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Probability Mcatrix Decompositioni models mtay bve uised to model observed
binary associations between two sets of elements. More specifically, to explain
observed associations betweeni two elements, it is assumed that B laitent Ber-
noulli variables are realized for each element and that these variables are
subsequently mapped into an observed data point accordingg to a prespecijied
dererministic rule. In this papet; we present a fully Bayesian analysis for the
PMD model makintg use of the Gibbs sampler. 7his approach is shown to yield
three dislinct advantages: (a) in addition to posterior mean1 estim'lates it yields
(/ 1 o<)% posterior intervals for the parameters. (b) it allows for an investiga-
tion of kypothesi7-ed indeterminacies in the model's parameters and for thle
visualization of the best possible reduction oJ' the posterior distribution in a
low-dimnensional space, and (c) it allows Jfr a broad range of goodness-of fit
tests, making use of the technique of posterior predictive checks. To illustrate
the approach, we applied the PMI) model to opinions of respondents of difer-
ent countries concerning the possibility of contracting AID)S in a specific
sitizationi.

The research reported in this paper was partially supported by the Fund for Scientific
Research-Flanders (Belgiumi) (Project G.0207.97 awarded to Paul De Boeck and Iven
Van Mechelen), and the Research Fund of K.U. Leuven (Ff96/6 fellowship to Andrew
Gelman, and OT/96/10 project awarded to Iven Van Mechelen). Palt of the analysis
reported in the application section of this paper was carried out at the ZA-EL1ROLAB at
the Zentralarchiv flir Enipirische Sozialforschung (ZA), Colognie. The ZA is a Large
Scale Facility (1,SF) funded by the Training and Mobility of Researchers (TMR) pro-
gramme of the European Unioni. We thank Tom Verguts and Hans Berkhof for the careful
reading of an earlier draft of this manuscript.

153



Meuld/es et (it.

Probability Matrix Decomposition (PMD) models have beeni introduced by
Maris, De Boeck and Van Mechelen (1996) as a method of data analysis for
two-way two-nmode frequency data (using Tucker's termninology of types of data,
see Carroll & Arabie. 1980). In general, the rows and the columns of the data
matrix refer to different types of elemnents, denoted as objiest and (attributes. In
nmost applications of PMD models, the observed freqtuenicies reflect the number

ol raters who have the opinioIn that objects and attributes are related. However,
o)ne may also consider other types of repeatedl measuremenits, such as the
judgments of one rater at different occasions. In these cases we use the term

replications for repeated measurements. By making a specific choice of ob?jects,

attributes, and ieplicationis a wide variety of pheniomenia in educational and

behavioral -research rmay be inivestigatedi.
For- instance, Maris, De Boeck. and Van Mechelen (1996) used PMD models

to study the process of psychiatric diagnosis. In this study, different clinicians
had to judge whether patients have a certaini symptom. Candel and Mans (1997)
illustrated the use of PMD mnodels in marketing research and nade a comparison
with other methiods of data analysis for two-way two-mode frequency data,
nameley, latent class analysis and correspondence analysis. To illustrate the use of
PMD imodels in marketing research they asked respondents to judge whether
products have a certain attribute. De Boniis, De Boeck, Perez-Diaz. and Nahas
(1999) used PMD models to study emotion perceptioni in facial expressions.
These authors asked raters to jusdge whetlher they perceive a certain emnotioni in a
photographed iacial expression. in addition, PMD models may also be useful in

personality research. For instance, in order to analyze the hostile belhavior of
people in different frustrating situations persons were asked to judge whether

they would display a certain hostile reaction in a certain frustrating situation

(Meulders, De Boeck, & Van Mechelen, 200(0).
Furthermore, PMD m,odels could also be used to analyze some br,oacd catego-

ries of judgments that are often studied in educationial and behavioral research.
For instance. they could be used in the context of social network analysis
(Wasserman & Faust, 1994) to explain thne ties between mebenbers of a network
oni sonic social relation (e,g. frienidlship, communticating, etc.). TlLhe two-way
two-mode data matrix to be used in such analysis may be obtained by asking

each actor in the network to report all those to wnorn hie or she is tied, on the
social relationship in question, and by afterwards counting the nunmber of ties
between each pair of actors. Another research area where PMI) nmodels could be
meaningfully applied is that of consumer behavior. More specifically, one could
record the nrumiber of times consumers buy a certain product and analyze the
resulting consumers by prodiucts imiatrix. As a final example, PMD models could

be used in the context of educational measurement to study the extent to which
ptipils imiaster certain attairment targets. in this case the data may reflect the
numbear of judges who indicate that a particular pupil masters a certain attain-
ment target.
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PMD models assume a two-fold process to explain associations between
objects and attributes: First, when judging the associationi between elements
(objects and attributes), it is assumed that raters may (or rnay not) perceive each
of a set of latentftatures in each element. Second, it is assumed that judgments
regarding the association of two elements are the result of combining the feature
patterns of these elements according to a specific rule. In general, all kinds of
rules mnay be considered but in the literature especially deterministic rules that
are interesting from a substantive point of view have been proposed (see Maris,
t995; Van Mechelen, De Boeck, & Rosenberg, 1995; Maris. De Boeck, & Van
Mechelen, 1996). For instance, according to a disjunctive communutality rule, the
perception of a certain feature in both elements (object and attribute) is a
sufficient condition for the elements to be associated, whereas, with a conju.nc-
tive dotminance rule it is necessary that all the features that are perceived in one
element (object) are also perceived in the other element (attribute).

