
Stat Comput (2007) 17: 235–244
DOI 10.1007/s11222-007-9020-4

Manipulating and summarizing posterior simulations using
random variable objects

Jouni Kerman · Andrew Gelman

Received: 16 November 2005 / Accepted: 7 June 2007 / Published online: 14 July 2007
© Springer Science+Business Media, LLC 2007

Abstract Practical Bayesian data analysis involves manip-
ulating and summarizing simulations from the posterior dis-
tribution of the unknown parameters. By manipulation we
mean computing posterior distributions of functions of the
unknowns, and generating posterior predictive distributions.
The results need to be summarized both numerically and
graphically.

We introduce, and implement in R, an object-oriented
programming paradigm based on a random variable ob-
ject type that is implicitly represented by simulations. This
makes it possible to define vector and array objects that may
contain both random and deterministic quantities, and syn-
tax rules that allow to treat these objects like any numeric
vectors or arrays, providing a solution to various problems
encountered in Bayesian computing involving posterior sim-
ulations.

We illustrate the use of this new programming environ-
ment with examples of Bayesian computing, demonstrating
missing-value imputation, nonlinear summary of regression
predictions, and posterior predictive checking.

Keywords Bayesian inference · Bayesian data analysis ·
Object-oriented programming · Posterior simulation ·
Random variable objects

J. Kerman (�)
Statistical Methodology, Novartis Pharma AG, 4002 Basel,
Switzerland
e-mail: jouni.kerman@novartis.com

A. Gelman
Department of Statistics, Columbia University, New York, USA
e-mail: gelman@stat.columbia.edu

1 Introduction

In practical Bayesian data analysis, inferences are drawn
from an L × k matrix of simulations representing L draws
from the posterior distribution of a vector of k parameters.
This matrix is typically obtained by a computer program im-
plementing a Gibbs sampling scheme or other Markov chain
Monte Carlo (MCMC) process, for example using Win-
BUGS (Lunn et al. 2000) and the R package R2WinBUGS
(Sturtz et al. 2005). Once the matrix of simulations from the
posterior density of the parameters is available, we may use
it to draw inferences about any function of the parameters.

In the Bayesian paradigm, unknown quantities have prob-
ability distributions and are thus random variables. Ob-
served values are just realizations of random variables, and
constants may be thought of as random variables with point
mass distributions. In mathematical notation, we deal with
objects that are random variables, but in practice these ob-
jects are approximated by vectors of numbers, that is, simu-
lations. Consequently, when programming for manipulating
simulations of unknown quantities, we must write code to
manipulate arrays of numeric constants.

Arrays of simulations are cumbersome objects to work
with. Functions that work with vectors will not in general
work with matrices, so special versions of the functions need
to be written to accommodate matrices of simulations as ar-
guments. For example, a scalar-valued random variable be-
comes a vector of simulations, and a random vector becomes
a matrix of simulations.

This gives rise to a question why our computing envi-
ronment is not equipped to handle objects that correspond
directly to the mathematical random variables. Do we re-
ally have to deal with arrays of simulations? Do we gain
anything if we try to introduce such an object class in our
programming environment?

236 Stat Comput (2007) 17: 235–244

We demonstrate how an interactive programming envi-
ronment that has a random variable (and random array) data
type makes programming involving simulations consider-
ably more intuitive and powerful. This is especially true for
Bayesian data analysis. Along with new possibilities, intro-
duction of such a data type raises some new questions, for
example, what is a mean of a random vector of length n? Is
it the distribution of the arithmetic average, a scalar quan-
tity, or is it the expectation of the individual components,
a vector of n constants? If we apply a comparison operator
such as “>” to two random variables, what kind of an object
is created? What does a scatterplot of a random vector look
like? How should we plot a histogram of a random vector of
length n?

Common programming languages are not equipped to
handle random variable objects by default, not even R
(R Development Core Team 2004), which is especially
suited for statistical computing. However, we can create ran-
dom variables in object-oriented programming languages by
introducing a new class of objects. Manipulating simulation
matrices is of course possible using software that is already
available, but an intuitive programming environment that al-
lows us to formulate problems in terms of random variable
objects instead of arrays of numbers makes statistical prob-
lems easier to express in program code and hence also easier
to debug.

1.1 A new programming environment

We have written a working prototype of a random-variable-
enabled programming environment in R, which is an inter-
active, fully programmable, object-oriented computing envi-
ronment originally intended for data analysis. R is especially
convenient in vector and matrix manipulation, random vari-
able generation, graphics, and common programming. We
suspect that our ideas could also be implemented in other
statistical environments such as Xlisp-Stat (Tierney 1990)
or Quail (Oldford 1998).

In R, numeric data objects are stored as vectors, that is,
in objects that may contain several components. These vec-
tors, if of suitable length, may then have their dimension
attributes set to make them appear as matrices and arrays.
The vectors may contain numbers (numerical constants) and
symbols such as Inf (∞) and the missing value indicator
NA. Alternatively, vectors can contain character strings or
logical values (TRUE, FALSE).

Our implementation extends the definition of a vector or
array, allowing any component of a numeric array to be re-
placed by an object that contains a number of simulations
from some distribution. Internally, a random vector is rep-
resented by a list of vectors of simulations, but the user
sees them as a single vector, and is also able to manipu-
late it as such without thinking of the individual simulation
draws and such details as how many draws are included per

random scalar. Random variables and vectors are thus inte-
grated transparently into the programming environment.

