categorisation of Methods for Monitor-ing ConvergenceIn this paper, we discuss some recent results andopen questions in monitoring the convergence of it-erative simulations. We begin by brie
y categorisingthe techniques that can be used to monitor conver-gence.1. Methods for assessing convergence withoutanalysis of simulation output. This can be donein several ways, including:(a) Designing the simulation algorithm to pro-duce independent draws from the targetdistribution. Examples include (i) rejec-tion sampling using a proposal functionthat uniformly dominates the target den-sity, (ii) coupling and regeneration meth-ods in MCMC (Nummelin, 1978, Myklandet al, 1995 and Johnson, 1998) and (iii) the\perfect simulation" method of Propp andWilson (1996), in cases where it is com-putationally feasible. In each of these ap-proaches, the time required to wait untilthe next independent draw is a randomvariable, which can limit the e�ectivenessof these methods if the waiting time is toolong.(b) Theoretical (analytic) results boundingthe di�erence between the simulation andtarget distributions after some speci�ednumber of iterations. Reasonable resultsof this type have appeared only for somevery simple models, see Rosenthal (1995)and Cowles and Rosenthal (1998), for ex-ample. Though the most recent work has



improved considerably the state of the artin this area (see for example Roberts andTweedie, 1998a,b), it is still unrealistic toexpect this approach to become widely ap-plicable in MCMC simulation except incertain special cases (most notably theso-called slice sampler, see Roberts andRosenthal, 1998). It is also worth not-ing that the time to convergence of thesemethods generally depends upon the start-ing points of the simulation.2. Methods for detecting mixing of Markov chainsamplers. Probably the most commonly-usedconvergence diagnostics make use of the factthat most MCMC algorithms have a random-walk behaviour in which a simulated chain grad-ually spreads out from its starting point to er-godically cover the space of the target distribu-tion. Convergence occurs when the chain hasfully spread to the target distribution, whichcan be judged in three basic ways:(a) Monitoring trends. Given a single MCMCsequence, one can judge mixing by lookingfor trends in the simulation (Yu, 1995, Yuand Mykland, 1998, and Brooks 1998b);unfortunately, such an approach will notnecessarily detect lack of convergence of aslowly-moving sequence (Gelman and Ru-bin, 1992b).(b) Monitoring autocorrelation. E�ciency ofsimulations can be judged by autocorrela-tions, and this approach can also be usedto obtain approximately independent sim-ulation draws (Raftery and Lewis, 1992).This approach however can also be fooledby very slow-moving series and thus is per-haps most e�ective as a measure of e�-ciency for an MCMC algorithm for whichconvergence has already been judged byother means.(c) Monitoring mixing of sequences. Gelmanand Rubin (1992a) proposed directly mon-itoring the mixing of simulated sequencesby comparing the variance within each se-quence to the total variance of the mixtureof the sequences. This is an adaptation ofstatistical analysis of variance to the stan-dard multiple-sequence approaches in sta-tistical physics (see, e.g., Fosdick, 1959).Interestingly, the approaches based upon de-tecting a lack of mixing are ine�ective in mon-itoring convergence of non-Markov-chain iter-

ative simulation methods such as importancesampling, for which successive draws are notnearby in the parameter space. This is anotherargument in favour of the use of MCMC in pref-erence to other iterative simulation methods. Itis interesting that autocorrelation or locality ofrandom-walk or state-space algorithms, whichis generally perceived as a drawback (since itdecreases the e�ciency of simulations), is actu-ally an advantage in convergence monitoring.3. Methods based upon sequential testing of por-tions of simulation output in order to deter-mine whether or not they could be consideredto have been drawn from the same distribution.Methods of this sort sequentially discard an in-creasing proportion of the early simulated val-ues and divide the remaining observations intothree blocks. The observations in the �rst andthird block are then compared and a formal pro-cedure used to test the null hypothesis that thesimulated observations are drawn from the samedistribution. If the test is rejected then more ofthe early values are discarded and the testingprocedure is repeated. If the test is accepted,then it is assumed that the discarded observa-tions covered the burn-in period and that theremaining observations are all generated fromthe same (assumed to be the stationary) den-sity. See Geweke (1992) and Heidelberger andWelch (1983), for example. Such approachescan be considered as a special case of methodsfor detecting trends, as discussed in item 2(a)above.4. Methods based upon functions of the simu-lation output that are related to the simula-tion algorithm in a known way, such as im-portance ratios, acceptance probabilities, tran-sition probabilities, and posterior densities. Im-portance ratios and acceptance probabilitieshave been useful in approximately evaluatingthe e�ciency of importance sampling (Kong,1992) and Metropolis algorithms (Gelman etal, 1996) once convergence has been reached,but they do not seem very powerful in detect-ing poor convergence if used alone. More e�ec-tive approaches combine importance ratios withother information, as in the methods of Cui et al(1992), Roberts (1992), Liu et al (1993) andBrooks et al (1997).5. Methods based upon estimating some aspect ofthe target distribution in more than one way,with the knowledge that the estimates should



