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Probability Matrix Decomposition models may be used to model observed
binary associations between two sets of elements. More specifically, to explain
observed associations between two elements, it is assumed that B latent Ber-
noulli variables are realized for each element and that these variables are
subsequently mapped into an observed data point according to a prespecified
deterministic rule. In this paper, we present a fully Bayesian analysis for the
PMD model making use of the Gibbs sampler. This approach is shown to yield
three distinct advantages: (a) in addition to posterior mean estimates it yields
{1 ~ )% posterior intervals for the parameters, (b) it aliows for an investiga-
tion of hypothesized indeterminacies in the model’s parameters and jor the
visualization of the best possible reduction of the posterior distribution in a
low-dimensional space, and (¢} it allows for a broad range of goodness-of-fit
tests, making use of the technique of posterior predictive checks. To illustrate
the approach, we applied the PMD model o opinions of respondents of differ-
ent countries concerning the possibility of contracting AIDS in a specific
situation.
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Probability Matrix Decomposition (PMEPY) models have been iniroduced by
Maris, De Boeck and Van Mechelen (1996) as & method of data analysis for
two-way two-mode frequency data (using Tucker’s terminology of types of data,
see Carroll & Arabie, 1980). In general, the rows and the columns of the data
matrix refer to different types of elements, denoted as objects and attributes. In
most applications of PMD models, the observed frequencies reflect the number
of raters who have the opinion that objects and attributes are related. However,
one may also consider other types of repeated measurements, such as the
judgments of one rater at different occasions. In these cases we use the term
replicarions for repeated measurements. By making a specific choice of objects,
attributes, and replications a wide variety of phenomena in educational and
behavioral research may be investigated.

For instance, Maris, De Boeck, and Van Mechelen {1996) used PMD models
to stady the process of psychiatric diagnosis. In this study, different clinicians
had to judge whether patients have a certain symptom. Candel and Maris (1997)
iltustrated the use of PMD models in marketing research and made a comparison
with other methods of data analysis for two-way two-mode frequency data,
namely, latent class analysis and correspondence analysis. To illustrate the use of
PMD models in marketing research they asked respondents to judge whether
products have a certain attribute. De Bonis, De Boeck, Pérez-Diaz, and Nahas
{1999) used PMD models to siudy emotion perception in facial expressions.
These authors asked raters 1o judge whether they perceive a certain emotion in a
photographed facial expression. In addition, PMD models may also be useful in
personality research. For instance, in order to analyze the hostile behavier of
people in different frusirating situations persons were asked to judge whether
they would display a certain hostile reaction in a certain frustrating situation
(Meulders, De Boeck, & Van Mechelen, 2000).

Furthermore, PMD models could also be used to analyze some broad catego-
ries of judgments that are often studied in educational and behavioral research.
For instance, they could be used in the context of social network analysis
(Wasserman & Faust, 1994) to explain the ties between members of a network
on some social relation (e.g. friendship, communicating, ete.). The two-way
two-mode data matrix to be used in such analysis may be obtained by asking
each acior in the network to report all those t¢ whom he or she is tied, on the
social relationship in question, and by afterwards counting the number of ties
between cach pair of actors. Another research area where PMB models could be
meaningfully applied is that of consumer behavior. More specifically, one could
record the number of times consumers buy a certain product and analyze the
resulting consumers by products matrix. As a final example, PMD models could
be used in the context of educational measurement to study the extent to which
pupils master certain attainment targets. In this case the data may reflect the
number of judges who indicate that a particular pupil masters a certain attain-
ment target.
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PMD models assume a two-fold process to explain associations between
objects and attributes: First, when judging the association between clements
(objects and attributes), it is assumed that raters may (or may not) perceive each
of a set of latent features in cach element. Second, it is assumed that judgments
regarding the association of two elements are the result of combining the feature
patterns of these elements according to a specific rule. In general, alf kinds of
rules may be considered but in the literature especially deterministic rules that
are interesting from a substantive point of view have been proposed {see Maris,
1995; Van Mechelen, De Boeck, & Rosenberg, 1995, Maris, De Boeck, & Van
Mechelen, 1996). For instance, according to a disjunctive communality rule, the
perception of a certain feature in both elements (object and attribute) is a
sufficient condition for the elements to be associated, whereas, with a conjurnc-
tive dominance rule it is necessary that all the features that are perceived in one
element {object) are also perceived in the other element (attribute).

To make this abstract description of the PMD model more specific it suffices
to elaborate on the nature of the latent features and the mapping rule in some of
the previously mentioned applications. In the application on psychiatric diagno-
sis, the latent features were conceived as psychiatric syndromes. This means that
clinicians, when judging whether a patient has a symptom, covertly classify the
patient according to which syndromes he or she has and also covertly classify
the symptom as fo which syndromes it belongs to. Furthermore, a disjunctive
mapping rule was proposed which means that a patient has a particular symptom
according to a clinician if the patient has at least one syndrome which also
contains that symptom.

In the application on the facial perception of emotions, the latent features
represent properties of the face {e.g., the eyes of a fearful face, the mouth of a
happy face). Applying a PMD model to these data, it is assumed that, when
judging whether they perceive a certain emotion in a certain facial expression,
raters may (or may not) perceive each of a set of relevant latent features in the
face. In addition, it is assumed that in order to be perceived in a facial expres-
sion, emotions may require the perception of certain features. Furthermore, a
conjunctive rule was used which means that an emotion is only perceived in a
tace if all the features that are required by the emotion are also perceived in the
face.

When using the PMD model for statistical inference, the following three
problems need to be solved: (a) parameter estimation, (b} mode! identifiability
and (c) checking the model’s goodness of fit.

For the first problem, Maris et al. (1996) describe an EM algorithm to obtain
maximum likelihood estimates and posterior mode estimates of the parameters
of the PMD model, making use of the fact that the distribution of the augmented
data has a simple structurc. A method to estimate the standard errors of the
parameters, however, is not presented by these authors.

The second problem, model identifiability, is still to be investigated. It con-
cerns the existence of trade-off relations in the model’s parameters as well as the
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uniqueness of the global maximum: First, the problem of possible indetermina-
cies or trade-off relations in the parameters that result from the application of the
model to the data at hand is still unsolved. More specifically, such indetermina-
cies imply the existence of different solutions with the same posterior density
{e.g. a ridge in the surface of the posterior density function). Secondly, no
analytical resulis are available from which it can be derived that the posterior
density function has a single global maximum, which means that, in general, it
may be multimodal. That is, local maxima having a different posterior density
may exist.

