Some Issues in Monitoring Convergence of Iterative Simulations

Stephen Brooks and Andrew Gelman

Abstract:

In this paper, we discuss some recent results and
open questions concerning monitoring convergence
of iterative simulations. We begin by discussing the
various approaches to convergence assessment pro-
posed in the literature, grouping the methods ac-
cording to their underlying principles. We then dis-
cuss how MCMC simulations can be constructed so
that convergence monitoring is simplified. Finally,
we discuss some new convergence assessment ideas
that are the focus of current work.
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1. Introduction

Iterative simulations, especially Markov chain
Monte Carlo (MCMC) methods, have been increas-
ingly popular in statistical computation, most no-
tably for drawing simulations from Bayesian poste-
rior distributions, see Gilks et al (1996) and Brooks
(1998a) for example. In addition to any implementa-
tional difficulties and computing resources required,
iterative simulation presents two problems beyond
those of traditional statistical methods. First, when
running an iterative algorithm, one must decide
when to stop the iterations or, more precisely, one
must judge how close the algorithm is to convergence
after a finite number of iterations. Secondly, MCMC
simulation converges to a target distribution, rather
than a target point. This leads to many practical
difficulties; see Kass et al (1997) for example.

1.1 Monitoring Convergence of Iterative
Simulation in General, not just MCMC

Convergence problems apply quite generally to it-
erative simulation algorithms, not just to MCMC
algorithms. For example Gelman (1992) discusses
how importance sampling methods are in fact iter-
ative and, in general, result in draws from the tar-
get distribution only in the limit as the number of
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iterations approaches infinity. One way of seeing
this approximate nature of importance sampling is
to note that ratio estimates of importance-weighted
means, y .., w;h(0;)/ >, w; are unbiased only in
the limit as n — oo, and that this convergence (as
well as more practical issues of the variance of the
estimate in a finite sample) depends upon the up-
per tail of the distribution of the weights w;. Liu et
al (1998) note the duality between this “importance
weight infinity” and the “waiting time infinity” of
MCMC and rejection sampling.

1.2 Categorisation of Methods for Monitor-
ing Convergence

In this paper, we discuss some recent results and
open questions in monitoring the convergence of it-
erative simulations. We begin by briefly categorising
the techniques that can be used to monitor conver-
gence.

1. Methods for assessing convergence without
analysis of simulation output. This can be done
in several ways, including:

(a) Designing the simulation algorithm to pro-
duce independent draws from the target
distribution. Examples include (i) rejec-
tion sampling using a proposal function
that uniformly dominates the target den-
sity, (ii) coupling and regeneration meth-
ods in MCMC (Nummelin, 1978, Mykland
et al, 1995 and Johnson, 1998) and (iii) the
“perfect simulation” method of Propp and
Wilson (1996), in cases where it is com-
putationally feasible. In each of these ap-
proaches, the time required to wait until
the next independent draw is a random
variable, which can limit the effectiveness
of these methods if the waiting time is too
long.

(b) Theoretical (analytic) results bounding
the difference between the simulation and
target distributions after some specified
number of iterations. Reasonable results
of this type have appeared only for some
very simple models, see Rosenthal (1995)
and Cowles and Rosenthal (1998), for ex-
ample. Though the most recent work has



improved considerably the state of the art
in this area (see for example Roberts and
Tweedie, 1998a.b), it is still unrealistic to
expect this approach to become widely ap-
plicable in MCMC simulation except in
certain special cases (most notably the
so-called slice sampler, see Roberts and
Rosenthal, 1998). It is also worth not-
ing that the time to convergence of these
methods generally depends upon the start-
ing points of the simulation.