be identical (within sampling variation) at con-vergence. One such method is to compare em-pirical joint density estimates to the target den-sity function itself, which seems to work well insome moderate-dimensional problems (Ostlandand Yu, 1997). Another approach is to compareempirical estimates of marginal densities to es-timates obtained from path sampling (Gelmanand Meng, 1998). We imagine that much morework could be done in this area, especially ifcombined with the methods discussed in item 4above, and considering the inherent redundancyof the information available in the unnormaliseddensity function and the simulations themselves(see also O'Hagan, 1987).2. Designing the Simulations toMake Convergence MonitoringMore ReliableWe can think of structuring the simulations as aproblem in experimental design for sequential anal-ysis, in which we wish to design our simulation pro-cedure so as to achieve the following goals using theminimum amount of simulation time: (a) we wish toobtain inference for functionals of the target distri-bution (for example, accurate estimates for expecta-tions E [h(�)]), (b) we wish to obtain inference fromthe target distribution (for example, 95% intervalsfor functions h(�) that should have approximately95% coverage under the target distribution), and(c) we wish to reliably monitor convergence for thesummaries of interest. In the simulation literature,there is much written about the e�ect of design uponthe precision of estimates (a), some written aboutinferences (b), and very little about (c), which weshall consider here (see also the �rst paragraph ofGelfand, 1992).Consider the following design factors that we cancontrol:1. Type of simulation algorithm (importancesampling, Gibbs, Metropolis-Hastings, hybridMCMC, etc.; see Neal, 1993, for a statisticalreview)2. Structure of implementation (schedule of ap-proximate distributions for importance sam-pling; parameterisation and blocking in Gibbs;form of jumping rule in Metropolis-Hastings;choice of auxiliary variables and possible tem-pering schemes; etc.3. Details of implementation (scaling of jumpingrules, updating schedules, etc.)

4. Starting points of the simulations and numberof parallel sequencesSome of the most e�ective or promising ap-proaches to diagnosing convergence are based upondesign considerations.� Most familiarly, it is desirable to design an ef-�cient implementation of the simulation algo-rithm to avoid di�culties such as MCMC sam-plers getting stuck near local modes.� More sophisticated approaches such as couplingand regeneration involve designing the simula-tion algorithm in order that they work e�ec-tively (e.g., with reasonably short regenerationtimes).� Auxiliary-variable methods can allow parame-terisations (Liu et al, 1998) and model indi-cators (Green, 1995) to be random variables,which gives additional 
exibility in design.� Simulating multiple sequences allows the useof between and within variance components tomonitor convergence, and is also useful in cou-pling schemes (Johnson, 1996, 1998).� As noted above, the local property of mostMarkov chain simulation algorithms allows theuser to identify \convergence" with \mixing."� Overdispersed starting points, along with thelocal property, allows the user to compare theincreasing within-sequence variance to the de-creasing between-sequence variance (see Brooksand Gelman, 1998).3. New Methods of Detecting Mixingusing Multiple SequencesBrooks and Gelman (1998) and Brooks and Giudici(1998) propose some generalisations of the methodof Gelman and Rubin (1992a) for monitoring con-vergence using output analysis of multiple sequencesof Markov chain simulation. We can categorise thegeneralisations as follows:1. Monitoring \mixing" in terms of increas-ing within-sequence variability and decreasingbetween-sequence variability, rather than sim-ply the ratio of the two. Brooks and Gel-man (1998) illustrate with an example that lackof convergence can sometimes be detected byexamining the empirical within and between-sequence variances on a single plot.



