
Poststrati�cation Into Many Categories Using HierarchicalLogistic Regression�Andrew Gelman, Department of Statistics, Columbia University, New York, NY 10027Thomas C. Little, Morgan Stanley Dean Witter, New York, NYSeptember 30, 1997AbstractA standard method for correcting for unequal sampling probabilities and nonresponse insample surveys is poststrati�cation: that is, dividing the population into several categories,estimating the distribution of responses in each category, and then counting each category inproportion to its size in the population. We consider poststrati�cation as a general frameworkthat includes many weighting schemes used in survey analysis (see Little, 1993). We construct ahierarchical logistic regression model for the mean of a binary response variable conditional onpoststrati�cation cells. The hierarchical model allows us to �t many more cells than is possibleusing classical methods, and thus to include much more population-level information, while atthe same time including all the information used in standard survey sampling inferences. We arethus combining the modeling approach often used in small-area estimation with the populationinformation used in poststrati�cation.We apply the method to a set of U.S. pre-election polls, poststrati�ed by state as well as theusual demographic variables. We evaluate the models graphically by comparing to state-levelelection outcomes.Keywords: Bayesian inference, election forecasting, nonresponse, opinion polls, sample sur-veys1 IntroductionIt is standard practice for weighting in opinion polls to be based entirely or primarily on poststrati-�cation, which we use generally to refer to any estimation scheme that adjusts to population totals.The basic approach is to divide the population into a number of categories, within each of which thesurvey is analyzed as simple random sampling. The poststrati�cation step is to estimate populationquantities by averaging estimates in the categories, counting each category in proportion to its sizein the population. Poststrati�cation categories are typically based on demographic characteristics(sex, age, etc.) as well as any variables used in strati�cation. Another level of complication, whichwe do not address here, would occur under cluster sampling.There is a fundamental di�culty in setting up poststrati�cation categories. It is desirable todivide the population into many small categories in order for the assumption of simple random�To appear in Survey Methodology, December, 1997. We thank Xiao-Li Meng and several reviewers for helpfulcomments and the National Science Foundation for grant DMS-9404305 and Young Investigator Award DMS-9457824.1



sampling within categories to be reasonable. But if the number of respondents per category is small,it is di�cult to accurately estimate the average response within each category. For example, if wepoststratify by sex, ethnicity, age, education, and region of the U.S., some cells may be empty inthe sample, whereas others may have only one or two respondents.A general solution to this problem is to model the responses conditional on the poststrati�cationvariables (see Little, 1993). For example, the standard approach to adjusting for several demographicvariables is to rake across one-way or two-waymargins (i.e., iterative proportional �tting, Deming andStephan, 1940), which essentially corresponds to poststrati�cation on the complete multi-way table,but with a model of the responses, conditional on the demographic variables, that sets higher-levelinteractions to zero. Methods based on smoothing weights can also be viewed as poststrati�cation,with corresponding models on the responses (see Little, 1991). When the poststrati�cation categoriesfollow a hierarchical structure (for example, persons within states in the U.S.), one can improvee�ciency of estimation by �tting a hierarchical model (e.g., Lazzeroni and Little, 1997). In therelated context of regression estimation, Longford (1996) demonstrates the potential for hierarchicallinear models to improve the precision of small area estimates based on sample survey data.In this paper, we set up a hierarchical logistic regression model to be used for poststrati�cationestimates for a binary variable. The advantage of the model, compared to standard poststrati�cation,is that it allows for the use of many more categories, and thus much more detailed populationinformation. The practical gains from this method are greatest for small subgroups of the population.We apply the method to the state-level results of a set of U.S. pre-election polls. This examplehas the nice feature that we can check our inferences externally by comparing to state-level electionoutcomes. Details appear in