The third probiem, checking the fit of the model, requires the development of
one or more goodness-of-fit statistics with a known distribution under the
model. Goodness-of-fit statistics that measure the absolute fit of the model have
not yet been developed for the PMD model. To test the relative fit of models
with different numbers of features, a standard likelihood ratio test statistic is not
readily applicable because its asymptotic distribution is unknown.

In this paper we will show that the three previously mentioned problems can
be solved within a Bayesian framework:

. Regarding the estimation problem, a Gibbs sampling algorithm (Celfand

& Smith, 1990; Geman & Geman, 1984: Smith & Roberts, 1993: Tanner
& Wong, 1987), also labeled “chained data augmentation” by Tanner
(£996, p. 137), will be proposed to compute a sample of the entire
posterior distribation of the parameters. In this way the posterior mean
estimates of the parameters as well as 100%(1 — «)% posterior intervals
can be computed. Like the EM algorithm, a Gibbs sampling algorithm
that involves the usc of latent variables will appear to gain computational
advantage from the fact that the augmented posterior has a simple struc-
ture.

2. Concerning the identifiability of the model, we will first show how a
multivariate analysis technigue like principal components analysis can be
helpful in identifying in & confirmatory way hypothesized indetermina-
cies which influence the pattern of posterior covariances in a systematic
manner. Sccond, we show that from a purely exploratory point of view,
the results of principal components analysis may be used to visualize
projections of the posterior distribution in a low-dimensional space.

3. With respect to model checking, we will indicate how the posterior
sample may be used to assess the fit of the model with the techsique of
posterior predictive checks (Gelman, Carlin, Stern, & Rubin, 1985; Gel-
man, Meng, & Stern, 1996). More specifically, we will discuss how this
approach can be used to assess the general goodness of fit of the model
and to determine the dimensionality of the PMD model, that is, the
number of features.

In the following paragraphs we will first briefly recapitulate the model and the
estimation of its parameters with the EM algorithm. Second, we will deal with
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the Bayesian estimation of the parameters via a Gibbs sampling algorithm and
we will show how the obtained posterior sample can be used to solve the three
problems mentioned above. Third, we will illustrate the approach with data on
opinions of respondents in different countries concerning the possibility of
contracting AIDS in a specific situation.

Probability Matrix Decomposition Models

Model

In general, the obscrved data for a PMD model are frequencies of (/1
responses regarding the associations between objects and attributes. Stated dif-
ferently, the data can be conceived as a two-way two-mode array with (sums of)
muitipte replications of binary associations in each cell. In a common applica-
lion, the objects could be persens, groups, countries, and so on; the attributes
could be items, characteristics, opinions, and so on. Finally, the replications
could be based on several raters, time points, situations and so on. The observed
variable ¥,°“ with realizations y j»"’, which denotes the binary association between
object 0 and attribute ¢ (¢ = 1, , Ora=1, ., A) at the ith replication
(i=1,...,1,,),equals 1if ob)ut 0 has dtmbute a dt the ith replication and 0
otherwise. The PMD model has two parts, which will now be successively
discussed, assuming that raters constitute the replication mode.

I. PMD models explain the associations between objects and attributes
through binary latent responses at both the object and the attribute side.
That is to say, an observation y* is assumed to be based on realizations
s2% and p2? of latent binary variables S°?and P“*(b =1, ..., B). In
gemrdl a latent response variable indicates for objects and attributes
whether they bave the corresponding feature at replication /. In particular,
soPequals 1 if object o has feature b according to rater / when he or she is
judging the dssociation between object o and attribute g, and 0 otherwise.
Likewise p“Zequals 1 if attribute a has featurc & according to rater / when
ke or she is judging the association between o and 4, and 0 otherwise. In
contrast to the corresponding deterministic models {(De Boeck & Rosen-
berg, 1988; Van Mechelen, De Boeck, & Rosenberg, 1995), the PMD
model assumes that having a feature is essentially a probabilistic process.
More specifically, it is assumed that the latent response variables §22 ~
Bern (p,,) and similarly P??~ Bemn (1,,).
The latent responses s97 and p“Y (b = 1, ..., B) arc mapped into the
observed responses y{“ according to some prespecified rale. Maris et al.
(1996) consider several deterministic rules that map the realized latent
responses into the observed response. In this paper we will use one of the
rules, namely a disjunctive communality rule, which is defined as fol-
lows:

[

Y =1 3b:5k=pP%=1(h=1,...,B.

(ll ot
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Maris et al. (1996) show that this rule leads to the following probability that
Y equals 1:

P(Yi“u = Elpm?u) =1~ E[‘(l - p(}/)Tﬂ[))' (1)
b

Estimation

Before summarizing the estimation of the parameters with the EM algorithm,
we introduce some notation. The number of observed | — and G-responses with
respect to the pair (0.a) is denoted by f7“ and f'“, respectively. Let Y be the
vector of observed response variables Y9 (o =1, ..., Oia=14, ..., Aji= 1|,
..., 1.} and let 8 and P contain the latent response variables §9 ang PP
eespectively (o= 1, ..., Ora=1, .. A b=1, ..., Bi=1 ..., I
Furthermore, let Z = (8, P} comprise the total set of latent response variables.
Finally we define 8 = (g, 7) as the vector of all the parameters in the model, with
the vector @ containing the probabilities p,, that object o has feature & (0 = 1,
L., OB =1, ..., B and the vector 7 containing the probabilities 7, that
attribute ¢ has feature bia =1, ..., A b=1,..., B).

The observed posterior can now be expressed as follows:
pOIY) = p@)p(¥18) = p(@®) LHIP(ry = 181" POy = 018)1".

In the above formula we still have 10 make a choice with respect to the joint
prior distribution p(8). One possibility is tc assume that the individual param-
eters 8; are iid with p(8;) « I so that the observed posterior is proportional to the
likelihood of the data. Maris et al. (1996) indicate, however that this choice for
p(8) may be problematic in that, depending on the particular set of observations,
posterior mode estimates may not exist in the interior of the parameter space.
Maris et al. (1996} also propose an alternative prior distribution that guarantees
the existence of posterior mode estimates in the interior of the parameter space,
namely p(83 i Beta {8 12,2). The joint prior distribution then is proportional to:

[7(8) * EEE;E P‘,[;{l - pu{;) }:U;[ ’Talv(i - Tu.’))' (2)

We notice that the Beta(9;(2,2) prior, which is specified for purely technical
reasons here, a priori assumes that parameters are moderate rather than extreme.
In particular, this prior is a concave function on [0, 1] with a mode at 0.5.
Furthermore, the Beta prior is also conjugate, which offers the advantage of
being interpretable as additional data. In particular, the Beta (8, 12, 2) prior adds
one latent chservation of cach type (0 and 1) to the entire set of latent observa-
tions regarding ;.