To make this abstract description of the PMD mo)del mnore specific it suffices
to elaborate on the nature of the latent features and the mapping rule in some of
the previously mentioned applications. In the application on psychiatric diagno-
sis, the latent fealures were conceived as psychiatric syndromes, This means that
clinicians, wheni judging whether a patient has a symptom, covertly classify the
patient according to which syndromes he or she has and also covertly classify
the symptom as to which syndrornes it belongs to. Furthermore, a disjunctive
mapping a le was proposed which meanis that a patient has a particular symptom
according to a clinician if the patient has at least one syndrome which also
contains that symnptomn.

In the application on the facial perception of emiotions, the latent features
represent properties of the face (e.g., the eyes of a fearful face, the mouth of a
happy face). Applying a PMD model to these dlata, it is assumed that, when
judging whether they perceive a certain emotion in a certain facial expression,
raters may (or mlay not) perceive each of a set of relevant latent features in the
face. In addition, it is assumed that in order to be perceived in a facial expres-
sion, emotions may require the perception of certain features. Furthermore, a
conjunctive rule was used which means that an emotion is only perceived in a
face if all the features that are required by the emotion are also perceived in the
face.

When using the P'MD model for statistical intference, the following three
problems need to be solved: (a) paramieter estimation, (b) imodel identifiability
and (c) checking the model's goodness of fit.

For the first problem, Maris et al. (1996) describe an EM algorithnm to obtain
maximum likelihlood estimates and posterior mode estimates of the parameters
of the PMD model, making use of the fact that the distribution of the augmented
data has a simple structure. A method to estimate the standard errors of the
parameters, however, is not presented by these authors.

The second problem, model identifiability, is still to be investigated. It con-
cerns the existence of trade-off relations in the model's parameters as well as the
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uniqueness of the global miaximumii: First, the problemi of possible indetermina-
cies or trade-off relations in the paramueters that result fiom the application of the
mnodel to the data at hand is still tunsolved. More specifically, such indetermiima-
cies imply the existence of different solutions with the same posterior delnsity
(e.g. a ridge in the sutrface of the posterior density iunction). Secondly, no
analytical results are available from which it can be derived that the posterior
density function has a single global maximum, which means that, in general, it
may be multimodal. That is, local maxima having a dfliferent posterior density
may exist,

The third problem, checking the fit of the model, requires the development of
one or more goodness-of-fit statistics with a known distribution under the
model. Goodness-of-fit statistics that measure the absolute fit of the model have
not yet been developed for the PMD model. 'ro test the relative fit of models
with differeint numtibers of features, a standard likelihood ratio test statistic is not
readily applicable because its asymptotic distribution is unknown.

In this paper we will show that the three previously mentioned problems can
be solved within a Bayesian frainework:

1. Regarding the estimation problem, a Gibbs sampling algorithmn (Gelfand
& Smith, 1990; Geiman & German, 1984: Smith & Roberts, 1993: Tanner
& Wolig, 1987), also labeled "chained data augmentation" by Tanner
(1996, p. 137), will be proposed to compute a sample of the entire
posterior distribution of the parameters. In this way the posterior mean
estimnates of the paramieters as well as i0(1 --- (X I posterior intervals
can be computed. Like the EM algorithmii, a Gibbs sampling algorithm

thiat involves the use of latent variables will appear to gain computational
advantage fromIY the fact that the augmented posterior has a simple struc-
ture,

2. Cioncerning the identifiability of the model, we will first show how a
multivariate analysis techniqtue like principal conponents analysis can be
helpful in identifving in a confirmatory way hypothesized indetermina-
cies whicih influence the pattern of posterior covariances in a systematic
manner. Seconid, we show that fromn a purely exploratory point of view,
the results of principal components analysis may be used to visualize
projectionis of the posterior distribution in a low-dimensional space.

3. With respect ton model checking, we will indicate how the posterior
sample may be used to assess the fit of the mnodel with the techniquLe of
posterior predictive checks (Geilian, Carlin, Stern, & Rubin, 1995; Gel-
mani, Meng, & Stern, 1996). More specifically, we will discuss how this
approach can be ulsed to assess the general goodniess of fit of the model
and to determine the dimensionality of the PMD mnodel, that is, the
number of features.

In the following paragraphs we will first briefly recapitulate the tmodel and the
estitnation of its parameters with the EM algorithim. Second, we will deal with
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the Bayesian estimation of the parameters via a Gibbs sampling algorithm and
we will show how the obtained posterior sample can be used to solve the three
problemns nentioned above. Third, we will illustrate the approach with data on
opinions of respondents in different countries concerning the possibility of
contracting AIDS in a specific situation.