an appendix for computing the hierarchical model using an approximateEM algorithm.2 Model2.1 Sampling and poststrati�cation informationConsider a partition of the population into R categorical variables, where the rth variable has Jrlevels, for a total of J = QRr=1 Jr categories (cells), which we label j = 1; : : : ; J . Assume that Nj ,the number of units in the population in category j, is known for all j. Let y be a binary response ofinterest; label the population mean response in each category j as �j . Then the overall populationmean is Y =Pj Nj�j=Pj Nj . Assume that the population is large enough that we can ignore all�nite-population corrections.A sample survey is now conducted in order to estimate Y (and perhaps some other combinationsof the �j 's). For each j, let nj be the number of units in category j in the sample. Conditional on the2



R explanatory variables, assume that nonresponse is ignorable (Rubin, 1976). Thus, the R variablesshould include all information used to construct survey weights, as well as any other variables thatmight be informative about y.For the example we shall consider in Section 3, we categorize the population of adults in the 48contiguous U.S. states by R = 5 variables: state of residence, sex, ethnicity, age, and education,with (J1; : : : ; J5) = (48; 2; 2; 4; 4). (Ethnicity, age, and education are discretized into 4 categorieseach, as described in Section 3.1.) The J = 3072 categories range from \Alabama, male, black,18{29, not high school graduate" to \Wyoming, female, nonblack, 65+, college graduate," and,from the U.S. Census, we have good estimates of Nj in each of these categories. We shall considerpopulation estimates (summing over all 3072 categories) and also estimates within individual states(separately summing over the 64 categories for each state). It is impossible for a reasonably-sizedsample survey to allow independent estimates of the mean responses �j for each category j (in fact,the vast majority of categories will be empty or contain just one respondent), and so it is necessaryto model the �j 's in order to poststratify and thus make use of the known category sizes Nj . The(potential) advantage of poststrati�cation is to correct for di�erential nonresponse rates among thecategories.2.2 Regression modeling in the context of poststrati�cationOne can set up a logistic regression model for the probability �j of a \yes" for respondents in categoryj: logit(�j) = Xj�; (1)where X is a matrix of indicator variables, and Xj is the jth row of X . If we were to assume auniform prior distribution on �, then Bayesian inference, for di�erent choices of X , under this modelcorresponds closely to various classical weighting schemes. These correspondences, which we presentbelow, are general and rely on the linearity of the assumed model (that is, Xj� in (1)). (In thecase of binary data, which we are considering in this paper, the classical and uniform-prior-Bayesianestimates are not identical, because of the nonlinear logistic transformation in (1), but for largesamples the di�erences are minor.)The following models correspond to the most commonly-used classical poststrati�cation esti-mates.� Setting X to the J � J identity matrix corresponds to weighting each unit in cell j by Nj=nj ;that is, simple poststrati�cation. This method is well known to work well only if the nj 's arereasonably large (and it will not work at all if nj = 0 for any j).3



� If we set X to the J � (PRr=1 Jr) matrix of indicators for each individual variable, then theestimate of Y corresponds approximately to that obtained by raking across all R one-waymargins.� Including various interactions in X corresponds to including these same interactions in theraking. To put it most generally, assuming \structure" of any kind in X corresponds topooling the poststrati�cation across cells in some way.� Including no explanatory variables in the model (that is letting X be simply a vector of 1's)leads to the sample mean estimate �y.See Holt and Smith (1979) and Little (1993) for more discussion of the relation between weightingestimates and poststrati�cation.2.3 Hierarchical regression modeling for partial poolingWhen the number of cells is large, none of the above options makes e�cient use of the informa-tion provided by the categories (for example, simple poststrati�cation gives estimates that are toovariable, but if we exclude explanatory variables with many categories, we are discarding importantinformation). Instead, we allow partial pooling across cells by setting up a mixed-e�ects model (see,e.g., Clayton, 1996). We write the vector � as (�; 1; : : : ; L), where � is a subvector of unpooled co-e�cients and each l, for l = 1; : : : ; L, is a subvector