The maximization of the observed posterior can be accomplished via an EM
algorithm (Dempster, Laird, & Rubin, 1977} In general, such an algorithm
consists of two steps: an E step (Expectation step) and an M step (Maximiza-
tion step). In the F step of the (n + 1)th iteration, the expectation of the log
augmented posterior is computed with respect to the distribution of the latent
data, Z, conditional on the observed dats, Y, and the current guess of the
postericr mode (8). Formally:

(2222
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Q(8.8") = [ In[ p(8|Y,Z)Ip(Z|0"™,Y)dZ.

In the M step this function is maximized with respect to 8. The algorithm has
converged to a stationary point (local maximum or saddle point) if

d[)(() [Y)
T 6

Bayesian Analysis with the PMD Model: Estimation

A Gibbs sampling algorithm, also called ““chained data augmentation” (Tan-
ner, 1996, p. 137), can be used to obtain a sample from an observed posterior
distribution. Similar to the EM algorithm, this approach is based on the math-
ematical tractability of the augmented posterior relative to the complexity of the
observed posterior.

Given the mth simulation draw 8™, the (m + 1)th iteration of the chained data
augmentation algorithm consists of the following two steps:

1. Imputation step: generate latent data Z"™"" from the conditional predic-
tive distribution, p(Z18"™, V). ,
2. Posterior step: draw a simulation 8" of the parameter vector from the
augmented posterior distribution, p(8|Y, 2D,
The implementation of both steps is straightforward for the PMD model.

l. To summarize the imputation step, we first introduce some notation.

2 ? 7] ! B 1 B
Let 20 =(85, ... 8L PolL o, PEDY and similarly 27 = (50, ... 597,
2L peEh Moreovcr C(L”“) =Y is u%d to denote the mapping of
latent response variables S°2 and P“” (b =1, ..., B) into the observed

response variable Y. The conditional pxcdn,tive distribution P(Z}" =
224189, Y9 = y94) is defined as follows:

P(Zga — Z()aie(rn))

4 I
70 . L oainlm)
P(& i}u o }:)(llﬂ e )

0 if C(z29") # yi“.

The denominator of the first term depends on the specific type of mapping rule.

For disjunctive communality it is given by (1). The numerator is equal to:

1 (i} 1 (mh\t—p
TEG S0 = o) Sl P71 = =gy,

]f C(Z;«M) — y;)(!

In order to draw a vector from this discrete conditional predictive distribution
we make use of the inverse cumulative distribution function. Suppose that for a
data point y{ the candidate vectors 2z are numbered as z,, Z,, ... , Z,. The
cumulative distribution function is then casily tabulated as:

F(z) =2 P = gl8™,3) x=1,... K
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To draw at random one of the candidates 2(x = 1, ..., K), we first draw a
random number u from a uniform distribution U({),1) and afterwards we use
F~'{w) to determine which of the candidates has been chosen.

2. To describe the posterior step, we first define the following statistics
involving the latent response variables:

nb _ A e 0B, ob _ XA Lo yb

= 2o 2 sy and s = 200 (L= sy

(b 1 b ab _ N S . {eb
PL[ = u—l ? t Poi and Py }?.nxi lm(ﬁ m)

Using this notation and taking (2} as the joint prior distribution, it is easy to see
that the augmented posterior distribution is proportional to the following prod-
uct:

p@BIY.2) = [T E (p,p )00~ pp) O TTEE (rp )P0 — o ),
b a b

a
This implies that the augmented posterior distribution is equal to a product of
Beta distributions, namely:

p(8lY.2) = |} HBLM {p

o
In the (m + 1)-th iteration of the posterior step we draw the individual param-
eters from their corresponding Beta distribution:

Ef} J ‘:b§H + ?ub HHBCI&(‘T’abP +[7“b 3 4 pai\

b

(ni+ / {nt aby(m-t 1)
p.n b BCE&(Z + (\S(;b).m} l)’ 3 b (S{;u)(m t l;)

ob
TL’Z RO ch(E + (pcl;h)(m-‘wi)’ 7 (pg};){nn I))_

Tanner and Wong (1987) show that, under some regularity conditions, the
sabsequent values 81,87, . form a Markov chain which converges to the true
posterior distribution. An important aspect in the implementation of the algo-
rithm is the required number of iterations to approximate convergence ((ilks,
Richardson, & Spiegelhaiter, 1995; Cowles & Carlin, 1956). We follow the
approach of Gelman and Rubin (1992) by simulating multiple chains from
different x[amng points and judging approximate convergence based on the
statistic R’ % which measures the ratio of a weighted sum of between-chain
variation and within-chain variation to within-chain variation, for cach scalar
estimand of interest. The statistic R” may be interpreted as an estimate of the
factor by which the scale of the current distribution for a parameter might be
reduced if the simulations were continued in the limit m — . Values of R near
1 indicate convergence; in practice R" smaller than 1.1 for each scalar estimand
of interest is a reasonable criterion to stop the simulations (Gelman et al., 1995).
In this computation it is necessary to discard the initial part of each chdm to fit
the target distribution more accurately. We notice that the convergence diagnos-
tic R is based on normal theory approximations so that it is appropriate to
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transform the scalar estimands to be approximately normally distributed. As the
parameters of the PMD model are in the [0,1] interval, a logit transformation is
used.

Bayesian Analysis with the PMD Model: Indeterminacies

In a classical maximum likelihood framework, an important question is
whether some obtained solution corresponds to the global maximum of the
likelihood. In this respect, it often cannot be shown analytically that the likeli-
hood is unimodal. Usually, it is only possible to check whether a particular
solution is a local maximum (Goodman, 1974; Formann, 1992); to gain further
evidence about the optimality of a sclution it is common to run the algorithm
several times starting from different points in the parameter space.

A fully Bayesian analysis offers two additional possible ways to investigate
indeterminacies in a model’s parameters, which reflect regions of high posterior
density.

First, it is possible to investigate in a confirmatory way to what extent certain
hypothesized indeterminacies explain the posterior uncertainty in the param-
cters. The indeterminacies we have in mind have two characteristics: (a) they
imply a specific pattern of covariation between the parameters and (b) their
impact on the posterior uncertainty of the parameters depends on the data at
hand. Because of the latter characteristic, they may be contrasted with indeter-
minacies which occur independently of the data at hand, such as, for instance,
indeterminacies related to rotational freedom for the components in a principal
components analysis. The latter type of indeterminacy is often trivial and should
be taken into account during the parameter estimation.