Probability Matrix Decomposition Models

Model

In general, the observed data for a PMD model are frequencies of Oi1
responses regarding the associations between objects and attributes. Stated dif-
ferently, the data can be conceived as a two-way two-mode array with (sumis of)
multiple replications of binary associations in each cell. In a common applica-
tion, the objects could be persons, groupS, countries, and so on; the attributes
could be items, characteristics, opinions, and so on. Finally, the replications
could he based on several raters, timne points, situations and so on. The observed
variable Yi" with realizat:ionis y7", which denotes the binary association between
object o and attribute a (a = 1, ... , 0; a = 1,..., A) at the ith replication
(i = 1,5... la, equals 1 if object o has attribute a at the ith replication and 0
otherwise. The PMD model has two parts, which will now be successively
discussed, assumiing that raters constitute the replication mode.

1. PMD models explain the associations between objects and attributes
through binary latentt responses at both the object and the attribute side.
That is to say, an observation v70 is assumed to be based on realizations
s and pb' of latent binary variables S"l5 and P2- (b = 1, . B). In
general, a latent response variable indicates for objects and attributes
whether they have the corresponding feature at replication i. In particular,
sobsai equals I if object o has feature b according to rater i when he or she is

judging the association between object o and attribute a, and 0 otherwise.
Likewise p"2 equals I if attribute a has feature b according to rater i when
he or she is judging the association between o and a, and 0 otherwise. In
contrast to the corresponding determiinistic models (De Boeck & Rosen-
berg, 1988; Van Mechelen, De Boeck, & Rosenberg, 1995), the PMD
model assumes that having a feature is essentially a probabilistic process.
More specifically, it is assumed that the latent response variables Sa$'
Bern (P,,b) and similarly Pa'b- Bern (Tab).

2. The latent responses s'b and p2l (b = 1, .. . 9 B) are mapped into the
observed responses y< according to some prespecified rule. Maris et al.
(1996) consider several deterministic rules that map the realized latent
responses into the observed response. In this paper we will use one of the
rules, namely a disjunctive communality rule, which is defined as fol-
lows:

Y' - <=1 . Sb =P2=i (b-= 1, B.B).
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Maris et al. (19)96) show that this rule leads to the followirng probability that

Yr"' equals 1:

P(YQ = | -IH I R,IY0I2* (1)

Before summarizing the estirnatlon of the parameters with the EM algorithmn.
we inttroduce some notation. The number of observed I - and (0responses with
respect to the pair (o,a) is (lenoted by f{" and fJA' respectively. Let Y be the

vector of observed response variables Ye' ( a = 1,.., 0; a = 1, . . . A; i = 1,
I7 ) and let S and P contain the latent response variables Sj and Poi

respectively (o = 1,.., 0; a = 1, A.^i; b = 19 ... , B; i = 1, ., lo).

Furthermore, let Zi = (S, P) comiprise the total set of latent response variables.

Finallv we define 0 = (p, T) as the vector of all the parameters in the model, wvitl
the vector p containing the probabilities po,b that object a has feature b (o = 1,

0; b = 1 ... , B) and the vector r containing the probabilities Tr, that

attribute a has feature b (a = 1,..., A; b = I. .. ,B).

The observed posterior calIl now be expressedi as follows:

p(O VY) Ct p(0)p(Y =O) - p(0) jjjP(F9a _ II 0)'> p(Y"oa 0 I)Q.

In the above formnula we still havc to make a choice with respect to the joint
prior distribution p(0). One possibility is to assume that the individiual paratn-
eters 6, are iid with Mp0,1 ) I so that the observed posterior is proportional to the
lilkelihood of the data. Maris et al. (1996) indicate, however that this choice for
p(O) imav be problematic in tlhat, depending on the particular set of observations,
posterior rlode estimates mray not exist in the interior of the paramneter space.
Maris et al. (1996) also propose an alternative prior distribution that guaranltees
the existence of posterior mode estimates in the interior of the paramneter space,
namely p(0,) Beta (E I2,2 ). The joint prior distribution then is proportional to:

p (0) x 1 [ pol, -- P,/,) jjjIJ , (I - 'r9. (2)

We notice that the Beta0(. 12,2) prior, which is specified for purely technical
reasons hiere, a priori assumes that parameters are moderate rathier than extreme.
In par-ticular, this prior is a concave function on [0, 1] with a mnode at 0.5.
Furthermore, the Beta prior is also conjugate, which oilfers the advantage of

beinig interpretable as additional data. In particular, the Beta (0( 12, 2) prior adds
one latent observation of each type (0 and I) to the entire set of latent observa-

tions regarding 6,.
The maximtization of the observed posterior can be accomplished via an FEM

algorithim (Dempster, Laird, & Rubin, 1977). In general, such an algorithm

consists of two steps: an E step (Expectation step) and an M step (Maximiza-
tion step). In the F step of the (ir + I)th iteration, the expectation of the log
augmzented posterior is computed witlh respect to the distributiotn of the latent

data, Z, conditional on the observed data, Y, and the curnent guess of the
posterior mode (Q("'i), Formally:
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Q(0. 09()) f f,ln[p(OIY,z)lp(Z1I0o),Y)dZ.
In the M step this function is maximized with respect to 0. The algorithtm has
converged to a stationary point (local maximum or saddle point) if

dI)(0IY)

1.

Bayesian Analysis with the PMD Model: Estimation

A Gibbs sampling algorithm, also called "chained data augmrentation" (Tan-
ner, 1996, p. 137), can be used to obtain a sample from an observed posterior
distribution. Similar to the EM algorithm, this approach is based on the inath-
ematical tractability of the augmented posterior relative to the complexity of the
observed posterior.