of coe�cients (kl) to which we �t a hierarchicalmodel: kl ind� N(0; �2l ); k = 1; : : : ;KlSetting �l to zero corresponds to excluding a set of variables; setting �l to 1 corresponds to anoninformative prior distribution on the kl parameters.Given the responses yi in categories j, we construct an n� J categorization matrix C, for whichCij = 1 if respondent i is in cell j. Let Z = CX . The model (1) then can be written in the standardform of a hierarchical logistic regression model asyi � Bernoulli(pi)logit(pi) = Z�� � N(0;��);where ��1� is a diagonal matrix with 0 for each element of �, followed by ��2l for each element of l,for each l. We use the notation pi, for the probability corresponding to the unit i, as distinguishedfrom �j , the aggregate probability corresponding to the category j. See Nordberg (1989) and Belinet al. (1993) for general discussions of hierarchical logistic regression models for survey data.4



2.4 Inference under the modelTo perform inferences about population quantities, we use the following empirical Bayes strategy:�rst, estimate the hyperparameters �l, given the data y; second, perform Bayesian inference for theregression coe�cients �, given y and the estimated �l's; third, compute inferences for the vectorof cell means � = logit�1(X�); fourth, compute inferences for population quantities by summingNj�j 's. We view this approach as an approximation to the full Bayesian analysis, which averagesover the parameters �l. The two approaches will di�er the most when components �l are impreciselyestimated or are indistinguishable from 0 (see for example, Gelman et al., 1995, Section 5.5). Inthe example we consider here, this is not a problem because the various components are clearlyestimated to be di�erent from 0. If this were not the case, it would probably be worth putting in theadditional programming e�ort for a full Bayes analysis. The focus of this paper, however, is on thee�ectiveness of combining hierarchical modeling with poststrati�cation, not on the relatively minortechnical di�erences between Bayes and empirical Bayes analyses.The shrinkage of the cell estimates comes in the second step, and the amount of shrinkage dependsboth on the sample sizes nj and the data yj . More shrinkage occurs for smaller values of nj andfor values of yj far from the predictions based on the logistic regression model. In addition, moreshrinkage occurs if the parameters �l are small. A batch of coe�cients l with little predictive powerwill be shrunk toward zero in the estimation, because �l will be estimated to have a small value. Thisis how we can include a large number of coe�cients in the hierarchical model without the estimatesof population quantities becoming too variable.3 Application: breaking down national surveys by state3.1 Survey dataWe apply the above methodology to state-by-state results from seven national opinion polls of regis-tered voters conducted by the CBS television network during the two weeks immediately precedingthe 1988 U.S. Presidential election. To follow our general notation, we assign yi = 1 to supportersof Bush and yi = 0 to supporters of Dukakis; we discard the respondents who expressed no opinion(about 15% of the total; we follow standard practice and count respondents who \lean" toward oneof the candidates as full supporters). Since no data were collected from Hawaii and Alaska, only the48 contiguous states are included in the model. Washington, D.C., although included in the surveys,was excluded from this analysis because its voting preferences are so di�erent from the other statesthat a generalized linear model that �t the 48 states would not �t D.C. well, and as a result, thedata from D.C. would unduly inuence the results for the states. Since there are few observations5



for the smaller states and the between-poll variation in the estimated support for Bush is withinbinomial sampling variability (as measured by a �2 test of equality of the proportions of support forBush in the seven polls), we combine the data from all the polls.CBS creates survey weights by raking on the following variables, with default classi�cations foritem nonresponse shown in brackets:Census region: Northeast, South, North Central, Westsex: male, femaleethnicity: black, [white/other]age: 18-29, 30-44, [45-64], 65+education: not high school grad, [high school grad], some college, college gradThe raking includes all main e�ects plus the interactions of sex � ethnicity and age � education.We include all these variables as �xed e�ects in our logistic regression model, excluding from ouranalysis the relatively few respondents with nonresponse in any of the demographic variables. TheCBS weights also correct for number of telephone lines and number of adults in household, whicha�ect sampling probabilities; these have minor e�ects on estimates for Presidential preference (seeLittle, 1996, chapter 3), and we do not include them in our model. Further details of the CBS surveymethodology and adjustment appear in Voss, Gelman, and King (1995).Our model goes beyond the CBS analysis by including indicators for the 48 states as randome�ects, clustered into four batches corresponding to the four census regions. We check the perfor-mance of the model by comparing estimates for each state to the observed Presidential election.