To depict an overview of the joint influence of the different hypothesized
indeterminacies, a principal components analysis of the posterior covariance
matrix may be helpful. Furthermore, rotating the loadings of parameters towards
the hypothetical pattern of covariances that is expected from the different types
of indeterminacy, can help to identify the components. To rotate the loadings
towards a hypothetical pattern, an orthogonal Procrustes rotation can be used
{Schénemann, 1966).

Second, from a purely exploratory viewpoint, a fully Bayesian analysis allows
us to visualize projections of the posterior distribution in low-dimensional space,
by means of multivariate analysis techniques—in particular, principal compo-
nents analysis. Such projections may indicate areas of high posterior density and
they may also reveal whether the posterior has one or multiple modes.

We will now describe three types of indeterminacy that may exist in the
parameters of the PMD model. A first type, labeled permutation indeterminacy,
is a trivial type of indeterminacy that also occurs in mixture models. In the case
of a disjunctive communality mapping rule, permutation indeterminacy between
the parameters results from the fact that the left-hand side of (1) is invariant to
permutation of features. Permutation indeterminacy implies that, for a PMD
model with B features, the parameter space contains B! identical regions of
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posterior mass. A possible solution to this problem is to identify for cach
simulated Markov chain the region that is sampled from, based for instance, on
the posterior mean estimates of the parameters. In this approach one must make
sure that the simulated parameter values do not switch between ditferent poste-
rior regions during the simulation of one Markov chain: i the feature probabiki-
ties of a specific object/attribute differ substantially, then a pernutation of the
features can be identified through a visual inspection of the iteration history of
the simutated parameter values for this object/atiribute.

A second and less trivial type of indeterminacy, labeled within-fearure indeter-
minacy, may exist between parameters of objects and attributes regarding one
feature. That is to say, multiplying all the feature probabilitics of objects by a
constant and dividing ail the feature probabilities of attributes by the same
constant does not affect the likelihood of the model. Notice that the value of the
constant is restricted by the condition that all parameters have to take values
within the [0, 1] interval, so that in special cases this type of indeterminacy can
be negligible, which is why the indeterminacy depends on the data. Within-
feature indeterminacy implies a specific pattern of covariation between param-
eters. In particular, ope may predict positive posterior covariances among the
p,, s and among the 7,,’s for each feature b, and negative covariances between
b, s and 7,,s, also for each feature b.

A third type of indeterminacy, labeled berween-feature indeterminacy, may
exist between feature probabilities concerning different features. In general, it is
similar to the second type, although its implications for single parameters are
much less straightforward. It can be described as follows. The probability of
observing a one at the i-th replication in cell {0, &) is given in (1). Now it is casy
to see thai multiplying one term of the product, for example (I - p,7, ), by &
constant and dividing another, for example (I — p,;T,0, by the same constant,
does not affeet the likelihood of the model. Also for this type of indeterminacy,
the value of the constant is restricted by the condition that all the parameters
shouid take values in the [Q,71] interval, so that in special cases this indetermi-
nacy can be negligible, meaning that it depends on the data. Besides, between-
feature indetermminacy also implies a specific pattern of covariation between
parameters. More specifically, negative covariances between p,,’s and 7,,’s of
different features may be expected.

It should be stressed that, in a specific application, the pattern of posterior
covariances may be the result of both within- and between-feature indetermi-
nacy. For example, a positive covariance between p,,'s of one feature and 7,8
of another may result from a negative covariance between p,,’s and 7,,’s within
a feature, and a negative covariance between features. As a consequence, just
locking at pairwise covariances may be misleading. A principal compenents
analysis of the posterior covariance matrix and Procrustes rotation of the load-
ings towards the hypothetical pattern of covariances that is expected from both
types of indeterminacy, can help to identify the components. For example, in the
case of two features, three components are expected: one for each feature to
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reflect within-feature indeterminacy, and one contrasting both features to reflect
between-feature indeterminacy. For more than two features, for each pair of
features, a bipolar between-feature component can be hypothesized. Finally, it is
not guaranteed that these are the only types of indeterminacy that occur in a
specific application. In other words, it is still possible that other, more complex
types of indeterminacy, which depend on the data at hand, may occur in the
model’s parameters.

Bayesian Analysis with the PMD Model: Model Checking

Besides the estimation of the parameters, an appropriate analysis also implies
checking the goodness of fit of the model. In this respect, two questions are of
particular importance:

1. What is the relative goodness of fit of models with different numbers of
features? In other words, how much does the goodness of fit improve by
adding one feature and is the improvement statistically significant? This
is usually an important question in models that are used to represent the
data as well as possible with a low number of dimensions.

2. What is the absolute goodness of fit of the model? More specifically, to
what extent do the expected frequencies under the model approximate the
observed frequencies?

Within a classical maximum likelihood framework, sach model checking re-
quires the construction of test quantitics with a known distribution under the
model. For the PMD model, a standard hikelihood ratio test statistic cannot be
used to test the relative fit of models with different numbers of features because
this statistic is not asymptotically chi-square distributed. The latter is due to the
fact that the null hypothesis of a PMD model with B features corresponds to a
boundary of the parameter space of the alternative model with B + r features
(McLachlan & Basford, 1988). On the other hand, goodness-of-fit statistics that
measure the absolute fit of the PMD model have not been developed yet. A
valuable alternative for the construction of test quantities with a known distribu-
tion under the model is to simulate the distribution of a test quantity under the
model.

Within a Bayesian framework, model checking is basically a matter of com-
paring observed data with data that could have been observed under the model if
the actual experiment were replicated with values of the posterior distribution of
® (Gelman, Carlin, Stern, & Rubin, 1995). The reference distribution for a
replicated observation Y™P, aiso called the posterior predictive distribution, is
defined as follows:

p(YNY) = [ p(Y"F|6)p(8]Y)dB.

In order to compare Y™ and Y, one may define a test quantity 7(Y) that is a
function of the data only, or a test quantity 7(Y, 8) that is a function of both the
data and the parameters.

163



Meulders et al.