Given the nhb simulation draw 6 (n), the (in + I)th iteration of the chained data
augmnentation algorithmn consists of the following two steps:

1. Imputation step: generate latent data Z(m"t() from the conditional predic-
tive distribution, p(Z IO("m) Y).

2. Posterior step: draw a simiulation 0(m+1) of the parameter vector from the
augmented posterior distribution, m. I y,Z(n+ 1).

The implementation of both steps is straightforward for the PMD model.

1. To summarize the imputation step, we first introduce some notation.
Let Z7' ="' S't pa ,.P ) and simnilarly z" = (se, * * i,

.>l,,, 5 p"4). Moreover, C(Z7) = YV7 is used to denote the mapping of
latent response variables S'b and P4b (b = 1, . . . B) into the observed
response variable YI7. The conditional predictive distribution P(Z =

z.;"' 19 (my), j -ya) is defined as follows:

1 (Zoa = z0alo(mt))[P(Z7 = .()if C(z") oayj

jp(Y7.9 =Yoaf()

if C(z72 ) .

The denominator of the first term depends on the specific type of tnapping nile.
For disjunctive commtiunality it is given by (I). The numerator is equal to:

fl (fxob,<( pt^) 5{g)Pt T(7)-P
II trio;) I ~~D' 4i)' i(bTJ)~

b

In order to draw a vector from this discrete conditional predictive distribution
we make use of the inverse cumnulative distribution function. Suppose that for a
data point v<" the candidate vectors z7a are nunibered as Zr, Z2 , ZK. The
cumulative distribution functioni is then easily tabulated as:

F(z,r) E= l=IP(1 i = Zk5lI6rn),y9 ? = =1 .K
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To draw at random one of the candidates zj(x = 1,..., A, we first draw a
randomii number at from a unifornm distribution U(0.1) and afterwards we use
F- '() to deternine which of the candidates has been chosen.

2. To describe the posterior step, we first define the following statistics
involving the latent response variables:

So= 2 1> s,, anid --- = a -l (I St

S [ "= ;- 117f*]arlis7(, , -1 _,i ,;f> I eia

E EL= p" and pg = = 

U[sing this niotation and taking (2) as the joint prior distributioni, it is easy to see
that the augrnented posterior distributioni is proportional to the flollowing prod-
uct:

| -gt lX ( t 5f.)(, i ( , H H s T _ T )(I1(1 T,P (OfVZ') x j][ Ph s '( P H[ ( T 11)~'>"\I- -r>
o} h a k,

l'his implies that the augmnentedi posterior distribution is equal to a product of
Beta distributionis, namiiely:

p (OjY,Z;) = ] 1111 Beta(p,,112 I 5 cb 2 + so't) H H BetaQT2 + p 2 4 ,<b)
oR f. O b

In the (mo + I )-th iterationi of the posterior step we draw the individual param-
eters fromi theii correspondinig Beta distributioni:

Beta(2 + (5scc%cl ) 2 - (ct'cc )

Tt, t -- Beta(2 + (p't(tcc 2 + (p"'' ¼
Tanner and Wong (1987) show that, utnder sonie regularity conditions, the

subseqtent values " )K 2i', f.fortn a Markov chain which converges to the true
posterior distribution. An important aspect in the implementation ol the algo-
rithm is the required number of iterations to approximate convergenice (Gilks,
Richardson, & Spiegelhalter, 1995; Cowles & Carlin, 1996). We follow the
approac'I of Gelman and Rubinl (1992) by simulating mnultiple cehains from
different starting points and judginig approximate convergence based on the
statistic Rw 2vhich mieasures the ratio of a weighlted suIIm of between-chain
variatioin and within-chaini variation to within-chain variation, ffor each scalar
estimand of interest. The statistic mu may be interpreted as an estimate of the
factor by which the scale of the current distribution for a parameter might be
reduced if the simulations were contintued in the limnit tit --*. Values of Ru2 near
I indicate convergence; in practice Rc smialler than 1. 1 for each scalar estimland
of interest is a reasoinable criterion to stop the simulations (CGelman et al., 1995).
In this compuktationi it is necessary to discard the iniitial part of each chain to fit
the target distribution more accurately. 'We notice that the convergence diagnos-
tic g½ is based onI normal theory approximiiations so that it is appropriate to
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transformi the scalar estimands to be approximately normally distributed. As the
parameters of the PMD model are in the [0,11 interval, a logit transformation is
used.

Bayesian Analysis with the PMD Model: Indeterminacies

In a classical maximum likelihood framework, an important question is
whether some obtained solution corresponds to the global maximrnum of the
likelihood. In this respect, it often cannot be shown analytically that the likeli-
hood is unimodal. Usually, it is only possible to check whether a particular
solution is a local maximum (Goodtnan, 1974; Formann, 1992); to gain further
evidence about the optimality of a solution it is conmmon to run the algorithm
several times starting from different points in the paramieter space.

A fiully Bayesian analysis offrs two additional possible wavs to investigate
indeterminacies in a model's parameters, which reflect regions of high posterior
density.