2. Methods for detecting mixing of Markov chain

samplers. Probably the most commonly-used
convergence diagnostics make use of the fact
that most MCMC algorithms have a random-
walk behaviour in which a simulated chain grad-
ually spreads out from its starting point to er-
godically cover the space of the target distribu-
tion. Convergence occurs when the chain has
fully spread to the target distribution, which
can be judged in three basic ways:

(a) Monitoring trends. Given a single MCMC
sequence, one can judge mixing by looking
for trends in the simulation (Yu, 1995, Yu
and Mykland, 1998, and Brooks 1998b);
unfortunately, such an approach will not
necessarily detect lack of convergence of a

slowly-moving sequence (Gelman and Ru-
bin, 1992b).

(b) Monitoring autocorrelation. Efficiency of
simulations can be judged by autocorrela-
tions, and this approach can also be used
to obtain approximately independent sim-
ulation draws (Raftery and Lewis, 1992).
This approach however can also be fooled
by very slow-moving series and thus is per-
haps most effective as a measure of effi-
ciency for an MCMC algorithm for which
convergence has already been judged by
other means.

(c) Monitoring mixing of sequences. Gelman
and Rubin (1992a) proposed directly mon-
itoring the mixing of simulated sequences
by comparing the variance within each se-
quence to the total variance of the mixture
of the sequences. This is an adaptation of
statistical analysis of variance to the stan-
dard multiple-sequence approaches in sta-
tistical physics (see, e.g., Fosdick, 1959).

Interestingly, the approaches based upon de-
tecting a lack of mixing are ineffective in mon-
itoring convergence of non-Markov-chain iter-

ative simulation methods such as importance
sampling, for which successive draws are not
nearby in the parameter space. This is another
argument in favour of the use of MCMC in pref-
erence to other iterative simulation methods. It
is interesting that autocorrelation or locality of
random-walk or state-space algorithms, which
is generally perceived as a drawback (since it
decreases the efficiency of simulations), is actu-
ally an advantage in convergence monitoring.

. Methods based upon sequential testing of por-

tions of simulation output in order to deter-
mine whether or not they could be considered
to have been drawn from the same distribution.
Methods of this sort sequentially discard an in-
creasing proportion of the early simulated val-
ues and divide the remaining observations into
three blocks. The observations in the first and
third block are then compared and a formal pro-
cedure used to test the null hypothesis that the
simulated observations are drawn from the same
distribution. If the test is rejected then more of
the early values are discarded and the testing
procedure is repeated. If the test is accepted,
then it is assumed that the discarded observa-
tions covered the burn-in period and that the
remaining observations are all generated from
the same (assumed to be the stationary) den-
sity. See Geweke (1992) and Heidelberger and
Welch (1983), for example. Such approaches
can be considered as a special case of methods
for detecting trends, as discussed in item 2(a)
above.

. Methods based upon functions of the simu-

lation output that are related to the simula-
tion algorithm in a known way, such as im-
portance ratios, acceptance probabilities, tran-
sition probabilities, and posterior densities. Im-
portance ratios and acceptance probabilities
have been useful in approximately evaluating
the efficiency of importance sampling (Kong,
1992) and Metropolis algorithms (Gelman et
al, 1996) once convergence has been reached,
but they do not seem very powerful in detect-
ing poor convergence if used alone. More effec-
tive approaches combine importance ratios with
other information, as in the methods of Cui et al
(1992), Roberts (1992), Liu et al (1993) and
Brooks et al (1997).

. Methods based upon estimating some aspect of

the target distribution in more than one way,
with the knowledge that the estimates should



be identical (within sampling variation) at con-
vergence. One such method is to compare em-
pirical joint density estimates to the target den-
sity function itself, which seems to work well in
some moderate-dimensional problems (Ostland
and Yu, 1997). Another approach is to compare
empirical estimates of marginal densities to es-
timates obtained from path sampling (Gelman
and Meng, 1998). We imagine that much more
work could be done in this area, especially if
combined with the methods discussed in item 4
above, and considering the inherent redundancy
of the information available in the unnormalised
density function and the simulations themselves
(see also O’Hagan, 1987).