Rubin (1984} defines the posterior predictive p valuc as the probability that
Y™} exceeds or equals T(Y); that is:

ppc p — value = P[T(Y™F) = 1(Y)|Y] = f HIY™P) = () p(Y™PY)dY™,

with £{-} being the indicator function. An extreme p value indicates that T(Y) is
anlikely to occur under the model and places doubt on the model aspect
measured by 7{). The computation of the p valee is straightforward once a
sample of the posterior distribution is available. In particular, the following steps
need to be performed for each draw 8 (m =1, ..., M) of the observed
posterior distribution:

1. Generate a replicated data set Y™ from p(Y |8"™).

2. Compute T(Y™P™),

Afterwards the p value is calculated as the proportion of simulated values
T(Y™™) that exceed or egual TXY). Beyond the actual p value, a useful
graphical device consists in the location of 7{Y) in the histogram of simulated
values T(Y™P™),

Meng (1994) describes the posterior predictive check approach with test
quantities 7{Y, 8) that are a function of both data and parameters. Such quanti-
ties are labeled realized discrepancy measures. Gelman, Meng, and Stern (1996)
ciaborated this approach further and discussed several discrepancy measures to
evaluate the goodness of fit of a model. In this case, the p value is defined as the
probability that the replicated discrepancy measure exceeds or equals the real-
ized discrepancy measure:

ppc p — value = P(T(Y™.8) = Y, HY)

= J [ IIT(Y™P.8) = 7Y ) |p(Y*°|8)p(8] Y)dedY"™.

To compute the p value, the following steps are required for each draw @Y
(m=1,..., M) of the posterior:

1. Cenerate a replicated data set Y™P from p(Y|8'").
2. Compute 7(Y, 8.
3. Compute T(Y™P" ¢y,

The p value is subsequently calculated as the proportion of simulated values
TOY™P, 8} that exceed or equat their counterpart 7(Y, 8. In addition, onc
may plot the values T(Y™P", ") against their counterparts 7{Y.8) (m = 1,

. M)

For PMD models we wili focus on two test quantities that measure the general
goodness of fit of the model and one test quantity that can be used to decide
between models with different sumbers of features. A first test quantity that we
propose to assess the general goodness of fit of the model is the Pearson
chi-square discrepancy measure, defined as the sum of standardized squared
deviations between observed frequencies and expected frequencies under the
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model:

. oo E(f(MIO) 2
(Y0 =2 §———— ¢,
o a [Vﬂ(f?ﬂﬂﬂ’
with Var(f{“|8) = [E(f{°|6)E(f5"|0)}/],,, and in which I , is the number of
replications for pair (g, @), as defined carlier. Another test quantity that serves
the same purpose is the likelihood ratio chi-square discrepancy measure:

270 =233 {f;’“ log [*il—_] + f%log [—L(LWH
E(£90) E(£5°18)

The Pearson chi-square and the likelihood ratio chi-square discrepancy measure
are of the discrepancy measure type as the expecied frequencies E(F7¢|8) and
E(f5°|8) are a function of the parameters. In particular, the expected frequency
of one and zero responses in cell (0, a) may be computed as [, P(Y{“ = 1]6) and
L. P(Y{® = 0]8), respectively, with the probability of observing a one or a zero
depending on the specific type of mapping rule that is ased (see (1)).

The likelihood ratie chi-square discrepancy measure is alse a building bilock
for a measure that can be used to choose between models with different numbers
of features. That is to say, to test a model with B, features against a model with
B, features, we propose the test quantity:

L) = L3(Y.8) — LY(Y.9), 3)
which is a function of the data only as dependence on the parameters is
eliminated by substituting the posterior mode estimate 9 at the right hand side.

In order to simulate the reference distribution of (3) we generate M-replicated
data sets under the restricted model and compute for each data set the posterior
mode by running the EM algorithm [0 times and choosing the solution with the
highest posterior density. Afterwards we compute the quantity L3 (Y™P™) =
LAY™P 0y — [2Y™P §0%) (m = 1, ..., M) for each replicated data set.
We typically simulate 500 values of L3;(Y™P), since finding the posterior mode
for each data sct is computationally intensive. Finally, we note that a quantity
similar to that in (3) was used by Rubin and Stern (1994) to determine the
number of latent classes in latent class analysis.

Example

As an illustration of the approach, the PMD model is now applied to real data
on opinions of respondents of different countries concerning the possibility of
contracting AIDS in a specific sitwation. The data were supplied by the Zen-
tralarchiv fiir Empirische Sozialforschung at Cologne (Reif & Melich, 1992).
The raw data are the answers from 23,397 respondents in 13 countries with
respect to 10 items in the format: “In your opinion, in each of the following
situations, can AIDS be contracted . . . yes, possibly or not?”, Table 1 contains a
description of the situations. Since the PMD model can only be used to explain
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TABLE 1
Ten Situations in which AIDS Might Possibly be Contracted

Situation

i Hating a meal prepared by someone who has AIDS or is HIV positive
2 Handling objects touched by someone who has AIDS or is HIV positive

3 Drinking from a glass which is used by someone who has AIDS or is HIV positive

4  Sitting on the same toilet seat as someone who has AIDS or is HIV positive

5 Being injected with a needie which has been used by someone who has AIDS or i
HIV positive

6 Receiving blood from someone who has AIDS or is HIV positive

Shaking the hand of someone who has AIDS or is HIV positive
& Kissing the mouth of someone who has AIDS or is HEV positive
9 Having sex with someone who has AIDS or is HIV positive

10 Taking care of someone who has AIDS or is HIV positive

TABLE 2
Frequency of Respondents in 13 Countries with the Opinion that AIDS can be Contracted
in 10 Situations (Random Sample with N = 50)

Situation

Country Fating Object Glass Toilet Needle Blood Hand Kissing Sex  Care
France 2 10 24 25 49 50 7 24 50 24
Belgium il 6 21 21 50 50 4 26 50 23
Netherlands 9 4 15 14 50 50 4 26 48 14
Germany 13 1y 23 26 50 50 10 38 49 30
Ttaly it ] 17 24 50 560 4 28 50 24
Luxemburg 5 5 21 20 50 50 6 25 50 IS
Penmark i 5 14 13 50 50 0 24 49 3
freland 5 11 22 27 30 50 8 36 50 i6
Great Britain 11 8 26 14 49 49 3 34 49 19
Northern

Ireland 7 6 12 16 48 48 5 32 48 17
Greece 13 9 25 27 50 50 10 38 50 25
Spain 24 17 29 29 48 48 14 40 48 21
Portugat 29 24 32 3 48 49 24 45 49 34

binary asscciations between countrics and situations, the raw data are dichoto-
mized. More specifically, for each item, the categories “possibly”™ and “yes’” are
combined, since both imply that there is risk involved. In order to illustrate the
modeling in a small-sample scenario, we analyze here a random subsample of 50
respondents per country. Table 2 contains the resulting data set. The frequencies
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TABLE 3
Posterior Mean Estimate and 95% Posterior Interval (Pl of the Feature Probabilities for
a One-feature Model