First, it is possible to investigate in a confirmatory way to what extent certain
hypothesized indeterminacies explain the posterior uncertainty in the param-
eters. The indeterminacies we have in mind have two characteristics: (a) they
imply a specific pattern of covariation betweeni the parameters and (b) their
imiipact on the posterior uncertainty of the parameters depends on the data at
hand. Because of the latter characteristic, they may be contrasted with indeter-
nminacies which occur independently of the data at hand, such as, for instance,
indetermiinacies related to rotational freedom for the components in a principal
components analysis. The latter type of indeterminacy is often trivial and should
be taken into account during the parameter estimation.

To depict an overview of the joint influence of the different hypothesized
indeterminacies, a principal components analysis of the posterior covariance
matrix may be helpful. Furthermore, rotating the loadings of parameters towards
the hypothetical pattern of covariances that is expected from the different types
of indeterminacy, can help to identify the components. To rotate the loadinigs
towards a hypothetical pattern, an orthogonal Procrustes rotation can be used
(Schdnemann, 1966).

Second, from a purely exploratory viewpoint, a fully Bayesian analysis allows
us to visualize projections of the posterior distribution in low-dilnensional space,
by means of multivariate analysis techniques-in particular, principal compo-
nents analysis. Such projections may indicate areas of high posterior density and
they may also reveal whether the posterior has one or multiple modes.

We will now describe three types of indetenninacy that may exist in the
parameters of the PMD model. A first type, labeled permutation indeterminacy,
is a trivial type of indeterminacy that also occurs in mixture models. In the case
of a disjunctive comimunality mapping rule, permutation indeterminacy between
the paramieters results from the fact that the left-hand side of (1) is invariant to
permutation of features. Permutation indeterminacy implies that, for a PMD
model with B features, the parameter space contains B! identical regions of
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posterior miass. A possible solution to this problemn is to identify for each
simulated Markov chain the region that is sampled from, based for instance, on
the posterior mean estimnates of the parameters. In this approach one must make
sure that thle simulated parameter values do not switch betweeni difterenit poste-
rior regions during the s mulation of one Markov chain. If the feature probabili-
ties of a specific object/attribute differ substanitially, then a permnutation of the
features can be identified through a visual inspection of the iteration history of
the sinmulated parameter values for this object/attribute.

A second and less trivial type of indeterminacy, labeled with in-ftature indeter-

minacy, may exist between parameters of ob,jects and attributes regardlinig one
feature. That is to say, multiplyinig all the feature probabilities of objects by a
constant and dividing all the feature probabilities of attributes by the same
constant does not affect the likelihood of the model. Notice that the value of the
constant is restricted by the condition that all parameters have to take values
within the [O, II interval, so that in special cases this type of indeterminacy can
be negligible, which is why the indetermiinacy depends on the data. Within-
feature indeterminacy implies a specific pattern of covariation between param-
eters. In particular, one may predict positive posterior covariances among the
P),)h 5s and among the T-r,'S for each feature b, and negative covairiances between
PO0 J's andT ab'S, also for each feature b.

A third type of inrdetermiiinacy, labeled between-ftatuire inideterminacy, may
exist between feature probabilities concerning different features. In general, it is
similar to the second type, although its implications for single parameters are
much less straightforward. It can be described as follows. The probability of
observing a one at the i-th replicationi in cell (a, a) is given in (i). Now it is easy

to see that m-nultiplying one term of the product, for example (I -- p,iTti), by a

constant and dividing another, for example 1 - P,o2T
a2 by the same constant,

does not affect the likelihood of the miodel. Also for this type of indeterminacy,
the value of the constant is restricted by the condition that all the parameters
should take values in the l0,rl] interval, so that in special cases this indetelrmii-
nacy can be negligible, meaning that it depends on the data. Besides, between-
feature indeterminacy also imnplies a specific pattern of covariation between
parameters. More specifically, negative covariances between p,F,'s and ,,s,'s of
differenit features m,ay be expected.

It should be stressed that, in a specific application, the pattern of posterior
covariances may be the result ot' both within- and between-feature indetermi-
nacy. For example, a positive covariance between p,,b's of one feature atnd Ti,)'S
of another may result fromi a negative covarianiee between f 0,,'s and T,,b'S within
a feature, and a negative covariance between features. As a consequence, Just

looking at pairwise covariances miiay be misleading. A principal coiponents

analysis of the posterior covarianee matrix and Procrtustes rotation of the load-

ings towards the hypothetical pattern of covariances that is expected fronm both

types of indeterminacy, can help to identify the components. For examnple, in the
case of two features, three conmponents are expected: one for each feature to
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reflect within-feature indeterminacy, and one contrasting both features to reflect
between-feature indetertninacy. For more than two features, for each pair of
features, a bipolar between-feature component can be hypothesized. Finally, it is
not guaranteed that these are the only types of indeterminacy that occur in a
specific application. In other words, it is still possible that other, more complex
types of indeterminacy, which depend on the data at hand, may occur in the
model's parameters.

Bayesian Analysis with the PMD Model: Model Checking

Besides the estimation of the paramneters, an appropriate analysis also implies
checking the goodness of fit of the model. In this respect, two questions are of
particular importance:

1. What is the relative goodness of fit of models with different numbers of
features? In other words, how much does the goodness of fit inmprove by
adding one feature and is the improvement statistically significant'? This
is usually an important qtuestion in models that are used to represent the
data as well as possible with a low number of dimensions.