2. More e�ective construction of overdispersedstarting points. In some examples, these canbe obtained simply by sampling from the priordistribution, but in more complicated problemsthis will not work because, if the parameters areso overdispersed that they have very low prob-ability in the target distribution, then the �rstfew steps of an MCMC algorithmmay pull themall the way to the centre of the distribution, thusremoving the overdispersion.A. Zaslavsky (pers. comm.) proposes the follow-ing strategy: set some of the hyperparametersat overdispersed values, then run the Markovchain for a short time with these hyperparam-eters �xed so that each sequence settles downto a relatively stable position. These are thenused as overdispersed starting points.More elaborate schemes are possible using sim-ulated annealing or tempering ideas (Geyer,1991), for example. At �rst it may seem ex-cessive to consider using such elaborate ap-proaches just to obtain overdispersed startingpoints|but in many examples, reliable conver-gence monitoring is as important as e�ciency insimulation, and it is an important research goalto merge these two aims, rather than taking ei-ther of the two extremes of (a) blindly relyingupon output analysis to judge convergence incomplicated problems, or (b) designing a simu-lation that might be e�cient but does not havethe information to allow one to diagnose con-vergence problems.3. Summarising mixing using more general statis-tics than variances. Brooks and Gelman (1998)report successes (and some counterintuitive re-sults) using interval widths and coverage prob-abilities. Both these summaries are appealingbecause they closely correspond to the methodsused to summarise inference after convergence.4. Generalising the analysis-of-variance approachto measure di�erent levels of mixing. Brooksand Giudici (1998) apply the analysis of vari-ance approach to output from MCMC algo-rithms that move in a varying-dimensional pa-rameter space (as in the reversible jump MCMCalgorithm of Green, 1995). In this case, thereare variance components between and withinmodels as well as sequences (essentially a 3-wayANOVA). In addition, one could apply simi-lar hierarchical analysis to elaborate structuresof starting points (for example, 3 sequencesstarting from each of 5 overdispersed starting

points), or for more complicated algorithmsthat involve the splitting of multiple sequences(e.g., Gilks and Berzuini, 1998). In the lattercase, one would expect mixing to begin aftereach split.5. Extending the variance-based approach to con-sider vector statistics of interest. Brooks andGelman (1998) generalise the original univariatediagnostic to consider groups of parameters si-multaneously. They show how sample variance-covariance matrices can be compared via theirprincipal eigenvalues in order to gain a scalarpotential scale reduction factor (PSRF) provid-ing an upper bound to the original PSRF'sformed from monitoring any of the correspond-ing parameters individually. This generalisationimproves the interpretability of the original di-agnostic, for problems where many parametersneed to be monitored simultaneously.4. Monitoring Convergence using In-variants of the Target DistributionAnother approach to detecting lack of convergenceis to estimate, using simulation, quantities that haveknown values under the target distribution. If �denotes the parameter vector sampled via iterativesimulation, then we can use simulation draws to es-timate E [h(�)] for any computable function h. Manydiagnostic techniques are based upon monitoringfunctionals which converge to some speci�c value.However, in general this value is not known and sothe resulting diagnostic is rather hard to interpretin that it may have settled to some value, but itis unclear whether or not it is the true value. Ofcourse, these problems would be removed if we knewwhat the true expectation of h was under the sta-tionary distribution, and current work on this ideais focussed upon trying to �nd functions, or familiesof functions, for which this is the case.As an example, one such function is the score func-tion. If � 2 E � RK , and we let �(�) denote the tar-get distribution for the simulations, then we mighttake hk(�) = d log�(�)d�k ; k = 1; :::;K:It is simple to show that, under fairly general con-ditions on the density �, E� [hk(�)] = 0 for allk = 1; :::;K. Thus, we might monitor each of thesehk functions until they appear to settle to aroundzero.