Country Mean 95% P1 Situation Mean 95% PI
France 980 [.951, 997} Eating 258 {.224, .293]
Belgium 984 {.956, .998] Object 193 [.163, .225]
Netherlands 958 {.913, .988] Glass 445 [.407, 484]
Germany 986 [.967, .898] Toilet 466 [.426, 505}
Ttaly 985 [.960, .998] Needle 995 [.986, .999]
Luxemburg 980 [.946, .997] Blood 996 [.988, .999]
Denmark 955 [.602, .992] Hand 159 [.132, .189]
Treland 988 [.968, .998] Kissing 657 [.618, .694}
Great Britain 967 {.931, 9911  Sex 994 [.686, 9991
Northern freland 934 [.884, 9711 Care 436 {.398, 475}
Greece B89 [.971, .999]

Spain 969 [.942, 989}

Portugal 984 1.967, .996]

in this table indicate the number of respondents in a country with the opinion
that AIDS can be contracted in a specific situation.

Estimation

The one-feature and the two-feature model are estimated using the Gibbs
sampling algorithm. For both models five independent chains are simuiated
using random starting points generated from a uniform distribution U(6,1). The
algorithm is stopped if the statistic R®, computed on the second halves of the
chains, is smaller than 1.1 for each logit transformed parameter. For the one- and
two-feature models this occurs after 2,000 and 3,000 iterations, respectively. R”
values for the parameters of these models are in the range [1.00,1.01] and
[1.00,1.09], respectively. Finally, for each modeil a sample of 5,000 draws is
constructed by taking 1000 evenly spaced draws from the second halves of the
five simulated chains.

Tabie 3 and Table 4 show the posterior mean estimates and the 95% posterior
intervals for the parameters of the one-feature model and the two-feature model,
respectively. The estimates are probabilities, to be interpreted as follows: The
feature probability for a country equals the probability that respondents in that
country have the opinion associated with the feature. On the other hand, the
feature probability for a situation equals the conditional probability that respon-
dents agree that the situation is a risk, given they have the opinion associated
with the feature.

In the one-feature model (sce Table 3), the feature probabilities for the
situations can be interpreted as reflecting the objectively true view on which
situaticns could lead to AIDS. “Being injected with a needle which has been
used by someone with AIDS”, “receiving blood from someone with AIDS” or
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“having sex with someone with AIDS” have a high probability for this feature:
995, 996, and .994, respectively; they are in fact also the true risks. Other
situations, like “‘handling objects touched by someone with AIDS™, “eating a
meal prepared by someone with AIDS”, “shaking the hand of someone with
AIDS"” have a low probability for this feature: .19, .26, and .16, respectively,
and they refer to beliefs not corroborated by scientific knowledge. Finally
“kissing the mouth of someone with AIDS™ has a moderate probability, namely
.66, and also from an objective scientific point of view, implies a slight risk.

Contrary to the large differences between the feature probabilities for the
situations, in the one-feature model there are only small differences between the
feature probabilities of the countries, meaning that respondents in different
countries have approximately the same opinion about the possibility of contract-
ing AIDS in a situation. As will be explained in the section of model checking,
this prediction does not fit the observed data. As a matter of fact, the one-feature
model is to be rejected against the two-feature model, whercas the latter model
does sufficiently account for the data.

In the two-featare model (see Table 4}, the first feature can be interpreted as
reflecting the “‘correct opinton”. Situations with high probabilities for this first
feature correspond to the true risks. The second feature reflects an “alternative
opinion” about the possibilitiy of contracting AIDS in a situation. More specifi-
cally, the true risks are underestimated and some situations are considered risky
whereas objectively this is not the casc. The situations “being injected with a
needle which has been used by someone with AIDS”, “receiving biood from
someone with AIDS” and “having sex with somecne with AIDS” have a lower
probability for this feature to carry AIDS (.78, .83 and .86), whereas “sitting on
the same toilet as someone with AIDS”, “kissing the mouth of someone with
AIDS” and “cating a meal prepared by someone with AIDS™ have a higher
probability for this feature (.69, .85, .53, respectively).

The probability of & country for the first feature can now be interpreted as the
probability that respondents in that country have the opinion that is in accor-
dance with the facts and the probabililty of a country for the second feaiure can
be interpreted as the probability that respondents in that country have the
alternative opinion. The estimates for the two-feature model show that respon-
dents in most countries have a high probability of having the correct opinion.
Exceptions are respondents in Portugal and Spain, who have a slightly lower
probability to have this opinion (.84 and .87, respectively). In contrast, country
probabilities for the alternative opinion vary from rather low for Denmark (.06)
to rather high for Portugal (.95).

It should be clarified now that having an opinion means responding to items
on the basis of the opinion in question, and that respondents can combine
opinions in responding, as the probabilities do not add up to 1.0 over features.
As explained ecarlier, the combination is of a disjunctive type. Therefore, given
the same probability for the correct opinion, countries with a higher probability
for the alternative opinion will tend to consider situations with a high probability

i69



Meulders et al.

for the alternative opinion as being more risky. In other words, countries having
a high probability for both opinions differ from countries having only a high
probabiiity for the correct opinion in that they tend to consider safe situations as
being more risky. In this respect, it must be noticed that the rather high prob-
abilities of the true risks “needle”, “blood” and “sex” for the feature reflecting
the alternative opinion are not problematic, but only imply that respondents
having the alternative opinion also consider true risks as being risky. As an
example, consider the probabilities that respondents in Denmark (having a high
probability for the correct opinion (.98), and a low probability for the alternative
opinion {.06}) and Greece (having a high probability for the correct opinion (.98)
and a moderate probability for the alternative opinion (.54)) consider “receiving
blood from someone with AIDS™ or “sitting on the same toilet as someone with
AIDS” as being a risk: Respondents from both Denmark and Grecce have a
probability of 98 to consider the former situation risky, whereas respondents in
Greece have a somewhat higher probability (.53) than respondents in Denmark
{.28) to consider the lafter situation a risk.