2. What is the absolute goodness of fit of the model? More specifically, to
what extent do the expected frequencies under the model approximate the
observed frequencies'?

Within a classical maximum likelihood framework, such model checking re-
quires the construction of test quantities with a known distribution under the
model. For the PMD model, a standard likelihood ratio test statistic carnot be
used to test the relative fit of models with different numbers of features because
this statistic is not asymnptotically chi-square distributed. The latter is due to the
fact that the null hypothesis of a PMD model with B features corresponds to a
boundary of the parameter space of the alternative model with. B + r features
(McLachlan & Basford, 1988). On the other hand, goodcness-of-fit statistics that
measure the absolute fit of the PMD model have not been developed yet. A
valuable alternative for the constructioni of test quantities with a known distribu-
tion under the model is to simulate the distribution of a test quantity under the
model.

Within a Bayesian framework, model checking is basically a matter of com-
paring observed data with data that could have been observed under the miodel if
the actual experiment were replicated with values of the posterior distribution of
0 (Geitman, Carlin, Stern, & Rubin, 1995). The reference distribution for a
replicated observation yrep, also called the posterior predictive distribution, is
defined as follows:

p(YreP1 y) =f p(YrePIj)p(oIY)d0.

In order to compare yr"p and Y, one may define a test quantity BY) that is a
function of the data only, or a test quantity T(Y, 0) that is a function of both the
data and the parameters.
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Rubini (1984) defines the posterior predictive p value as the probability that
7YyreP) exceeds or equals T(Y); that is:

ppc p - value P[T(YreP) - T(Y)IY] I fJT(YreP) -- T(Y)Ip(YrPIY) dYreP,

with 1[] beitng the indicator function. An extreme p value inidicates that T(Y) is
unlikely to occur under the model and places cloubt o(n the model aspect
miieasured by 7(). The comrputation of the p value is straightforward once a
sample of the posterior distribUtion is available. In particular, the followinig steps
need to be performned for each draw 0 (,n) (m = 1,..., M) of the observed
posterior distribution:

1. Generate a replicated data set Y'""'froIml jY I()).
2. Comppute T(Yrei ,n).

Afterwards the p value is calculated as the proportion of simnulated values
T(YreP.) that exceed or equal T(Y). Beyond the actual p value, a useful
graphical device consists in the location of ThY) in the thistogram of simulated
values T'(YOP'l)

Meng (1994) describes the posterior predictive check approach with test
quantities TCY, 0) that are a function of both data and parameters. Such quanti-
ties are labeled realized discrepancy mneasures. Gelman, Meng, and Stern (1 996)
elaborated thiis approach further and discussed several discrepancy measures to
evaluate the goodness of fit of a mnodcel. In this case, the p value is defined as the
probability that the replicated discrepancy nmeasure exceeds or equals the real-
ized discrepancy measure:

ppc p -- value = PiT(Y P,0 Oi '(Y.0) IY)
_ ff T(Yr-P,) Y0) 7(Y,)lp(YlY'10)p(01 Y)dOdY'P.

l'fo comipute the p value, the following steps are required for each draw 0(m)
(m = 1, ... Al) of the posterior:

1. Geenerate a replicated data set Yreun" fromi p(Y I 0 (rn))

2. Comiipute ThY, of }.

3. Comupute T(Y7rcP-I, 0 ("i)).

The p value is subsequently calculated as tthe proportion of simulated values
T(YW '`1, 07"')) that exceed or equal their counterpart T(Y. l(m). In addition, onc
may plot the values T(Yre"t'f, fOi")) against their couinterparts T(Y,"<') frn = ],

,M).
For PMD modiels we will focus on two test quantities that measure the general

goodness of fit of the model and one test quantity that can be used to decide
between models with different numibers of features. A first test quantity that we
propose to assess the general goodness of fit of the model is the Pearson
chi-square discrepancy measure, defined ws the sum of statndardized squared
deviations between observed frequencies and expected frequencies under the
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model:

f:1 -> Efoa o)2

x2(Y,O) = E - E(fI 2
0 a' [Var(f'19J)]? 

with Var(f7' 6) = [E(fj 0 1O)E(ft O)jIl,], and in which I,,, is the number of
replications for pair (o, a), as detined earlier. Another test quantity that serves
the same purpose is the likelihood ratio chi-square discrepancy measure:

t2(y,O) f= 2, E f ' 
{) a Er¢val9) Eg(foa fl

L(X )=2 if {f log [E( f~) + fg log it
The Pearson chi-square and the likelihood ratio chi-square discrepancy measure
are of the discrepancy measure type as the expected frequencies E(f7°10) and
E(fe)a IO) are a function of the parameters. In particular, the expected frequency
of one and zero responses in cell (o, a) may be computed as i P(Y,2a = I I0) and
L P(Y, 0 = 010), respectively, with the probability of observing a one or a zero
depending on the specific type of mapping rule that is used (see ( 1)).

The likelihood ratio chi-square discrepancy measure is also a building block
for a measure that can be used to choose between models with different numbers
of features. That is to say, to test a model with B, features against a model with
Bg, features, we propose the test quantity:

(TY) = L'(Y,6) - L2,(Y,O). (3)

which is a function of the data only as dependence on the parameters is
eliminated by substituting the posterior mode estimate 0 at the right hand side.