(Opinion polls just before the election are reliable indicators of the actual election outcome; see,e.g., Gelman and King, 1993.) We also compare the stability of estimates based on di�erent pollsover a short period of time.3.2 Population data for poststrati�cationIn order to poststratify on all the variables listed above, along with state, we need the joint populationdistribution of the demographic variables within each state: that is, population totals Nj for eachof the 2� 2� 4� 48 cells of sex � ethnicity � age � state. Since the target population is registeredvoters, we should use the population distribution of registered voters. As an approximation to thatdistribution we use the crosstabulations available in the Public Use Micro Survey (PUMS) datafor all citizens of age 18 and over. The PUMS data contain records for 5% of the housing unitsin the U.S. and the persons in them, including over 12 million persons and over 5 million housingunits. These data are a strati�ed sample of the approximately 15.9% of housing units that receivedlong-form questionnaires in the 1990 Census. Persons in institutions and other group quarters arealso included in the sample. Weights are given for both the housing unit and persons within the6



unit based on sampling probabilities and adjustment to Census totals for variables included in theshort-form questionnaire. We use the weighted PUMS data to estimate Nj for each poststrati�cationcategory and ignore sampling error in these numbers. The weighted PUMS numbers are very similarto the poststrati�cation numbers used by CBS in their raking (see Little, 1996, chapter 3).3.3 ResultsWe present results for four methods applied to the combined data from the seven surveys:1. Classical estimate based on raking by demographic variables (region, sex, ethnicity, age, edu-cation, sex � ethnicity, and age � education). This is very close to the weighting method usedby CBS. For estimates of results by states, we perform weighted averages within each state,using the weights obtained by the raking.2. Regression estimate using the demographic variables and also indicators for the states, withno hierarchical model (i.e., \�xed-e�ects" regression). This is very similar to using iterativeproportional �tting to rake on states as well as demographics. The state-by-state estimatesfrom this model should improve upon those obtained by raking on demographics because theestimates of �j 's are weighted by the population numbers Nj rather than the sample numbersnj within each state.3. Regression estimate using only the demographic variables, with the state e�ects set to zero.This model allows the average responses within states to di�er only because of demographicvariation; to the extent that the demographics do not explain all the variation in opinion, themodel should underestimate the variability between states.4. Regression estimate using the demographic variables, with the 48 state e�ects estimated with ahierarchical model (in the notation of Section 2, L = 4 andK1;K2;K3;K4 = 12; 13; 12; 11). Weexpect this model to perform best, both because of the exibility of the hierarchical regressionmodel and because the poststrati�cation uses the population numbers Nj .We �t each of the regression models to the survey data, obtain posterior simulation draws for eachcoe�cient (conditional on the estimated �1; �2; �3; �4), and reweight based on the PUMS data toobtain poststrati�ed estimates for the proportion of registered voters in each state who supportBush for President.Table 1 presents the raking estimate and the posterior medians and interquartile ranges for thethree models, along with data on the survey responses and the actual election outcome. Table 2gives the nationwide and mean absolute statewide prediction errors for the raking and the three7