In addition, because it focuses upon univariatesummaries, this approach might be combined withthe convergence check based on path sampling (Gel-man and Meng, 1998), which in turn is related tochecking the marginal distribution of simulated tem-pering (Geyer and Thompson, 1995). All of theseapproaches have the virtue of being applicable to it-erative simulations in general, not just MCMC, be-cause they do not make use of the locality property.5. Monitoring Convergence using Ex-pected PerturbationsConsider the following situation: you have 5000 sim-ulation draws, obtained by subsampling from longMCMC runs, and that you are willing to believe haveapproximately converged to the posterior distribu-tion of a particular model. Data are now added orremoved, creating a new posterior distribution thatyou wish to summarise. (Adding data is natural; re-moving data could occur in a study of optimal designor for cross-validation.) You can write the unnor-malised posterior density for the new distribution,but you would rather not take the time to run a fullMCMC simulation from this model. Rather, youwill compute the importance ratios (easy to com-pute: they depend only on the added or subtracteddata) of the new versus the old model for the 5000draws, and then summarise the new posterior distri-bution using importance-weighted averages.As discussed in Section 1.1, importance-weightedaverages are in reality iterative simulation estimates,and it is vital in this situation to assess the conver-gence given the �nite sample of size n = 5000.We �rst note that, if necessary, we can improvethe simulations by using the importance-weighteddraws as starting points for an MCMC scheme suchas the Metropolis-Hastings algorithm, or perhaps aspart of a more elaborate method combining impor-tance weights with MCMC jumps; see Gilks andBerzuini (1998), Wong and Liang (1997) and Liuet al (1998). This additional MCMC is only neces-sary if the desired target distribution is shifted insome way from the importance-weighted approxi-mate distribution. This suggests the following di-agnostic: run the Metropolis-Hastings algorithm forone step and see if the expected shift in the weightedmeans of the simulations is signi�cantly di�erent(statistically) from zero. Note that by computingonly one step, we can average over the acceptancesand rejections of the Metropolis-Hastings jump andthus achieve higher precision in our diagnostic withno extra computing cost.A simple di�erential analysis shows that, in the

limit of in�nitely small spherical Metropolis jumps,this method is equivalent in expectation to the score-function convergence diagnostic in Section 4. Thissuggests that the score-function diagnostic is su-perior (as it eliminates the variability due to theMetropolis jumping itself); however, the expected-perturbations test may be more e�ective in someexamples as it allows larger jumps and is thus not apurely local measure.6. DiscussionNo discussion of the issue of convergence assessmenttechniques could be complete without some moregeneral discussion of the wider context of their use.One issue relating to convergence assessment thatis rarely discussed in the literature is the fact thatdeciding to stop the simulation on the basis of anoutput-based diagnostic can induce a bias in the re-sulting estimates. Cowles et al (1997) illustrate thisidea for a number of simple models and diagnostictechniques. A simple illustration of the general ideacan be seen by observing that stationarity is lesslikely to be diagnosed on occasions when the sam-ple path is out in the tails of the distribution, andso variances (for example) are likely to be under-estimated when many of the standard convergencediagnostics are used. Of course, the e�ect of this biascan be minimised by using overdispersed startingpoints and generating large post-convergence sam-ples. However, the existence of a bias in such sim-ple cases raises the question of what may happenfor more complicated problems where both the sam-pling algorithm and posterior surface may be lesswell understood.Another issue, discussed by Brooks and Gelman(1998), is that the question of convergence depends,in general, upon what the simulations will be usedfor. For example, when computing posterior inter-vals, there is a natural limit on the necessary pre-cision of inferences (e.g., the 95% interval [3:5; 8:4]is as good, in practice, as [3:51345; 8:37802]). Incontrast, when estimating functionals such as poste-rior expectations (which are generally unnecessary inBayesian inference, but are needed in decision anal-yses and in certain physical models such as thosefor which MCMC methods were originally designed),the required precision of inferences must be given ex-ternally. Thus, no automatic convergence test couldwork in such a setting without some input as to thedesired precision level.In conclusion, the goal of this article is to brie
ydiscuss some of the important ideas, principles, andassumptions underlying convergence diagnostics for
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