In order to simulate the reference distribution of (3) we generate WM-replicated
data sets under the restricted model and compute for each data set the posterior
mnode by running the EM algorithm 10 times and choosinig the solution with the
highest posterior density. Afterwards we compuite the quantity L2iff(y,,p,)=
Lr(Y' P-r', 98(Iy)) - L,(yrep,n, 0 n)) (n = , M) for each replicated data set.
We typically simulate 500 values of L2iff(y,p), since finding the posterior mode
for each data set is computatioinally intensive. Finally, we note that a quantity
similar to that in (3) was used by Rubin and Stem (1994) to determ-ine the
number of latent classes in latent class analysis.

Example

As an illustration of the approach, the PMD model is now applied to real data
on opinions of responcdents of different countnes concerning the possibility of
contracting AIDS in a specific situation. The data were supplied by the Zen-
tralarchiv fur Empirische Sozialforschung at Cologne (Reif & Melich, 1992).
The raw data are the answers from 23,397 responidents in 13 countries with
respect to 10 items in the format: "In your opinion, in each of the following
situations, can AIDS be contracted ... yes, possibly or not?". Table I contains a
description of the situations. Since the PM[O model can only be used to explain
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TIABi 1i I
Ten Situaltions in which AH)S Might Possibly be Contracted

Situation

I Eating a ineal prepared by somneone who has AIDS or is HIV positive

2 Handling objects touched by someone who has AIDS or is .i1V positive

3 Drinking fromTi a glass which is used by someone who has AIDS or is HIV positive

4 Sitting on the same toilet seat as someone who has AIDS or is HIV positive

5 Being irnjected with a needle which has been used by somcone who has AIDS or is
HIV positive

6 Receiving blood fronm sonmeonc who has AIDS or is HIM positive

7 Shaking the hand of sorneone who has AIDS or is HIV positive

8 Kissing the mouth of someolne who has ATDS or is HIV positive

9 Having sex with someone who has AIDS or is HIMIV positive

10 Taking care of someone who has AIDS or is HIV positive

TABLE 2
Frequency of Respondentse in 13 Countries wit/h the Opinion that AlI)S can be Contracted

in i0 Situations (Random Sample with N = 5S)

Situation

Country Eating Object Glass Toilet Needle Blood Iland Kissing Sex Care

France 12 10 24 25 49 50 7 24 50 24
Belgium T1 6 21 21 50 50 4 26 50 23
Netherlanids 9 4 15 14 50 50 4 26 48 14
Germany 18 10 23 26 50 50 10 38 49 30
Italy HI 6 17 24 50 50 4 28 50 24
Luxenmburg 5 5 21 20 50 50 6 25 50 15
Denmnark 1 5 14 13 50 50 0 24 49 13
Ireland 15 1 ! 22 27 50 50 8 36 50 16
Great Britaint IT 8 26 14 49 49 3 34 49 19
Northern
Irelanid 7 6 12 16 48 48 5 32 48 17
Greece 13 9 25 27 50 50 10 38 50 25
Spaini 2i) 17 29 29 48 48 14 40 48 21
Portugai 29 24 32 38 48 49 24 45 49 34

bitnary associationis between coutitries anid situations, the raw data are dichoto-
tiized. More specifically, for each item., the categories "possibly" and "yes" are

comiibined, since both imply that there is risk inivolved. In oirder to illustrate the
rtiodelitig iEI a smiiall-saminple scenario, we analyze here a rmmdomi subsanmple of 50
respondents per country. Tabile 2 contains the resutltitng data set. The frequencies
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TABLE 3
Posterior Mean Estimate and 95% Posterior Interval (PI) of the Feature Probabilitiesfor

a One-ftature Model

Country Mean 95% P1 Situation Mean 95% PI

France .98() [.951, .997] Eating .258 [.224, .2931
Belgium .984 [.956,.998] Object .:193 1.163,.225]
Netherlands .958 [.913, .988] Glass .445 [.407. 4841
Germany .986 [.967, .998] Toilet .466 [.426, .505]
Italy .985 [.960, .9981 Needle .995 [.986. .9991
Luxemburg .980 [.946, .997] Blood .996 [.988,.999]
Denmark .955 [.902, .992] Hand .159 [.132, .1891
IrelanC .988 [.968, .9981 Kissing .657 [.618, .6941
Great Britain .967 1.931, .991] Sex .994 [.986, .9991
Northern Ireland .934 [.884, .9711 Care .436 [ 398. .4751
Greece .989 [.971, .999]
Spain .969 [.942,.989]
Portugal .984 [.967, .9961

in this table indicate the number of respondents in a country with the opinion
that AIDS can be contracted in a specific situation.

Estitnation

The one-feature and the two-feature model are estimnated using the Gibbs
sampling algorithm. For both models five independent chains are simulated
using random staliing points generated from a uniform distributioni U(0, 1). The
algorithm is stopped if the statistic RV2. computed on the second halves of the
chains, is smaller than 1I.1 for each logit transformed parameter. For the one- and
two-feature moodels this occurs after 2,000 and 3,000 iterations, respectively. Rkl

values for the parameters of these models are in the range [1.00,1.01] and
[1.00,1.09], respectively. Finally, for each model a sample of 5,000 draws is
construtcted by taking 1000 evenly spaced draws from the second halves of the
five simulated chains.