models. The four methods give almost identical results at the national level; the real gain from themodel-based estimates occurs in estimating the individual states. The reduction in mean absoluteprediction error from about 6% to 5% can be attributed to using the poststrati�cation information,with the further reduction to 3.5% attributable to the hierarchical modeling. In addition, the lasttwo lines of Table 2 show that the uncertainty estimates from the hierarchical model are short andrelatively well calibrated (slightly less than half of the true values fall inside the 50% intervals, whichis reasonable since these intervals account only for sampling error and not for nonsampling errorsand changes in opinion).Figure 1 plots, by state, the actual election outcomes vs. the raking estimates and the posteriormedians for the three models. As one would expect, the hierarchical model reduces variance, andthus estimation error, by shrinkage. Although the four methods correct the bias of the nationwideestimate by about the same amount, they act di�erently on the individual states, with the hierarchi-cal model performing best. Figure 2 compares the prediction errors for the hierarchical and rakingestimates for the states.Interestingly, the hierarchical model does not seem to shrink the data enough to the nationwidemean: we can tell this because, in Figure 1d, the actual election outcome is higher than predictedfor low-predicted values, and lower than predicted for high-predicted values. Undershrinkage meansthat the estimated parameters �̂l are probably higher than their true values, which could be causedby a pattern of nonignorable nonresponse that varies between states so that observed variabilityin the state proportions is caused by varying nonresponse patterns as well as actual variation inaverage opinions (see Little and Gelman, 1996, for a discussion of this example and Krieger andPfe�ermann, 1992, for a more general treatment). The undershrinkage could be quanti�ed bycomparing the estimated to the optimal level of shrinkage, but this comparison can only be madeafter the true values are observed.It is also possible to compare the models by �tting each separately to each survey and examiningthe stability of estimates over a short period of time. This would be a more reasonable way tostudy the models in the common situation that the true population means never become known.Figure 3 displays, for each of our seven surveys, the estimates from raking and from the hierarchicalmodel. (When modeling the surveys individually, we �t a common hierarchical variance for all 48states because there was not enough data to obtain reliable maximum likelihood estimates for thefour regions separately from the data in each poll.) Results are shown for the entire United Statesand for three representative states: California (a large state), Washington (mid-sized), and Nevada(small). For convenience, the plot also show the estimates based on the seven surveys pooled andthe actual election outcomes. For all the individual states, the hierarchical estimate is less variable8



over time than the raking estimate. The pattern is clearest in Nevada, where the sample size for theindividual surveys was so low that the raking estimate degenerated to 0 or 1 in most cases, but thebetter performance of the hierarchical model is clear in the other states as well. For example, it wasnot reasonable to assign Bush only 46% of the support in California (in the poll 3 days before theelection) or only 30% of the support in the state of Washington. For the United States as a whole,however, the two estimates are quite similar (in fact, when all seven polls are combined, the rakingestimate performs very slightly better), indicating once again that the bene�ts from the modelingapproach appear when studying subsets of the population.The results for Washington have the surprising property that the regression estimate based onthe combined surveys (shown at time \�1" on the graph) is lower than the seven estimates from theoriginal surveys. This occurs because the data from the combined surveys show that the state ofWashington supports Bush less than would be predicted merely by controlling for the demographiccovariates (that prediction would be the estimate for Washington from the model with state e�ectsset to zero, which from Table 1 is 0.58). But none of the individual surveys, taken alone, hadenough data to make a convincing case that Washington was so far from the national mean, and sothe Bayes estimate shrunk their estimates to a greater extent. This behavior, while it may seemsstrange at �rst, is in fact appropriate: with a smaller survey, there is less information about theindividual poststrati�cation categories, and the model-based estimate produces an estimate for eachcategory that is closer to the sample mean. When all seven surveys are combined, more informationis available, and the model relies more strongly on the data in each category. This is how the Bayesprocedure essentially balances the concerns of poststratifying on too few or