There are no new syntax rules to be learned: built-in nu-
meric functions work directly with random vectors, return-
ing new random vectors. Most user-defined numeric func-
tions that manipulate vectors will also work with these ob-
jects directly without any modification.

2 Manipulating posterior simulations

Once the model has been fit and posterior simulations for the
unknown parameter vector, say θ , obtained from a model-
fitting program, the Bayesian data analyst typically needs to
compute all or some of the following tasks:

1. Posterior interval and point estimates of the components
of θ , such as means, medians, 50%, 80%, and 95% pos-
terior intervals and the standard deviation which summa-
rizes the uncertainty in θ.

2. Posterior interval and point estimates of functions of θ .
For example, if θ is a vector of length 50 consisting of
some measures for all fifty U.S. states, we may be inter-
ested in the distribution of the mean of the fifty random
quantities, 1

50

∑50
i=1 θi .

3. Graphical summaries of the quantities mentioned above,
for example plots that show point estimates and intervals.

4. Posterior probability statements such as Pr(θ1 > θ2|y).
5. Histograms and density estimates of components of θ .
6. Scatterplots and contourplots showing the joint posterior

distribution of two-dimensional random quantities.
7. Simulations from the posterior predictive distribution of

future data y.
8. Bayesian p-values and graphical data discrepancy checks,

using functions of parameters θ , replicated data yrep, and
observed data y.

To implement these tasks as computer programs, they
must be reinterpreted in terms of posterior simulations.
A scalar random variable, say θ1, is represented internally
by a numerical column vector of L simulations:

θ1 = (θ
(1)
1 , θ

(2)
1 , . . . , θ

(L)
1)T.

The number of simulations L is typically a value such as
200 or 1,000 (Gelman et al. 2003, pp. 277–278). We refer to
y

(�)
1 , � = 1, . . . ,L, as a vector of simulations.

Let k be a positive integer. A random vector θ =
(θ1, . . . , θk) being by definition an k-tuple of random vari-
ables, is represented internally by k vectors of simulations.
These k column vectors form an L×k matrix of simulations

Stat Comput (2007) 17: 235–244 237

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

θ
(1)
1 θ

(1)
2 · · · θ

(1)
k

θ
(2)
1 θ

(2)
2 · · · θ

(2)
k

θ
(3)
1 θ

(3)
2 · · · θ

(3)
k

...
...

. . .
...

θ
(L)
1 θ

(L)
2 · · · θ

(L)
k

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Each row θ(�) = (θ
(�)
1 , . . . , θ

(�)
k) of the matrix � represents

a random draw from the joint distribution of θ . The compo-
nents of θ(�) may be dependent or independent.

2.1 The currently-standard approach

The usual approach now is to use loops and vector-matrix
computations to manipulate the matrix � of posterior simu-
lations. This approach is general but awkward and far from
transparent, as we now discuss.

Typically, depending on the problem at hand, we name
the simulation vectors and matrices according to the random
variables in our model such as β and σ , and manipulate sev-
eral of these array objects in our programs.

Means, medians, quantiles, and standard deviations of
scalar components are obtained by applying the correspond-
ing numerical function such as mean, mean, quantile,
sd to each of the columns of a matrix of simulations. This
typically requires a loop or application of a special function
such as apply in R, which implements the loop more effi-
ciently. The intervals and standard deviations summarize un-
certainty in the parameter. These are examples of quantities
that are computed by applying a summary function “colum-
nwise” to a matrix of simulations. For example, in R, the
posterior mean of θ1 is computed by mean(theta[,1]).
Here theta is an L × k matrix and theta[,1] refers to
the first column of the matrix.

Distributions of functions of random variables are ob-
tained by applying the function to each row in the matrix
of simulations. The resulting object is a vector or a ma-
trix with L rows: it represents thus the distribution of the
function applied to a random variable. Again, this requires
that a loop is written or that a function such as apply
is used. This time the function is applied, to the rows of
the matrix of simulations. For example, if we have a vec-
tor of unknowns θ = (θ1, . . . , θ50) that is represented by an
L × 50 matrix of simulations, the distribution of the arith-
metic mean of the components of θ is represented by the L

numbers 1
50

∑50
i=1 θ

(�)
i , � = 1, . . . ,L.

For a simpler example, we may be interested in the distri-
bution of θ1 + θ2. This is represented by a vector of length L

with components θ
(�)
1 + θ

(�)
2 . In R, this would be computed

by theta[,1]+theta[,2], adding the two vectors to-
gether, yielding a new vector of length L.

Random matrices can be thought of random vectors with
a dimension attribute. If θ is a 2×2 random matrix, it is rep-
resented by an L × 2 × 2 matrix of simulations. We can for

example find the distribution of the determinant of θ by ap-
plying the determinant function to each of the L two-by-two
matrices of simulations. Again, this requires a loop or the
application of apply. For example, in R, the multiplication
of two random matrices A = �� is accomplished by,

A <- array (NA,c(L,k,m))
Allocate an L*k*m matrix
for (i in 1:L) {

A[i,,] <- Theta[i,,] %*% Sigma[i,,]
}

where k is the number of rows in Theta[i,,] and m is
the number of columns in Sigma[i,,].

These are examples of functions that are applied rowwise
to a matrix of simulations, yielding an array with the first
dimension of size L.