The 95% posterior intervals of most parameters (see Table 4} are rather
small: For the first and the second feature, the median range of the 95%
posterior intervals equals 07 and .25, respectively. Some exceptions having a
somewhat larger posterior interval are the parameter of Portugal for the first
featuare ([.67, .95}) and the pz’xn‘ametem of “needle”, “blood”, and “sex” for the
second feature ([.35, 951, [.53, .97] and [.63, 98], respectively). In the second
on the identifiability of the modd we will see that these larger posterior intervals
may be partly explained by hypothesized indeterminacies in the model’s param-
eters. However, as will be explained, a substantial part of the uncertainty in these
parameters must be due to other miore specific sources.

Indeterminacies

First, the matrix of posterior covariances between parameters is analyzed with
a principal components analysis. The first seven compeonents of this analysis
account for 17.3%, 12.6%, 7.9%, 6.4%, 5.4%, 5.0% and 4.6% of the variance,
respectively. A scree test (Cattell, 1966) indicates that a model with four compo-
nents is appropriate. Sccondly. an orthogonal Procrustes rotation is used to rotate
the loadings of parameters on the four components towards the hypothetical
structure that is expected under between- and within-feature indeterminacy. In
specifying the hypothetical loadings, we make sure that the proportion of ex-
plained variance i/g of a parameter 9, is the same as in the unrotated solution.

Table 5 contains the hypothetical lf)ddmm% of object and attribute parameters
for the case of two features; three components are distinguished, one for
between-feature indeterminacy and two for within-feature indeterminacy. For
the component reflecting between-feature indeterminacy, the hypothetical load-
ings of parameters concerning the same feature have the same sign, unlike
parameters concerning different features. For a component reflecting within-
feature indeterminacy for a given feature, the hypothetical loadings of object and
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TABLE 5
Hypaothetical Loadings of Parameters on Components that Reflect
Berween-and Within-feature Indeterminacy

Parameter Between Within
Feature 1 Feature 2
Pot ‘]pnl _ v 1 ) 0
2 2
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attribute parameters concerning that feature have opposite signs; the parameters
regarding the other feature having zero loadings on this component. It is as-
sumed that within-feature indeterminacy independently occurs for each of the
two features.

Table 6 shows the congruence between the hypothetical loadings and the
loadings that are obtained after Procrustes rotation. For the first and the third
component the congruence coefficients are high (.83 and .93, respectively).
Therefore we may conclude that these components reflect between-feature inde-
terminacy and within-feature indeterminacy for the second feature, respectively.
On the other hand, the congruence for the second component is only moderate
(.30). Therefore, the interpretation of this component as within-feature indeter-
minacy for the second feature is problematic. The four rotated components
account for 12.5%, 6.7%, 16.8% and 8.0% of the variance, respectively. Hence,
especially the first and the third component seem important, and precisely these
two could be easily identified as expected types of indeterminacy.

Two comments may be added to clarify the only moderate congruence coeffi-
cient concerning within-feature indeterminacy for the first feature. First, from
the country and the situation parameter values of the first feature, it may be
concluded that there is not much room for within-feature indeterminacy since
parameters, at both sides, that is, ol most countries (except for Portugal and
Spain} and of some situations (i.e., “needle”, *blood”, and “sex”) are already
near the boundary of the parameter space. In case there are at both sides (for
objects and attributes) parameter values near 1, then multiplying at cne side and
dividing at the other is not possible without transgressing the boundary of 1.00.
Secondly, in comparison with the other two components, the second component
only accounts for a small part (6.7%) of the variance in the parameters. The
fourth component of the rotated solution is more specific in nature, as it
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TABLE 6
Congruence Between Hypothetical Loadings and Loadings Obtained
after Procrustes Rotation

Rotated
Between Within
Feature 1 Feature 2
826 052 -.144
Hypothetical . 146 303 095
- 173 041 928

concerns only a few parameters. It is also less important since it only accounts
tor a smaller part of the variance (8.0%).

The loadings of the individual parameters on the rotated components may be
used to estimate the proportion of the variance per parameter that is due to the
corresponding type of trade-off. We will only summarize the results for the two
well-identified components (1 and 3). For the first component reflecting
between-feature indeterminacy, the smallest, median and largest percentage of
posterior variance accounted for in an individual parameter equals .02%, 4.9%
and 36.2% respectively; for the third component, reflecting within-feature inde-
terminacy for the second feature. the smallest, median and largest percentage of
posterior variance accounted for in parameters regarding the sccond feature
equals .0001%, 4.8% and 39.9% respectively.

In the estimation section we noted that the parameter of Portugal for the first
feature and the parameters of “needie”, “blood™ and “sex” for the second
feature have a somewhat farger 95% posterior interval. It can now be examined
to what extent this is due 1o the two identified types of indeterminacy. From the
muatrix of component foadings it can be derived that 26.9% of the variance in the
parameter of Portugal regarding the first feature, is accounted for by between-
feature indeterminacy. Furthermore, only 3.6% of the variance in this parameter
is accounted for by the component reflecting within-feature indeterminacy for
the second feature. For the parameters of “needle”, “blood” and “sex” con-
cerning the second feature, the component reflecting between-feature indetermi-
nacy accounts for 36.2%, 25.9%, and 13.9%, respectively, of the variance.
Besides, the component reflecting within-feature indeterminacy for the second
teature accounts for 9.6%, 23.9%, and 5.4%, respectively, of the variance in
these parameters. Nevertheless, the posterior uncertainty of most parameters
scems to be relatively small in general, and indeterminacics in the model’s
parameters only account for a small part of this uncertainty.

In this respect it is interesting to note that the present analysis yields even
more reliable parameter estimates {(smaller 95% posterior intervals) and fewer
indeterminacies in the model’s parameters than an alternative analysis in which
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the data were dichotomized in a slightly different way, namely by adding the
“possibly” category to the category with the lowest frequency. The latter proce-
dure yielded different observed data only for the items “needle”, “blood” and
“sex””: Fewer respondents (especially for Portugal and to a lesser extent for
Spain) had the opinion that AIDS can be contracted in these situations.

In this alternative analysis two hypothesized components could aiso be iden-
tified, as in the analysis reported on earlier, namely one reflecting between-
feature indeterminacy and another reflecting within-feature indeterminacy for
the second feature. These components accounted for 24.4% and 16.8% of the
variance in the sample of the posterior, respectively. The 95% posterior intervals
of the parameter of Portugal for the first feature ([.25, .76}) and of the param-
eters of “needle”, “blood” and “sex” for the second feature ([.27, .87], [.35,
.88}, £.30, .88], respectively) were larger than in the present analysis and more of
this posterior uncertainty could be explained by the identified components. In
particular, the component reflecting between-feature indeterminacy accounted
for 50.8% of the variance in the parameter of Portugal regarding the first feature
and it accounted for 38.2%, 35.5% and 36.7% of the variance in the parameters
of “needle”, “blood” and “sex” concerning the second feature. Furthermore,
the component reflecting within-feature indeterminacy for the second feature.
accounted for 20.1% of the variance in the parameter of Portugal regarding the
first feature and it accounted for [8.7%, 16.8% and 20.1% of the variance in the
parameters of “needie”, “blood” and “sex” regarding the second feature.