2. Designing the Simulations to
Make Convergence Monitoring
More Reliable

We can think of structuring the simulations as a
problem in experimental design for sequential anal-
ysis, in which we wish to design our simulation pro-
cedure so as to achieve the following goals using the
minimum amount of simulation time: (a) we wish to
obtain inference for functionals of the target distri-
bution (for example, accurate estimates for expecta-
tions E[h(6)]), (b) we wish to obtain inference from
the target distribution (for example, 95% intervals
for functions h(f) that should have approximately
95% coverage under the target distribution), and
(c) we wish to reliably monitor convergence for the
summaries of interest. In the simulation literature,
there is much written about the effect of design upon
the precision of estimates (a), some written about
inferences (b), and very little about (c), which we
shall consider here (see also the first paragraph of
Gelfand, 1992).

Consider the following design factors that we can
control:

1. Type of simulation algorithm (importance
sampling, Gibbs, Metropolis-Hastings, hybrid
MCMC, etc.; see Neal, 1993, for a statistical
review)

2. Structure of implementation (schedule of ap-
proximate distributions for importance sam-
pling; parameterisation and blocking in Gibbs;
form of jumping rule in Metropolis-Hastings;
choice of auxiliary variables and possible tem-
pering schemes; etc.

3. Details of implementation (scaling of jumping
rules, updating schedules, etc.)

4. Starting points of the simulations and number
of parallel sequences

Some of the most effective or promising ap-
proaches to diagnosing convergence are based upon
design considerations.

e Most familiarly, it is desirable to design an ef-
ficient implementation of the simulation algo-
rithm to avoid difficulties such as MCMC sam-
plers getting stuck near local modes.

e More sophisticated approaches such as coupling
and regeneration involve designing the simula-
tion algorithm in order that they work effec-
tively (e.g., with reasonably short regeneration
times).

e Auxiliary-variable methods can allow parame-
terisations (Liu et al, 1998) and model indi-
cators (Green, 1995) to be random variables,
which gives additional flexibility in design.

e Simulating multiple sequences allows the use
of between and within variance components to
monitor convergence, and is also useful in cou-
pling schemes (Johnson, 1996, 1998).

e As noted above, the local property of most
Markov chain simulation algorithms allows the
user to identify “convergence” with “mixing.”

e Overdispersed starting points, along with the
local property, allows the user to compare the
increasing within-sequence variance to the de-
creasing between-sequence variance (see Brooks
and Gelman, 1998).

3. New Methods of Detecting Mixing
using Multiple Sequences

Brooks and Gelman (1998) and Brooks and Giudici
(1998) propose some generalisations of the method
of Gelman and Rubin (1992a) for monitoring con-
vergence using output analysis of multiple sequences
of Markov chain simulation. We can categorise the
generalisations as follows:
1. Monitoring “mixing” in terms of increas-
ing within-sequence variability and decreasing
between-sequence variability, rather than sim-
ply the ratio of the two. Brooks and Gel-
man (1998) illustrate with an example that lack
of convergence can sometimes be detected by
examining the empirical within and between-
sequence variances on a single plot.



2. More effective construction of overdispersed
starting points. In some examples, these can
be obtained simply by sampling from the prior
distribution, but in more complicated problems
this will not work because, if the parameters are
so overdispersed that they have very low prob-
ability in the target distribution, then the first
few steps of an MCMC algorithm may pull them
all the way to the centre of the distribution, thus
removing the overdispersion.

A. Zaslavsky (pers. comm.) proposes the follow-
ing strategy: set some of the hyperparameters
at overdispersed values, then run the Markov
chain for a short time with these hyperparam-
eters fixed so that each sequence settles down
to a relatively stable position. These are then
used as overdispersed starting points.

More elaborate schemes are possible using sim-
ulated annealing or tempering ideas (Geyer,
1991), for example. At first it may seem ex-
cessive to consider using such elaborate ap-
proaches just to obtain overdispersed starting
points but in many examples, reliable conver-
gence monitoring is as important as efficiency in
simulation, and it is an important research goal
to merge these two aims, rather than taking ei-
ther of the two extremes of (a) blindly relying
upon output analysis to judge convergence in
complicated problems, or (b) designing a simu-
lation that might be efficient but does not have
the information to allow one to diagnose con-
vergence problems.