too many categories.4 DiscussionPoststrati�cation is the standard method of correcting for unequal probabilities of selection and fornonresponse in sample surveys. From the modeling perspective, raking or poststrati�cation on a setof covariates is closely related to a regression model of responses conditional on those covariates,with population quantities estimated by summing over the known distribution of covariates in thepopulation. Conditioning on more fully-observed covariates allows one to include more informationin forming population estimates, but it is well known that raking on too large a set of covariatesyields unacceptably variable inferences. We propose a method of poststrati�cation on a large set ofvariables while �tting the resulting regression with a hierarchical model, thus harnessing the well-known strengths of Bayesian inference for models with large numbers of exchangeable parameters.The Bayesian poststrati�cation is most useful for estimation in subsets of the population (e.g.,individual states in the U.S. polls) for which sample sizes are small. A related area in which modeling9



should be e�ective is in combining surveys conducted by di�erent organizations, modeling conditionalon all variables that might a�ect nonresponse in either survey. In addition, the methods in this papercan obviously be applied to continuous responses by replacing logistic regressions by other generalizedlinear models.Our purpose in Bayesian modeling is not to �t a subjectively \true" model to the data orthe underlying responses, but rather to estimate with reasonable accuracy the average responseconditional on a large set of fully-observed covariates. More accurate models of the responses shouldallow more accurate inferences|but even the simple exchangeable mixed e�ects model we have �t,with hyperparameters estimated from the data, should perform better than the extremes of the �xede�ects model or setting coe�cients to zero. Ultimately, the goal of probability modeling and Bayesianinference in a sample survey context is to allow one to make use of abundant poststrati�cationinformation (e.g., census data classi�ed by sex, ethnicity, age, education, and state) to adjust arelatively small sample survey.Di�culties with modeling approaches such as ours could arise in several ways. If one adjusts to alarge number of categories using too weak a model (such as the model with unsmoothed state e�ects),the resulting estimates can be too variable. If the population distributions of the variables used inthe poststrati�cation are not available (for example, adjusting to a variable that is not measuredor is measured inaccurately by the Census), then the Nj 's must be modeled also, which requiresadditional work. Of course, such additional work would be required to rake on these variables aswell. Since all of the methods, including raking and regression methods, assume ignorable models,they will yield incorrect inferences when unmeasured variables a�ect nonresponse and are correlatedwith the outcome of interest.The methods described here are intended as an improvement upon raking-type poststrati�cationadjustments and are not intended to, by themselves, correct for nonignorable nonresponse. However,by allowing one to adjust for more variables, the Bayesian poststrati�cation should allow the useof models for which the ignorability assumption is more reasonable. Having a large number ofpoststrati�cation categories (e.g., in 48 states) creates problems with classical weighting methodsbecause many categories will have few or even no respondents. Interestingly, however, having manycategories can make Bayesian modeling more reliable: more categories means more random e�ectsin the regression, which can make it easier to estimate variance components.Appendix: ComputationWe use an EM-type algorithm to estimate the hyperparameters �l; given these, we sample from theposterior distribution of the coe�cients � using a normal approximation to the logistic regression10



likelihood. We use this approximation for its simplicity and because it is reasonable for fairly largesurveys, as in our application in Section 3; if desired, more exact computations can be performedusing the Gibbs sampler and Metropolis algorithm (see Clayton, 1996), perhaps using the algorithmdescribed here as a starting point.When the data distribution is normal and the means are linear in the regression coe�cients,the EM algorithm can be used to obtain estimates of the variance components (Dempster, Laird,and Rubin, 1977), treating the vector of coe�cients � as \missing data." In this framework, the\complete-data" loglikelihood for �l isL(�ljl) = const�Kl log �l � 12�2l KlXk=1 2kl;so the su�cient statistic for �l is