Posterior probability statements such as Pr(θ1 > θ2|y) are
computed by taking the proportion of the simulations which
satisfy the condition “θ(�)

1 > θ
(�)
2 ,” that is, by computing

1
L

∑L
i=1 1{θ(�)

1 >θ
(�)
2 }, where 1A is an indicator function of an

event A. In R, theta[,1]>theta[,2] yields a logical
vector of length L, that is, a vector of TRUE and FALSE val-
ues. Since R coerces the TRUE values into ones and FALSE
values into zeros whenever necessary, we can compute the
probability value by mean(theta[,1]>theta[,2]).

Simulations from the posterior predictive distribution of
the n-dimensional data vector y are computed by gener-
ating random variates distributed according to the model
of y, given the posterior simulations of the unknown para-
meters. For example, suppose that y ∼ N(Xβ,σ 2) where X
is an n × k matrix of observed covariates and β is an un-
known (random) vector β = (β1, . . . , βk) and σ is an un-
known scalar-valued variable. If we have posterior simula-
tions for β(�) (β is a k-vector, so β(�) is also a k-vector of
simulations) and for the scalar σ (�), the posterior predictive
distribution of y, called the replication distribution yrep is
represented by simulations such that yrep(�) is an n-vector
generated so that

yrep(�) ∼ N(Xβ(�), σ (�)).

In R, this step is implemented by the program,

y.rep <- matrix (NA, L, n)
for (i in 1:L) {

y.rep[i,] <- rnorm(nrow(X),
mean=X %*% beta[i,], sd=sigma[i])

}

Similarly, we can generate posterior predictive distribu-
tions of the unknown parameters, θ rep, if desired.

Replicated data distributions yrep are required when com-
puting Bayesian p-values and posterior predictive checks.
These can be used to assess the fit of the model. A Bayesian
p-value is computed by the tail-area probability

238 Stat Comput (2007) 17: 235–244

Pr(T (yrep, θ) ≥ T (y, θ))

for some appropriate test statistic function T . y is here the
observed data vector and yrep is the replicated vector, The
estimated p-value is the proportion of the L simulations for
which the test quantity equals or exceeds its realized value:
that is, for which

T (yrep(�), θ (�)) ≥ T (y, θ(�))

for all � = 1, . . . ,L (Gelman et al. 2003, pp. 162–163).
To compute this in R is straightforward if T is a func-

tion that accepts vectors of simulations and knows how to
repeat the calculation over a given vector for each simula-
tion 1, . . . ,L. For most scalar-valued numerical functions
this poses no great problem in R; we can plug in a vector of
simulations and expect a vector of simulations back. How-
ever, if T is a numeric R function that acts on a vector, such
as the standard deviation function, it will not be able to ac-
cept a matrix of simulations and repeat the computation au-
tomatically for each of the L simulations. Again a loop must
be written or the apply function applied.

2.2 Toward a more natural programming environment

As we have seen, thanks to the convenient vectorized pro-
gramming language of R, most of the simplest program-
ming tasks in posterior simulation manipulation are not too
difficult to implement. Some of them take only one line to
write, although they do not look intuitive: the distribution
of the standard deviation of a random vector θ would be
computed by applying the sample standard deviation func-
tion to the rows of a matrix of simulations theta by exe-
cuting apply(theta,1,sd), which returns a vector of
simulations of length L. Ideally, we would like to write
“sd(theta)” where theta is not a matrix of simula-
tions, but rather a vector of random variable objects. The
result should be a scalar random variable object, containing
the simulations computed by apply(theta,1,sd).

However, the main motivation here is not only further
simplification of code, but the need to work in a more nat-
ural programming environment, where objects to be manip-
ulated are random variables that are in the same conceptual
level as the random variables in mathematical notation. Ma-
nipulation of individual simulations should be kept out of
the view, in the background, and the user should be able to
focus on telling the computer what function of the random
variables—not that of the simulations—to compute.

For another example, suppose that we wish to compute
the distribution of the ratio of two random scalars, say
θ1/θ2. We would like to have a random vector object theta
available, of some fixed length k, and be able to write
r <- theta[1]/theta[2] to obtain another random
variable object r whose simulations consist of the ratios

θ
(�)
1 /θ

(�)
2 . Currently we are must keep in mind that the ob-

ject theta is not a random vector object but a matrix of
numbers, and to compute the ratio, we will have to write
theta[,1]/theta[,2], obtaining a vector of numbers
(simulations), not a random scalar object. The awkward sub-
script indexing notation is confusing, and forces us to work
in a lower level of abstraction: we would rather like to refer
to the variable θ1 as theta[1], that is, think about the in-
dices as a indices referring to random variables and not as
a indices referring to dimensions of a matrix consisting of
simulations.

Further, to express the multiplication of two random
matrices � and �, we would like to write Theta %*%
Sigma and not a loop such as the one shown above. The
result of such an expression should be a random matrix ob-
ject.

While writing loops and using other programming struc-
tures and specialized functions are certainly not difficult
things to do, nevertheless it takes our mind away from the
essence of our work: Bayesian data analysis. Program code
intended to implement manipulation of posterior simula-
tions while it does not resemble mathematical notation is
but an attempt to emulate such notation.