3. Summarising mixing using more general statis-
tics than variances. Brooks and Gelman (1998)
report successes (and some counterintuitive re-
sults) using interval widths and coverage prob-
abilities. Both these summaries are appealing
because they closely correspond to the methods
used to summarise inference after convergence.

4. Generalising the analysis-of-variance approach
to measure different levels of mixing. Brooks
and Giudici (1998) apply the analysis of vari-
ance approach to output from MCMC algo-
rithms that move in a varying-dimensional pa-
rameter space (as in the reversible jump MCMC
algorithm of Green, 1995). In this case, there
are variance components between and within
models as well as sequences (essentially a 3-way
ANOVA). In addition, one could apply simi-
lar hierarchical analysis to elaborate structures
of starting points (for example, 3 sequences
starting from each of 5 overdispersed starting

points), or for more complicated algorithms
that involve the splitting of multiple sequences
(e.g., Gilks and Berzuini, 1998). In the latter
case, one would expect mixing to begin after
each split.

5. Extending the variance-based approach to con-
sider vector statistics of interest. Brooks and
Gelman (1998) generalise the original univariate
diagnostic to consider groups of parameters si-
multaneously. They show how sample variance-
covariance matrices can be compared via their
principal eigenvalues in order to gain a scalar
potential scale reduction factor (PSRF) provid-
ing an upper bound to the original PSRF’s
formed from monitoring any of the correspond-
ing parameters individually. This generalisation
improves the interpretability of the original di-
agnostic, for problems where many parameters
need to be monitored simultaneously.

4. Monitoring Convergence using In-
variants of the Target Distribution

Another approach to detecting lack of convergence
is to estimate, using simulation, quantities that have
known values under the target distribution. If 6
denotes the parameter vector sampled via iterative
simulation, then we can use simulation draws to es-
timate E[h(#)] for any computable function h. Many
diagnostic techniques are based upon monitoring
functionals which converge to some specific value.
However, in general this value is not known and so
the resulting diagnostic is rather hard to interpret
in that it may have settled to some value, but it
is unclear whether or not it is the true value. Of
course, these problems would be removed if we knew
what the true expectation of h was under the sta-
tionary distribution, and current work on this idea
is focussed upon trying to find functions, or families
of functions, for which this is the case.

As an example, one such function is the score func-
tion. If § € E C RE | and we let () denote the tar-
get distribution for the simulations, then we might
take

_ dlogm(6)

h(6) = = k=1,..,K.

It is simple to show that, under fairly general con-
ditions on the density w, E.[h(f)] = 0 for all
k=1,..., K. Thus, we might monitor each of these

hy functions until they appear to settle to around
7€ro.



In addition, because it focuses upon univariate
summaries, this approach might be combined with
the convergence check based on path sampling (Gel-
man and Meng, 1998), which in turn is related to
checking the marginal distribution of simulated tem-
pering (Geyer and Thompson, 1995). All of these
approaches have the virtue of being applicable to it-
erative simulations in general, not just MCMC, be-
cause they do not make use of the locality property.

5. Monitoring Convergence using Ex-
pected Perturbations

Consider the following situation: you have 5000 sim-
ulation draws, obtained by subsampling from long
MCMC runs, and that you are willing to believe have
approximately converged to the posterior distribu-
tion of a particular model. Data are now added or
removed, creating a new posterior distribution that
you wish to summarise. (Adding data is natural; re-
moving data could occur in a study of optimal design
or for cross-validation.) You can write the unnor-
malised posterior density for the new distribution,
but you would rather not take the time to run a full
MCMC simulation from this model. Rather, you
will compute the importance ratios (easy to com-
pute: they depend only on the added or subtracted
data) of the new versus the old model for the 5000
draws, and then summarise the new posterior distri-
bution using importance-weighted averages.