t(l) = PKlk=1 2kl: Given the current estimate �old, the expectedsu�cient statistic is E(t(l)jy; �old) = jjE(ljy; �old)jj2 + trace(var(ljy; �old)):Since these two terms are not analytically tractable for our model, we use the following approxi-mations which are easily obtained: (1) approximate E(ljy; �old) with an estimate ̂l, based on yand the estimate �old, and (2) approximate var(ljy; �old) from the curvature of the log-likelihoodat the estimate, V̂l = (�L00(̂l))�1. We update these approximations iteratively for all l = 1; : : : ; Lsimultaneusly, converging to an approximate maximum likelihood estimate (�̂1; : : : ; �̂L). Given aninitial guess �old, the algorithm proceeds by iterating the following two steps to convergence.Approximate E-step. Solve the likelihood equations iteratively, as described below. Use theestimate �̂ to obtain an approximation to E(t(l)jy; �old), for each l = 1; : : : ; L.We solve the likelihood equations dd�L(�jy; �) = 0 using iteratively weighted least squares, involv-ing a normal approximation to the likelihood p(yj�) = Qi p(yij�), based on locally approximatingthe logistic regression model by a linear regression model (see Gelman et al., 1995, p. 391). Let�i = (Z�)i be the linear predictor for the ith observation. Starting with the current guess of �̂, let�̂ = Z�̂. Then a Taylor series expansion to L(yij�i) gives zi � N(�i; �2i ), wherezi = �̂i + (1 + exp(�̂i))2exp(�̂i) �yi � exp(�̂i)1 + exp(�̂i)��2i = (1 + exp(�̂i))2exp(�̂i) :Let b�� denote the value of �� based on plugging in the current estimate �̂ , and let b�z = diag(�2i ).Then we obtain an updated estimate and variance matrix using weighted least squares based on the11



normal prior distribution and the normal approximation to the logistic regression likelihood:�̂ = (Z 0b��1z Z + b��1� )�1Z 0b��1z z (2)bV� = (Z 0b��1z Z + b��1� )�1: (3)We iterate until convergence and then use �̂ and the appropriate elements of bV� to estimatevar(ljy; �old).M-step. Maximize over the parameters �l to obtain �newl = (bE(t(l)jy; �old)=Kl)1=2, for eachl = 1; : : : ; L. Set �old to �new and return to the approximate E-step.Once the approximate EM algorithm has converged to an estimate �̂ , we draw � from a normalapproximation to the conditional posterior distribution p(�jy; �̂ ), using the values from equations(2) and(3) at the last EM step as the mean and variance matrix in the normal approximation. Foreach draw of the vector parameter �, we compute the category means, � = logit�1(X�), and anypopulation totals of interest, counting each category j as Nj units in the population.ReferencesBelin, T. R., Di�endal, G. J., Mack, S., Rubin, D. B., Schafer, J. L., and Zaslavsky, A. M. (1993).Hierarchical logistic regression models for imputation of unresolved enumeration status in under-count estimation (with discussion). Journal of the American Statistical Association 88, 1149{1166.Clayton, D. G. (1996). Generalized linear mixed models. In Practical Markov Chain Monte Carlo,ed. W. Gilks, S. Richardson, and D. Spiegelhalter, 275{301. New York: Chapman & Hall.Deming, W., and Stephan, F. (1940). On a least squares adjustment of a sampled frequency tablewhen the expected marginal tables are known. Annals of Mathematical Statistics 11, 427{444.Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete datavia the EM algorithm (with discussion). Journal of the Royal Statistical Society B 39, 1{38.Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis. London:Chapman and Hall.Gelman, A., and King, G. (1993). Why are American Presidential election campaign polls so variablewhen votes are so predictable? British Journal of Political Science 23, 409{451.Holt, D., and Smith, T. M. F. (1979). Post strati�cation. Journal of the Royal Statistical Society A142, 33{46. 12
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Poststrati�cation estimates (and IQRs)Election Sample Unweighted 1: Raking 2: state e�s 3: state e�s 4: HierarchicalState result size mean est. unsmoothed set to 0 modelAL 0.60 134 0.72 0.67 0.63 (0.05) 0.56 (0.01) 0.62 (0.05)AR 0.57 86 0.57 0.53 0.53 (0.06) 0.60 (0.01) 0.55 (0.06)AZ 0.61 141 0.62 0.61 0.62 (0.05) 0.56 (0.02) 0.61 (0.05)CA 0.52 1075 0.57 0.53 0.55 (0.02) 0.53 (0.01) 0.55 (0.02)CO 0.54 126 0.59 0.59 0.58 (0.06) 0.57 (0.01) 0.57 (0.05)CT 0.53 103 0.53 0.55 0.52 (0.06) 0.49 (0.02) 0.51 (0.06)DE 0.56 30 0.40 0.37 0.42 (0.11) 0.60 (0.01) 0.52 (0.08)FL 0.61 553 0.64 0.62 0.61 (0.03) 0.62 (0.01) 0.61 (0.03)GA 0.60 211 0.62 0.58 0.56 (0.04) 0.56 (0.01) 0.56 (0.04)IA 0.45 102 0.38 0.38 0.38 (0.06) 0.59 (0.01) 0.41 (0.06)ID 0.63 31 0.52 0.58 0.52 (0.12) 0.59 (0.02) 0.55 (0.08)IL 0.51 429 0.55 0.52 0.53 (0.03) 0.52 (0.01) 0.52 (0.03)IN 0.60 215 0.75 0.73 0.74 (0.04) 0.56 (0.01) 0.72 (0.04)KS 0.57 