As Bayesian data analysts and programmers, we think of
constants as special cases of random variables: they are just
variables having point-mass distributions and represented by
a single simulation draw. We do not wish to treat constants
and random variables as two separate incompatible classes
of objects. Our programming environment should be able
to treat both constants and random variable objects equally:
whatever one can do with constants one should be able to do
with random variables. More specifically, any function that
accepts a numeric vector (or matrix) should be able to ac-
cept a random vector (or matrix) instead, producing a new
random variable object as the result. Therefore, for instance,
to compute the distribution of the sample standard deviation
statistic of a random vector θ , one should be able to write
sd(theta) and obtain a scalar-valued random variable—
that summarizes the uncertainty in the distribution of the

function sd, that is,
√

1
k−1

∑k
i=1 θi .

The very fact that constants are just very special random
variables (with point-mass distributions) hints at us that the
syntax involving random variable objects should be no dif-
ferent from that involving regular numeric variables. If we
compute a function of a random vector or matrix, we obtain
a random vector or matrix; if we “let the variance of the com-
ponents go to zero,” the computation should be equivalent to
a computation with numeric vectors or matrices, returning a
(constant) numeric result.

Imputation In a programming environment that treats nu-
meric constants and random variables as equals, it should
be natural that random variable objects can be embedded

Stat Comput (2007) 17: 235–244 239

in vectors that contain constants. The resulting vector is a
“mixed” random vector object, where constants appear as
if they were random variables with zero variance. Constant
components behave as if they consisted of L draws from a
degenerate distribution, although only one number is stored
in memory.

This would make possible the straightforward imputation
of missing values with random variables. Since such mixed
vectors are random variable objects, they should be accepted
as arguments by any numeric function.

Generating replications Without random variable objects,
generating replications yrep is done by repeated calls to a
random variate generating function (in R, the loop is exe-
cuted automatically if vectors are given as arguments); see
the example above. Naturally, these functions are designed
to work only with numbers, so we need to write new func-
tions that can take random vectors and arrays as arguments
and return new random variable objects containing newly
generated simulations.

Let us return to the example above where the matrix
of simulations of yrep was made by generating yrep(�) ∼
N(Xβ(�), σ (�)). By introducing a new “normal random vari-
able generating function,” call it rvnorm, we will be able
to obtain the random variable object representing the distri-
bution of yrep by the function call,

y.rep <- rvnorm(mean=X %*% beta,
sd=sigma)

where both the mean and standard deviation parameters are
random variable objects. The mean is a vector and standard
deviation is a scalar, applying to all components of the mean.
For non-normal models we will need to write other random
variable generating functions that draw from other distribu-
tions.

Graphical summaries Graphical summaries for random
variable objects, such as interval plots, histograms, scat-
terplots and contourplots of simulations need to be imple-
mented by writing new, special functions that accept random
variable objects.

In many cases we may extend existing methods. Take
for example plot(x,y), which plots a scatterplot of
two numeric vectors. A scatterplot of two random scalars
(x, y) should produce a cloud of points representing draws
(simulations) from the joint distribution of (x, y). If the
x-coordinate of a pair of scalars (x, y) is a constant and
the y-coordinate is a random variable object, we would ex-
pect to see an uncertainty interval of y as a vertical line.
Similarly if y is constant but x is random, we expect to see
a horizontal uncertainty interval. If we want we could plot
the median or the mean as a point on top of the interval.
Moreover, using colors or varying thickness of the line, we

can plot for example 50% and 80% intervals on top of each
other. A scatterplot of a pair of a vectors of random vari-
ables (x, y) would then amount to several clouds of points,
but a vector of constants x and random variables y would be
displayed as a series of vertical uncertainty intervals.

Other functions Many random-variable specific functions
need to be written, for example a function returning means,
quantiles, medians, and standard deviations of each compo-
nent of a random vector or matrix.

Distinguishing rowwise and columnwise operations It is
important to realize that the “means of the simulations of the
components of a random vector” are quite different from the
“mean of a random vector.” The former is a “columnwise”
operation on a matrix of simulations, returning constants,
and the latter is a rowwise operation, returning a vector or
a matrix of simulations. In other words, the columnwise op-
erations summarize the uncertainty of each scalar random
variable by a number, but the rowwise operations are func-
tions of the random vectors themselves, returning a new ran-
dom vector or matrix.

If theta is a random vector object, the function call
mean(theta) must return a random variable object, since
mean is defined to take a vector and return a scalar. Giv-
ing mean a random vector must return a random scalar,
which then represents the distribution of the random variable
1
k

∑k
i=1 θi . Internally the result of mean(theta) must

contain the simulations 1
k

∑k
i=1 θ

(�)
i for � = 1, . . . ,L.

The same logic goes for all numeric functions such as the
variance (var), covariance (cov), and any user-defined nu-
meric function. “Randomness in, randomness out.” In some
cases the output may of course be a constant, but as ex-
plained before, they are just special cases of random vari-
ables.

However, if we want to return numerical summaries of
the simulations such as the posterior means and standard
deviations, we need to write new functions. For example,
a function rvmean(theta) would return the posterior
means for each component of θ ; rvsd(theta) the stan-
dard deviations, rvmedian(theta) the medians, and so
forth.

3 Implementation

Taking the above ideas into consideration, we have written
a working prototype of a random-variable enabled program-
ming environment within R. This collection of functions is
implemented as an R “package” which extends the function-
ality of R. Once the package is loaded and enabled, random
variable objects can be generated and used as arguments in

240 Stat Comput (2007) 17: 235–244

almost any numerical functions. A collection of random-
variable specific functions that implement graphical and nu-
merical summaries and functions that generate new random
variable objects from various distributions are available.