As discussed in Section 1.1, importance-weighted
averages are in reality iterative simulation estimates,
and it is vital in this situation to assess the conver-
gence given the finite sample of size n = 5000.

We first note that, if necessary, we can improve
the simulations by using the importance-weighted
draws as starting points for an MCMC scheme such
as the Metropolis-Hastings algorithm, or perhaps as
part of a more elaborate method combining impor-
tance weights with MCMC jumps; see Gilks and
Berzuini (1998), Wong and Liang (1997) and Liu
et al (1998). This additional MCMC is only neces-
sary if the desired target distribution is shifted in
some way from the importance-weighted approxi-
mate distribution. This suggests the following di-
agnostic: run the Metropolis-Hastings algorithm for
one step and see if the expected shift in the weighted
means of the simulations is significantly different
(statistically) from zero. Note that by computing
only one step, we can average over the acceptances
and rejections of the Metropolis-Hastings jump and
thus achieve higher precision in our diagnostic with
no extra computing cost.

A simple differential analysis shows that, in the

limit of infinitely small spherical Metropolis jumps,
this method is equivalent in expectation to the score-
function convergence diagnostic in Section 4. This
suggests that the score-function diagnostic is su-
perior (as it eliminates the variability due to the
Metropolis jumping itself); however, the expected-
perturbations test may be more effective in some
examples as it allows larger jumps and is thus not a
purely local measure.

6. Discussion

No discussion of the issue of convergence assessment
techniques could be complete without some more
general discussion of the wider context of their use.

One issue relating to convergence assessment, that
is rarely discussed in the literature is the fact that
deciding to stop the simulation on the basis of an
output-based diagnostic can induce a bias in the re-
sulting estimates. Cowles et al (1997) illustrate this
idea for a number of simple models and diagnostic
techniques. A simple illustration of the general idea
can be seen by observing that stationarity is less
likely to be diagnosed on occasions when the sam-
ple path is out in the tails of the distribution, and
so variances (for example) are likely to be under-
estimated when many of the standard convergence
diagnostics are used. Of course, the effect of this bias
can be minimised by using overdispersed starting
points and generating large post-convergence sam-
ples. However, the existence of a bias in such sim-
ple cases raises the question of what may happen
for more complicated problems where both the sam-
pling algorithm and posterior surface may be less
well understood.

Another issue, discussed by Brooks and Gelman
(1998), is that the question of convergence depends,
in general, upon what the simulations will be used
for. For example, when computing posterior inter-
vals, there is a natural limit on the necessary pre-
cision of inferences (e.g., the 95% interval [3.5,8.4]
is as good, in practice, as [3.51345,8.37802]). In
contrast, when estimating functionals such as poste-
rior expectations (which are generally unnecessary in
Bayesian inference, but are needed in decision anal-
yses and in certain physical models such as those
for which MCMC methods were originally designed),
the required precision of inferences must be given ex-
ternally. Thus, no automatic convergence test could
work in such a setting without some input as to the
desired precision level.

In conclusion, the goal of this article is to briefly
discuss some of the important ideas, principles, and
assumptions underlying convergence diagnostics for



iterative simulation, with the hope that future meth-
ods can be developed combining features of existing
approaches. Most notably, we believe that existing
analysis-of-variance methods (which implicitly rely
on locality of MCMC simulations) can be made more
effective by systematically exploiting the design of
simulation algorithms (interpreting “design” quite
generally, to include not just the algorithm and the
number of simulated sequences, but also implemen-
tation issues such as updating and heating/cooling
schedules). There also seems to be potential in the
use of available “redundant” information such as im-
portance ratios and unnormalised density functions.