105 0.72 0.71 0.71 (0.06) 0.57 (0.01) 0.68 (0.05)KY 0.56 146 0.57 0.53 0.56 (0.05) 0.64 (0.01) 0.57 (0.05)LA 0.55 153 0.62 0.60 0.61 (0.05) 0.54 (0.01) 0.59 (0.04)MA 0.46 277 0.47 0.41 0.46 (0.04) 0.50 (0.02) 0.47 (0.04)MD 0.51 207 0.52 0.50 0.49 (0.04) 0.56 (0.01) 0.50 (0.04)ME 0.56 44 0.52 0.52 0.55 (0.10) 0.52 (0.02) 0.54 (0.08)MI 0.54 399 0.58 0.55 0.57 (0.03) 0.54 (0.01) 0.57 (0.03)MN 0.46 210 0.54 0.53 0.53 (0.05) 0.59 (0.01) 0.53 (0.04)MO 0.52 235 0.46 0.43 0.46 (0.04) 0.55 (0.01) 0.47 (0.04)MS 0.61 170 0.69 0.70 0.65 (0.04) 0.53 (0.01) 0.63 (0.04)MT 0.53 31 0.39 0.40 0.40 (0.12) 0.58 (0.02) 0.50 (0.09)NC 0.58 239 0.59 0.60 0.55 (0.04) 0.58 (0.01) 0.55 (0.04)ND 0.57 54 0.56 0.56 0.55 (0.09) 0.58 (0.01) 0.56 (0.08)NE 0.61 90 0.58 0.60 0.56 (0.07) 0.58 (0.01) 0.56 (0.06)NH 0.63 20 0.70 0.68 0.73 (0.13) 0.53 (0.02) 0.61 (0.10)NJ 0.57 301 0.57 0.60 0.53 (0.04) 0.46 (0.01) 0.53 (0.03)NM 0.53 87 0.55 0.54 0.57 (0.07) 0.54 (0.02) 0.56 (0.06)NV 0.61 19 0.68 0.80 0.67 (0.13) 0.56 (0.02) 0.60 (0.09)NY 0.48 639 0.42 0.37 0.41 (0.03) 0.45 (0.01) 0.41 (0.02)OH 0.55 454 0.62 0.63 0.58 (0.03) 0.55 (0.01) 0.58 (0.03)OK 0.58 93 0.57 0.62 0.59 (0.07) 0.63 (0.01) 0.60 (0.06)OR 0.48 111 0.50 0.47 0.50 (0.06) 0.58 (0.02) 0.52 (0.06)PA 0.51 431 0.54 0.54 0.52 (0.03) 0.48 (0.02) 0.52 (0.03)RI 0.44 65 0.28 0.29 0.27 (0.07) 0.50 (0.02) 0.34 (0.06)SC 0.62 151 0.70 0.67 0.66 (0.05) 0.55 (0.01) 0.64 (0.04)SD 0.53 52 0.54 0.51 0.53 (0.09) 0.58 (0.01) 0.54 (0.08)TN 0.58 252 0.68 0.69 0.66 (0.04) 0.60 (0.01) 0.65 (0.03)TX 0.56 594 0.58 0.52 0.56 (0.03) 0.60 (0.01) 0.56 (0.02)UT 0.67 61 0.80 0.85 0.79 (0.07) 0.60 (0.02) 0.72 (0.06)VA 0.60 255 0.69 0.72 0.67 (0.04) 0.59 (0.01) 0.66 (0.03)VT 0.52 12 0.54 0.58 0.60 (0.19) 0.53 (0.02) 0.55 (0.11)WA 0.49 269 0.47 0.41 0.46 (0.04) 0.58 (0.01) 0.48 (0.04)WI 0.48 264 0.49 0.53 0.48 (0.04) 0.57 (0.01) 0.49 (0.04)WV 0.48 79 0.48 0.52 0.48 (0.07) 0.65 (0.01) 0.53 (0.06)WY 0.61 13 0.50 0.36 0.59 (0.17) 0.59 (0.02) 0.59 (0.10)Table 1: By state: election results (proportion of the two-party vote in 1988 received by Bush);survey data (unweighted mean and sample size) from the combined surveys; raking estimate usingCBS variables; and posterior median (and interquartile range; that is, width of the central 50%uncertainty interval) of poststrati�ed estimates based on state e�ects unsmoothed, set to zero, and�t by a hierarchical model. Estimates are labeled 1, 2, 3, 4 corresponding to the descriptions inSection 3.3. 14



Actual Unweighted Raking state e�s state e�s HierarchicalSummary result mean est. unsmoothed set to 0 modelmean of national popular vote 0.539 0.568 0.549 0.548 0.547 0.550mean absolute error of states | 0.056 0.066 0.049 0.048 0.035average width of 50% intervals | | | (0.069) (0.016) (0.057)# states contained in 50% interval | | | 18 3 20Table 2: Summary statistics for raw mean of responses, raking estimate, and three poststrati�edestimates from the combined surveys. Summaries given are the estimated mean of the 48 state voteproportions weighted by state voter turnout (thus, estimated national popular vote proportion forBush, excluding Alaska, Hawaii, and the District of Columbia); the mean absolute error of the 48state estimates; the average width of the 50% intervals for the states; and the number of the 48states whose true values fall within the 50% intervals.
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Figure 1: Election result by state, vs. posterior median estimate for (a) raking on demographics, (b)regression model including state indicators with no hierarchical model, (c) regression model settingstate e�ects to zero, (d) regression model with hierarchical model for state e�ects.15
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Figure 2: Scatterplot of prediction errors, by state, for the hierarchical model vs. the raking estimate.The errors of the hierarchical model are lower for most states.
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Figure 3: Estimated Bush support estimated separately from seven individual polls taken shortlybefore the election: for (a) the entire U.S. (excluding Alaska, Hawaii, and the District of Columbia),(b) a large state (California), (c) a medium-sized state (Washington), and (d) a small state (Nevada).Each plot shows the raking estimates as a dotted line and the estimates from hierarchical modelas a solid line, with error bars indicating 50% con�dence bounds for the raking and 50% posteriorintervals for the model-based estimates. The polls were taken between nine and two days before theelection. Estimates based on the combined surveys are shown at time \�1," and the actual electionresult is shown at time \0" on each plot.
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