A random variable object is implemented internally as a
list of vectors of simulations. The simulations are not kept
in matrices but each “column” is kept separate for conve-
nience; one vector of simulations corresponds to one com-
ponent of a random vector or a matrix. Since random ma-
trices are just random vectors with dimension attribute, and
random scalars are just random vectors of length 1, in the
following whatever is referred to as “random vectors” will
also apply to random scalars and random matrices.

Applying arithmetic operations and elementary functions
on a random vector object produces a new random vector
object that consists of a list of appropriate vectors of sim-
ulations. If a plain numeric vector object is imputed as a
random scalar or a vector, the resulting object is a new ran-
dom vector with the remaining numeric components being
treated as “vectors of simulations of length 1.”

In an interactive computing environment, we may type
the name of an object (variable) on the console and view
immediately its value. It is obvious what we expect to see
when typing the name of a numerical vector or an array, but
how should a random variable object be displayed? Since a
random variable object consists of independent draws from
a distribution, it is natural to view quantiles and such nu-
merical summaries as the mean and standard deviation of
the simulations. The mean of the simulations is an estimate
of the expectation of the random variable.

The most often used summaries can be viewed most con-
veniently by entering the name of the random vector on the
console; the default printing method returns the mean, stan-
dard deviation, and the 1%, 2.5%, 25%, 50%, 75%, 97.5%,
and 99% quantiles. Most functions can be adapted easily to
accept random variable objects as arguments.

The best way to illustrate how the new programming en-
vironment works is to give some examples.

4 Examples

4.1 Prediction and multiple imputation

We illustrate the use of our programming environment with
a simple example of regression prediction using posterior
simulations. Suppose we have a class with 15 students of
which all have taken the midterm exam but only 10 have
taken the final. We shall fit a linear regression model to the
ten students with complete data, predicting final exam scores
y from midterm exam scores x,

yi |β1, β2, xi, σ ∼ N(β1 + β2xi, σ
2)

and then use this model to predict the final exam scores of
the other five students. We use a noninformative prior on
(β, log(σ)), or p(β,σ) ∝ 1/σ .

4.1.1 Posterior predictive distribution

Our goal is to impute the missing values with draws from the
posterior predictive distribution of y. We do this by simulat-
ing β = (β1, β2) and σ from their joint posterior distribution
and then generating the missing elements of y from the nor-
mal model.

Assume that we have obtained the classical estimates
(β̂, σ̂) along with the unscaled covariance matrix Vβ using
the standard linear fit function lm in R. The posterior distri-
bution of σ is then

σ |x, y ∼ σ̂ · √(n − 2)/z, where z ∼ χ2(n − 2).

In our programming environment, this mathematical for-
mula translates to the statement,

z <- rvchisq(df=n-2)
sigma <- sigma.hat*sqrt((n-2)/z)

The function rvchisq returns a random variable object
consisting of L independent and identically distributed
simulations from the chi-square distribution. The quanti-
ties sigma.hat and n statement are fixed scalars. Since
sigma is a constant divided by a random variable z, it
is a random variable object. we treat this variable in our
program as if it were the actual random variable of the
mathematical model. The posterior distribution of β is
β|σ,x, y ∼ N(β̂,Vβσ 2|x, y,σ 2), which can be simulated
by,

beta <- rvnorm(mean=beta.hat,
var=V.beta*sigma^2)

where rvnorm (“normal random variable”) is a function
returning a vector of (multivariate) Gaussian random vari-
ables, with each component consisting of simulations. The
argument var accepts a variance matrix, which in this case
depends on the random variable sigma. Thus we are ac-
tually drawing from a distribution of β , averaging over the
uncertainty of σ .

The length of beta is determined by the arguments: in
this case beta has the same length as the mean vector,
beta.hat.

Our implementation imitates the corresponding mathe-
matical expressions as much as possible; however, an equiv-
alent program written in plain R could look like,

sigma <- array(NA,L) # Allocate a vector
beta <- array(NA,c(L,2))
Allocate a matrix
for (sim in 1:L) {

Stat Comput (2007) 17: 235–244 241

sigma[sim] <- sigma.hat*sqrt((n-2)/
rchisq(1,n-2))

beta[sim,] <- mvrnorm(1, beta.hat,
V.beta*sigma[sim]^2)

}

The “traditional” way of writing R code is longer and
less robust: besides having to implement a looping structure,
one must constantly mind the dimensions of the simula-
tion matrices and the slightly awkward index notation where
beta[sim,] refers to the simulation number sim from
the joint distribution of (β1, β2, β3); in contrast, beta[,1]
is the vector of L simulations for β1.

According to the model, y is normal with mean Xβ and
standard deviation σ . The predictions for the missing y val-
ues are obtained by the natural statement,

y.pred <- rvnorm(mean=beta[1]
+beta[2]*x[is.na(y)], sd=sigma)

where rvnorm returns independent and identically distrib-
uted normal variables, but here the two arguments, the mean
and standard deviation, are both random variables; thus
we are drawing y from its marginal distribution, averag-
ing over the uncertainty of both σ and β . x[is.na(y)]
simply picks the covariates for the missing five students.
Since beta[1] and beta[2] are scalar-valued random
variables, the mean will be a vector of the same length as
x[is.na(y)], that is, five. The resulting vector y.pred
is also a vector of length five.

Point estimates for the estimated parameters are obtained
using predefined functions, for example, the posterior mean
(expectation) for β is given by rvmean(beta), and the
medians of β1, β2 by rvmedian(beta).