References

Brooks, S. P. (1998a), Markov Chain Monte Carlo
Method and its Application. The Statistician
47,69 100

Brooks, S. P. (1998b), Quantitative Convergence
Diagnosis for MCMC via CUSUMS. Statistics
and Computing. In press

Brooks, S. P., P. Dellaportas and G. O. Roberts
(1997), A Total Variation Method for Diagnos-
ing Convergence of MCMC Algorithms. Jour-
nal of Computational and Graphical Statistics
6, 251 265

Brooks, S. P. and A. Gelman (1998), Alternative
Methods for Monitoring Convergence of Iter-
ative Simulations. Journal of Computational
and Graphical Statistics. In press

Brooks, S. P. and P. Giudici (1998), Diagnosing

Convergence of Reversible Jump MCMC Algo-
rithms. Technical report, University of Bristol

Cowles, M. K., G. Roberts and J. S. Rosenthal
(1997), Possible Biases Induced by MCMC
Convergence Diagnostics. Technical report,
Department of Statistics and Actuarial Sci-
ence, University of Iowa

Cowles, M. K. and J. S. Rosenthal (1998), A Sim-
ulation Approach to Convergence Rates for
Markov Chain Monte Carlo. Technical report,
Harvard School of Public Health

Cui, L., M. A. Tanner, D. Sinha and W. J.
Hall (1992), Monitoring Convergence with the
Gibbs Sampler: Further Experience with the
Gibbs Stopper. (Discussion of Gelman and Ru-
bin 1992a). Statistical Science 7, 483 486

Fosdick, L. D. (1959), Calculation of Order Pa-

rameters in a Binary Alloy by the Monte Carlo
Method. Physical Review 116, 565573

Gelfand, A. E. (1992), Discussion of Gelman and
Rubin (1992). Statistical Science 7, 486-487

Gelman, A. (1992), Iterative and non-iterative
simulation algorithms. Computing Science and
Statistics 24, 433 438

Gelman, A. and X. L. Meng (1998), Simulat-
ing Normalizing Constants: From Importance
Sampling to Bridge Sampling to Path Sam-
pling. Statistical Science. In press

Gelman, A., G. O. Roberts and W. R. Gilks
(1996), Efficient Metropolis Jumping Rules. In
J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Smith (eds.), Bayesian Statistics 5,
New York: Oxford University Press

Gelman, A. and D. B. Rubin (1992a), Inference

from Iterative Simulation using Multiple Se-
quences. Statistical Science 7, 457-511

Gelman, A. and D. B. Rubin (1992b), A Single Se-
ries from the Gibbs Sampler Provides a False
Sense of Security. In J. M. Bernardo, J. O.
Berger, A. P. Dawid and A. F. M. Smith (eds.),
Bayesian Statistics 4, pp.- 625-631, New York:
Oxford University Press

Geweke, J. (1992), Evaluating the Accuracy of
Sampling-Based Approaches to the Calcula-
tion of Posterior Moments. In J. M. Bernardo,
A.F. M. Smith, A. P. Dawid and J. O. Berger
(eds.), Bayesian Statistics 4, pp. 169-193,
New York: Oxford University Press

Geyer, C. J. (1991), Markov Chain Monte Carlo
Maximum Likelihood. In E. M. Keramidas
(ed.), Computing Science and Statistics: Pro-
ceedings of the 23rd Symposium of the Inter-
face, pp. 156-163, Interface Foundation

Geyer, C. J. and E. A. Thompson (1995), Anneal-
ing Markov Chain Monte Carlo with Appli-
cations to Ancestral Inference. Journal of the
American Statistical Association 90, 909 920

Gilks, W. R. and C. Berzuini (1998), Following
a Moving Target — Monte Carlo Inference for
Dynamic Bayesian Models. Technical report,

MRC Biostatistics Unit, Cambridge

Gilks, W. R., S. Richardson and D. J. Spiegel-
halter (1996), Markov Chain Monte Carlo in
Practice. Chapman and Hall

Green, P. J. (1995), Reversible Jump MCMC
Computation and Bayesian Model determina-
tion. Biometrika 82, 711-732