Figure 1 shows a plot of the two-dimensional histogram of the scores of the
posterior draws on the first two unrotated principal components from the origi-
nal analysis (with “possibly” and “yes” coded as 1). The plot approximates the
Jjoint posterior density of the principal components and so it may be interpreted
as the best possible two-dimensional reduction of the observed posterior distri-
bution. Figure 1 does not show any clearly separated regions of high posterior
density. Another way to investigate whether separate regions of posterior density
exist, is through visual inspection of (a) the marginal posterior distributions of
all the parameters and (b) the joint posterior distributions of all pairs of param-
eters. In these plots as well, no separate regions of high posterior density could
be identified.

One may wonder whether some of the indeterminacies discussed above could
be eliminated during the estimation procedure by restricting the parameter
space. Regarding within-feature indeterminacy, this could for instance be done
by fixing for each feature one parameter at the posterior mode estimate. Apply-
ing the latter procedure, however, appeared to have little effect on the pattern of
posterior covariances and on the results of the principal components analysis. In
other words, within-feature indeterminacy can still be an issue if one parameter
for each feature is fixed.
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FIGURE 1. Two-dimensional histogram of the posterior density for the two-feature
model, based on the scores of the posterior draws on the first two principal components

Model Checking

The test quantity L34(Y) is used to test models with different numbers of
features against each other. In particular models with one, two, and three
features are considered.

Figure 2 shows the resuits of this procedure for a one-feature model versus a
wwo-feature model and a two-feature model versus a three-feature model. The
left pancl displays the simulated reference distribution L3;(Y™) for cne versus
two features. The quantity L2..(Y), which is based on the observed data, is not
dispiayed in the figure because it has a very large value, namely 297.2. The
corresponding p value equals .00. Hence, a model with two features is clearly
superior to a model with one feature. On the other hand the right panel shows
the simulated reference distribution L3 (Y™F) for two versus three features.
This figure aiso displays the guantity 12(Y) which equals 16.0. The corre-
sponding p value equals .88, which means that there is no reason to prefer a
three-feature over a two-feature model.

After having determined the appropriate number of features, we also assess
the absolute fit of the selected model using a Pearson chi-square discrepancy
measure. Figure 3 shows a plot of a sample of x*(Y*"",8") values against the
correpsonding x(¥,8) values. The replicated discrepancies x*(Y™P",8")
exceed or equal the observed discrepancies x*(¥.8") for about 66% of the
replicated data sets. The corresponding p value equals .66. In other words, the
observed frequencies do not deviate systematically from frequencies which were
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FIGURE 2. The simulated reference distribution of the quantity Lf,,ﬁ(Y""’) for the
comparison of models with (a) one versus two features and (b} two versus three features

generated from the posterior density of @ given the real data. Thus it can be
concluded that the two-feature model fits the data fairly well.

Conclusion

In general, a fully Bayesian analysis, which implies simulating a sample of
the entire posterior distribution, has three important advantages. First, the poste-
rior sample provides the entire marginal posterior distribution of any estimand of
interest, and thus goes beyond only locating the posterior mode. Second, the
posterior sample provides information about indeterminacies in a model’s pa-
rameters. More specifically, principal components analysis may be used in a
confirmatory way to identify hypothesized indeterminacics which imply a spe-
cific pattern of covariances between parameters and to compute their impact on
the posterior uncertainty of the parameters. In addition, the results of the
principal components analysis may be used from an exploratory viewpoint to
visualize the posterior distribution in a low-dimensional space, which may
reveal interesting fecatures of the posterior distribution. Third, the posterior
sample may be used to assess the fit of the model with the technique of posterior
predictive checks.

In the present paper we illustrated each of these advantages in a specific
application with the PMD model. First, the use of a Gibbs sampling algorithm to
compute a sample of the entire posterior distribution was shown to be straight-
forward since the augmented posterior distribution has a mathematically trac-
table form. As a result, a (1 — )% posterior interval of any estimand of interest
was easily obtained without any extra computational effort and without relying

175



Meulders et al.

Two-feature Model

o
(e
S %
o °% 8
o 9
/‘\Lﬂ—
-
B
[
N
= o
2 o
gg‘“ o]
= - O
N &8
X
o
19
Q_

0 50 100 150 200

XY theta)

FIGURE 3. Scatterpiot of replicated x° discrepancy, ¥ (Y7, §°™) vs. realized dis-
crepancy, X (Y, 8™), for 5000 vandom draws of (8™, ¥77™) from the posterior distribu-
tion of the two-feature model

on normal approximations, in contrast to the computation of standard errors in
the context of the EM algorithm. Second, a principal components analysis was
shown te be an informative tool for tracing regions with a relatively high
posterior density. In particular, Procrustes rotation of the obtaired component
leadings towards a hypothetical structure, which was expected from between-
and within-feature indeterminacies, was shown to help to identify two compo-
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nents. In addition, a histogram of the scores of the posterior draws on the first
two principal components was shown to be a useful way to approximate the
observed posterior distribution in a two-dimensional space. Third, the posterior
sample was used to assess the fit of the PMD model both in a relative sense and
in an absolute sense.

Finally, it may be noted that the approach presented in this paper can be
extended to several other models inside as well as outside the PMD family. First,
it is straightforward to imptement the Gibbs sampler for PMD models with other
deterministic mapping rules (Maris, De Boeck, & Van Mechelen, 1996). As a
matter of fact, every possible mapping of latent variables into an observed data
point can be used. Furthermore, it is possible to extend the approach to PMD
models with a stochastic mapping rule; for this the vectors of realized latent
response variables for an observed data point are sampled according to a
prespecified probability distribution. Finally, given the promising results for the
PMD model it may be worthwhile to extend the novel multivariate posterior
analysis method we proposed here, to models outside the PMD family for which
a full Bayesian approach is currently a topic of interest (Gelman, Carlin, Stern,
& Rubin, 1995; Tanner, 1996; Hoijtink & Molenaar, 1997).
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