The distributions of the predicted values are quickly sum-
marized by typing the name of the variable on the console:

> y.pred

name mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] Alice 68.9 19.5 (17.8 28.7 56.9 69.2 81.0 106 116) 1000

[2] Bob 73.6 17.6 (28.3 38.8 63.0 73.5 84.1 108 118) 1000

[3] Cecil 65.7 20.7 (17.3 22.7 52.2 66.0 79.1 105 115) 1000

[4] Dave 70.3 17.5 (24.4 34.4 59.5 70.7 81.5 103 109) 1000

[5] Ellen 74.8 18.0 (34.0 40.9 64.3 73.8 85.2 113 122) 1000

4.1.2 Imputing the predicted values

Our object-oriented framework allows for combining con-
stants with random variables into a single vector or array.
Thus we can impute the random variables into the original
vector y which used to hold only constants and missing val-
ues. This is done by the R statement,

y[is.na(y)] <- y.pred

which replaces the missing values (indicated by the symbol
NA) by their corresponding predictions.

Fig. 1 Predicting the final examination scores: uncertainty intervals
for the five predicted final exam scores. This is a scatterplot of the vec-
tor pair (x, y) where the components x are all constant and y includes
ten constant and five random components. This is done by a generic
function call “plot(x, y)”; the five pairs (xi , yi) where yi is random
are automatically drawn as intervals (the 50% intervals are shown as
solid vertical lines and the 95% intervals as dotted vertical lines.) The
observed pairs (xi , yi) are shown as circles.

This particular step would be impossible in standard R:
each component y.pred is internally represented by a ma-
trix of possibly thousands of rows of simulations, but the
left-hand side of the assignment, y[is.na(y)], is a nu-
meric vector of length 5.

The predictions can be plotted along with the observed
(x, y) pairs using the command plot(x, y)which shows
the determinate values as points and the random values as
intervals.

4.1.3 Computing functions of random vectors

A function of the random variables is obtained as easily as
a function of constants. For example, the distribution of the
mean score of the class is mean(y),

> mean(y)

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 72.8 3.39 (64.2 66 70.7 72.8 74.8 79.2 81) 1000

The “mean” here is not the expectation of the random
vector y, but the distribution of the arithmetic average of the
15 components of the vector y.

4.1.4 Computing probabilities of events

In R, if we use comparison operators with numeric vectors
we obtain true/false values; using them with random vectors

242 Stat Comput (2007) 17: 235–244

we obtain distributions of indicators of events. The proba-
bility of such an event (or, equivalently, the expectation of
the corresponding random variable) is computed using the
function Pr. For example, the probability that the average is
more than 80 points is given by Pr(mean(y)>80), which
comes to 0.04 in this set of simulations.

4.2 Regression forecasting

We illustrate the power and convenience of random-variable
computations with a nonlinear function of regression pre-
dictions. We shall first fit a classical regression, then use
simulation objects to summarize the inferences and obtain
predictions. As we shall see, it is then easy to work directly
with the random vector objects to get nonlinear predictions.

Our data consist of the percentage of the vote of the
Democratic party’s share of the two-party vote in legisla-
tive elections in California in years 1982, 1984, and 1986:
v82, v84, v86, respectively. (Missing values were imputed the
value 0.5, and vote proportions of uncontested elections (ze-
ros and ones) were imputed 0.25 and 0.75, respectively. This
is a simplified version of a standard model for state legisla-
tive elections (Gelman and King 1994).)

These are all vectors of length n = 80, corresponding to
the 80 election districts. We also included predictors that
indicate the incumbent party in the district; the values for
years 1984 and 1986 were simply computed from the previ-
ous election results:

pt
i =

{
1 if vt−2

i > .5,

−1 if vt−2
i < .5

for t ∈ {84,86}.

The data frame is,

V =

⎛

⎜
⎜
⎜
⎝

p88
1 v86

1 p86
1 v84

1 p84
1 v82

1

p88
2 v86

2 p86
2 v84

2 p84
2 v82

1
...

...
...

...
...

...

p88
n v86

n p86
n v84

n p84
n v82

n

⎞

⎟
⎟
⎟
⎠

.

The model for the proportion of the Democratic vote has
two predictors: the outcome in the previous election and the
incumbent party:

v86
i |θ ∼ N(β1 + β2v

84
i + β3p

86
i , σ 2), i = 1, . . . , n,

where θ = (n,V, β, σ) and β = (β1, β2, β3).

4.2.1 Posterior predictive distribution

We fit the linear regression model and obtain the least-
squares estimates β̂ = (β̂1, β̂2, β̂3), the classical unbiased
variance estimate σ̂ 2, and the (unscaled) covariance ma-
trix Vβ . Again using a noninformative prior p(β,σ) ∝ 1/σ ,

the posterior distribution of σ is, just like in our data imputa-
tion example, σ |V ∼ σ̂ · √(n − 3)/z, where z ∼ χ2(n − 3),
while the posterior distribution of β , given σ , is β|σ,Vβ ∼
N(β̂,Vβσ 2|σ,Vβ). The next step is to generate posterior
simulations for the parameters β and σ . These are generated
by identical statements as those in the previous example.