Heidelberger, P. and P. D. Welch (1983), Simu-
lation Run Length Control in the Presence of



an Initial Transient. Operations Research 31,
1109-1144

Johnson, V. E. (1996), Studying Convergence of
Markov chain Monte Carlo Algorithms using
Coupled Sample Paths. Journal of the Ameri-

can Statistical Association 91, 154-166

Johnson, V. E. (1998), A Coupling-Regeneration
Scheme for Diagnosing Convergence in Markov
Chain Monte Carlo Algorithms. Journal of the
American Statistical Association pp. 238248

Kass, R. E., B. P. Carlin, A. Gelman and
R. M. Neal (1997), MCMC in Practice:
A Roundtable Discussion. Technical report,
Carnegie Mellon University

Kong, A. (1992), A Note on Importance Sam-
pling using Standardised Weights. Technical
report, Department of Statistics, University of

Chicago
Liu, C., J. Liu and D. B. Rubin (1993), A Coun-

trol Variable for Assessment the Convergence
of the Gibbs Sampler. In Proceedings of the
Statistical Computing Section of the American

Statistical Association, pp. 74-78

Liu, C. Rubin, D. B. and Y. Wu (1998), The PX-
EM Algorithm. Biometrika. In press

Liu, J. S., F. Liang and W. H. Wong (1998),
Dynamic Weighting in Markov chain Monte
Carlo. Technical report, Stanford University

Mykland, P., L. Tierney and B. Yu (1995), Regen-
eration in Markov Chain Samplers. Journal of
the American Statistical Association 90, 233
241

Neal, R. M. (1993), Probabilistic inference using
Markov Chain Monte Carlo methods. Techni-
cal report, Department of Computer Science,

University of Toronto, Technical Report No.
CRG-TR-93-1

Nummelin, E. (1978), A Splitting Technique
for Harris Recurrent Markov chains. Z.
Wahrscheinlichkeitstheorie verw. Gebiete 43,
309-318

O’Hagan, A. (1987), Monte Carlo is Fundamen-

tally Unsound. The Statistician 36, 247 249
Ostland, M. and B. Yu (1997), Exploring Quasi

Monte Carlo for Marginal Density Approxima-
tion. Statistics and Computing 7, 217-228

Propp, J. G. and D. B. Wilson (1996), Exact
Sampling with Coupled Markov Chains and
Applications to Statistical Mechanics. Random
Structures and Algorithms 9, 223-252

Raftery, A. E. and S. M. Lewis (1992), How Many
Iterations in the Gibbs Sampler? In J. M.
Bernardo, A. F. M. Smith, A. P. Dawid and
J. O. Berger (eds.), Bayesian Statistics 4, Ox-
ford University Press

Roberts, G. O. (1992), Convergence Diagnostics
of the Gibbs sampler. In J. M. Bernardo,
A.F. M. Smith, A. P. Dawid and J. O. Berger
(eds.), Bayesian Statistics 4, Oxford Univer-
sity Press

Roberts, G. O. and J. S. Rosenthal (1998), Con-
vergence of Slice Sampler Markov Chains.
Journal of the Royal Statistical Society, Series

B. In press

Roberts, G. O. and R. L. Tweedie (1998a),
Bounds on Regeneration Times and Conver-
gence Rates for Markov Chains. Technical re-
port, University of Cambridge

Roberts, G. O. and R. L. Tweedie (1998b), Rates
of Convergence of Stochastically Monotone
and Continuous Time Markov Models. Tech-
nical report, University of Cambridge

Rosenthal, J. S. (1995), Minorization Conditions
and Convergence Rates for Markov Chain
Monte Carlo. Journal of the American Statis-

tical Association 90, 558 566

Wong, W. H. and F. Liang (1997), Dynamic
Weighting in Monte Carlo and Optimisation.
Proceedings of the National Academy of Sci-
ences 94, 14220 14224

Yu, B. (1995), Discussion to Besag et al (1995).

Statistical Science 10, 3 66

Yu, B. and P. Mykland (1998), Looking at Markov
Sampler through Cusum Path Plots: A Simple
Diagnostic Idea. Statistics and Computing. In
press