We now predict the outcome for the following election
year, 1988. The posterior predictive distribution is,

vpred88|θ, y ∼ N(β1 + β2v
86 + β3p

88, σ 2)

which is a normal random vector of length n = 80. The in-
dicator of incumbency in 1988, p88, is the indicator of the
event {v86 > 0.5}.
mu <- beta[1]+beta[2]*v.86

+beta[3]*p.88
v.pred.88 <- rvnorm(mean=mu, sd=sigma)

4.2.2 Making forecasts

The posterior predictive distribution can be used to compute
various forecasts. For example, the predicted average Demo-
cratic district vote in 1988 is v̄pred88 = 1

n

∑n
i=1 v

pred88
i , that

is, the arithmetic average of the predicted values pred.88:

avg.pred.88 <- mean(v.pred.88)

Any linear or nonlinear function of the predictions is
obtained in a straightforward way. For example, the pro-
portion of seats obtained by the Democrats is s̄pred88 =
1
n

∑n
i=1 1{vpred88

i >0.5}, which translates to

s.pred.88 <- mean(v.pred.88>0.5)

4.3 Posterior predictive checking

Posterior predictive checking is a Bayesian model valida-
tion technique where we draw simulations from the posterior
predictive distribution of the observed data y and compare
them to the observed values (Gelman et al. 2003, Chap. 6).
Discrepancies between the observed and simulated values
indicate possible model deficiency.

4.3.1 Drawing replicated data

We illustrate with the election example, where the posterior
predictive distribution in the election example is the hypo-
thetical distribution of the observations in year 1986; that
is, a draw from the posterior predictive distribution of y

given the (original) predictors of 1984. These simulations
are called replications and obtained by,

mu <- beta[1]+beta[2]*v.84
+beta[3]*p.86

v.rep.86 <- rvnorm(mean=mu, sd=sigma)

Stat Comput (2007) 17: 235–244 243

where mu and sigma are random variables representing the
posterior distributions of μ and σ .

In general, we may consider the linear regression model
y|X, β, σ ∼ N(Xβ,σ 2), where X is the predictor matrix, β is
the k-vector of coefficients and σ is the standard deviation
of y. If we include the relevant predictors in a matrix X,
then we can obtain either predictions or replications by the
statement,

rvnorm(mean=X %*% beta, sd=sigma)

with a different prediction matrix X. The above statement re-
turns a normally distributed random vector given a predictor
matrix X, the coefficient vector beta, and the standard devi-
ation sigma. These parameters may contain both constants
and random components. The replications can be obtained
by the function call,

v.rep.86 <- rvnorm(mean=X.84 %*% beta,
sd=sigma)

where beta and sigma contain the posterior simulations
of β and σ , and X84 is the predictor matrix of the year 1984
vote proportions and incumbency indicators, along with the
constant predictor column.1

4.3.2 Computing test quantities

A test quantity, or “discrepancy measure” is a scalar sum-
mary of parameter and data that is used as a standard when
comparing data to predictive simulations (Gelman et al.
2003). It is straightforward to compute test quantities from
the replicated data: one needs to write a function T (y, θ),
where y is a vector that has a similar distribution as the ob-
served values, and θ is the vector containing any given pre-
dictors and parameter values.

Arithmetic operations and elementary numeric functions
will also work with random variables, so in practice, almost
any R function that accepts a numerical vector y of length n

can be used to compute the distribution of T (yrep, θ).
In the regression example, one suitable test quantity

could be for example the number of “switches” occurred in
the n = 80 districts of California between consecutive years,
that is, number of districts where the incumbent party was
defeated: T switch(v,p) = ∑n

i=1 |1{vi>0.5} − pi |. The corre-
sponding R code is T.switch <- function (v,p)
sum(abs((v>0.5)-p)). This code works with constant
vectors v, p, but also with random vectors.

Lack of fit of the data with respect to the posterior predic-
tive distribution can be expressed by the Bayesian p-value,
which is defined as the expected value of the replicated test
quantity being at least extreme as the observed test quantity:

p-value := Pr{T switch(vrep86,p86) ≥ T switch(v86,p86)}.

1X.84 <- cbind(1, v.84, p.86). The standard R function
cbind returns a matrix with given columns.

The corresponding program code is again obvious:

p.value <- Pr(T.switch(v.rep.86,p.86)
>= T.switch(v.86,p.86))

The p-value comes to 0.61 in this set of simulations.
T switch(vrep86,p86) is summarized by

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 4.2 1.89 (0 1 3 4 5 8 9) 1000

5 Discussion

5.1 Summary of advantages

From the Bayesian viewpoint, it is natural to expect the com-
puting environment to accept inputs as either constants or
random: we essentially treat all quantities as random vari-
ables, constants being just given realizations of them. The
absence of the random variable data type forces us to write
code that somehow emulates the existence of such a data
type, as shown in the examples above. Unless we develop a
common framework that will actually implement this data
type, we will end up writing similar code over and over
again. This will result in longer, more complicated program
code that is more likely to contain errors. With random vec-
tor objects, our program code becomes compact, easy to
read, and easy to debug, since in many cases it will resemble
mathematical notation.

To summarize the advantages:

1. Transparency. Program code written for numerical vec-
tors can be often used for mixed vectors without modifi-
cation. No looping structures to emulate simulation-by-
simulation computation need to be written.

2. Flexibility and robustness. Program code works with
both random and mixed input parameters. There is no
need to rewrite separate code for generating predictions
and replications. The code accepts different (random or
constant) types of input.

3. Intuitive appeal. Program code resembles more like
mathematical notation than “traditional” computer pro-
grams. Ugly technical details have been hidden from
user’s view.

4. Improved readability. Short, compact expressions are
more readable and easier to understand than traditional
code with looping structures and awkward matrix index-
ing notation. This is especially helpful when one needs
to interpret code written by someone else.

5. Productivity gain. Compact, intuitive program code is
relatively easy to write, easy to debug, and easy to main-
tain. We can concentrate on Bayesian data analysis and
program in a more natural syntax.

All of these advantages stem from the conceptual advan-
tage of thinking in terms of random variable objects rather
than just in terms of arrays of simulations.

244 Stat Comput (2007) 17: 235–244

5.2 Disadvantages

Despite a host of obvious advantages, the object-oriented ap-
proach has an obvious disadvantage compared to the tradi-
tional way of programming: we do not have the opportunity
to optimize the code generating the random variates to the
specific task.

For example, the multiplication of an indicator (usually
obtained by applying a logical operation such as “>”) by an-
other random variable is implemented by first drawing the L

simulations for the indicator, and then drawing the L simu-
lations for the other random variable, and finally multiplying
the simulations componentwise. An optimized code would
be able to skip the computation of the expression for the sec-
ond variable if the indicator produced a zero. Customized
code would also be able to combine nested function calls,
but in the object-oriented method the computer must com-
pute values for function calls one by one.

However, we feel that the gain in speed in most cases
may be negligible compared to the effort needed to write,
edit, and debug optimized code. Truly speed-critical appli-
cations require machine-compiled code written, e.g., in C or
Fortran. If possible, such optimization should be done in the
“system level” so that the end-users need not worry about
such technical details.

5.3 Conclusion

Computing functions of simulations and drawing graphs of
them involves manipulating arrays of numbers by writing
code that imitates the manipulation of objects that behave
like random variables. By introducing a special object class
representing random variables and arrays, we can create a
programming environment that makes manipulating simula-
tions intuitive and effective.

Our programming environment proves to be especially
helpful for Bayesian data analysis, where routinely consid-
ering all uncertain quantities as random variables is natural.
Although researchers need to understand fully the under-
lying mechanism of manipulating simulations, we believe
that writing code to emulate the manipulation of simulation-
based random variable objects is a wasted effort if an appli-
cation to simplify the programming syntax is available. Our
approach should help to make writing, reading, and under-
standing programs more efficient.

Simulation-based random variable objects can also be
used in conjunction with semi-analytical methods for
Bayesian inference (“Rao-Blackwellization”; see Gelfand
and Smith 1990) such as used in computing Bayes factors
(e.g., Chib 1995; Chib and Jeliazkov 2001) and inferences
for very small probabilities (e.g. Gelman et al. 1998). In ad-
dition, random variable objects can be used for direct prob-
ability calculations (Kerman 2005).

Just as vector and matrix computations allow the user to
operate at a higher level of abstraction (compare, for exam-
ple, code in Fortran 77 to Fortran 90), we believe that ran-
dom variable objects have the potential to facilitate a more
“statistical” framework for computing in the presence of un-
certainty.

Acknowledgements We thank the National Science Foundation for
partial support of this research.

References

Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. As-
soc. 90, 1313–1321 (1995)

Chib, S., Jeliazkov, I.: Marginal likelihood from the Metropolis-
Hastings output. J. Am. Stat. Assoc. 96, 270–281 (2001)

Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculat-
ing marginal densities. J. Am. Stat. Assoc. 94, 247–253 (1990)

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data
Analysis, 2nd edn. Chapman & Hall/CRC, London (2003)

Gelman, A., King, G.: A unified model for evaluating electoral systems
and redistricting plans. Am. J. Political Sci. 38, 514–554 (1994)

Gelman, A., King, G., Boscardin, W.J.: Estimating the probability of
events that have never occurred: when does your vote matter?
J. Am. Stat. Assoc. 93, 1–9 (1998)

Kerman, J.: Using random variable objects to compute probability sim-
ulations. Technical Report, Department of Statistics, Columbia
University (2005)

Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS—a
Bayesian modelling framework: concepts, structure, and exten-
sibility. Stat. Comput. 10, 325–337 (2000)

Oldford, R.W.: The Quail project: a current overview. Invited pa-
per, 30th Symposium on the Interface, Minneapolis (1998).
http://www.stats.uwaterloo.ca/~rwoldfor/papers/Interface1998/
paper.pdf

R Development Core Team: R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vi-
enna (2004)

Tierney, L.: LISP-STAT: An Object-Oriented Environment for Statisti-
cal Computing and Dynamic Graphics. Wiley, New York (1990)

Sturtz, S., Ligges, U., Gelman, A.: R2WinBUGS: a package for run-
ning WinBUGS from R. J. Stat. Softw. 12(3), 1–16 (2005). ISSN
1548-7660

	Manipulating and summarizing posterior simulations using random variable objects
	Abstract
	Introduction
	A new programming environment

	Manipulating posterior simulations
	The currently-standard approach
	Toward a more natural programming environment
	Imputation
	Generating replications
	Graphical summaries
	Other functions
	Distinguishing rowwise and columnwise operations

	Implementation
	Examples
	Prediction and multiple imputation
	Posterior predictive distribution
	Imputing the predicted values
	Computing functions of random vectors
	Computing probabilities of events

	Regression forecasting
	Posterior predictive distribution
	Making forecasts

	Posterior predictive checking
	Drawing replicated data
	Computing test quantities

	Discussion
	Summary of advantages
	Disadvantages
	Conclusion

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