Table 3 and Table 4 show the posterior mean estimnates and the 95% posterior
intervals for the parameters of the one-feature model and the two-feature model,
respectively. The estimates are probabilities, to be interpreted as follows: T'he
feature probability for a country equals the probability that respondents in that
country have the opinion associated with the feature. On the other hand, the
feature probability for a situation equals the conditional probability that respon-
dents agree that the situation is a risk, given they have the opinion associated
with the feature.

In the one-feature model (see 'Fable 3), the feature probabilities for the
situations can be interpreted as reflecting the objectively true view on which
situations could lead to AIDS. "Being injected with a needle which has been
used by someone with AIDS", "receiving blood from someone with AIDS" or
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"having sex with someone with AIDS" have a high probability for this feature:
.995, .996, and .994, respectively; they are in fact also the true risks. Other
situations, like "handling objects touched by someone with AIDS", "eating a
mneal prepared by someone with AIDS", "shaking the hand of someone with
AIDS" have a low probability for this feature: .19, .26, and .16, respectively,
and they refer to beliefs not corroborated by scientific knowledge. Finally
"kissinig the mouth of someone with AIDS" has a moderate probability, namely
.66, and also from an objective scientific poini of view, implies a slight risk.

Contrary to the large differences between the feature probabilities for the
situations, in the one-feature model there are only small differences between the
feature probabilities of the countries, meaning that respondents in different
countries have approximately the same opinion about the possibility of contract-
ing AIDS in a situation. As will be explained in the section of model checking,
this prediction does not fit the observed data. As a matter of fact, the one-feature
mnodel is to be rejected agairnst the two-feature model, whereas the latter model
does sufficiently accounit for the data.

In the two-feature model (see Table 4), the first feature can be interpreted as
reflecting the "correct opinion". Situations with high probabilities for this first
feature correspond to the true risks. The second feature reflects an "alternative
opinion" about the possibilitiy of contracting AIDS in a situation. More specifi-
cally, the true risks are underestimated and some situations are considered risky
whereas objectively this is not the case. The situations "being injected with a
needle which has beern used by someone with AIDS", "receiving blood from
someone with AIDS" and "having sex with someone wi th AIDS" have a lower
probability for this feature to carry AIDS (.78, .83 and .86), whereas "sitting on
the same toilet as someone with AIDS", "kissing the mouth of someone with
AIDS" and "eating a meal prepared by someone with AIDS" have a higher
probability for this feature (.69, .85, .53, respectively).

The probability of a country for the first feature can now be interpreted as the
probability that respondents in that country have the opinion that is in accor-
dance with the facts and the probabililty of a country for the second featcure can
be internreted as the probability that respondents in that country have the
alternative opinion. The estimates for the two-feature model show that respon-
dents in most countries have a highi probability of having the correct opinion.
Exceptions are respondents in Portugal and Spain, who have a slightly lower
probability to have this opinion (.84 and .87, respectively). In contrast, coulntry
probabilities for the alteniative opinion vary from rather low for Denmiark (.06)
to rather high for Portugal (.95).

It should be clarified now that having an opinion mneans responding to items
oIn the basis of the opinion in question, and that respondlents can comnbine
opinions in responding, as the probabilities do not add up to 1.0 over features.
As explained earlier, the combinationi is of a disjunctive type. Therefore, given
the same probability for the correct opinion, countries with a higher probability
for the alternative opinion will tend to consider situations with a high probability
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for the alternative opinion as being more risky. In other words, countries having
a highi probability for both opinrions differ from counjitries hlavinlg only a high
prohability for the correct opinion in that they tend to consider safe situations as
being more risky. In this respect, it must be noticed that the rather high prob-
abilities of the true risks "needle", "blood" and "sex" for the feature reflecting
the alternative opinion are not problematic, but only imply that respondents
having the alternative opinion also conisider true risks as being risky. As an
example, consider the probabilities that respondents in Denmnark (having a high
probability for thie correct opiniioFn (.98), and a low probability for the alternative
opinion (.06)) anid Greece (having a high probability for the correct opinioni (.98)
and a moderate probability for the aLternative opinion (.54)) consider "receiving
blood from someonle with AIDS" or "sitting on the samne toilet as someone with
AIDS" as beinig a risk: Respondetnts from both Denmiark and Greece have a
probability of .98 to consider the former situation risky, whereas respondents in
Greece have a somewhat higher probability (.53) than responcdents in Denmark
(.28) to consider the latter situation a risk.

The 95% posterior initervals of' most parameters (see Table 4) are rather
stmall: For the first and the second feature, the misedian range of the 95%
posterior intervals eqiuals .07 and .25, respectively. Some exceptions having a
somewhat larger posterior interval are the parameter tif Portugal for the first
feature (1.679 .95]) and the parameters of "needle"' "blood", anid "sex" for the
second feature (1.55, .95]. [.53, .971 and [.63, .981. respectively). In the second
on the identifiability of the model we will see that these larger posterior intervals
mnay be partly explained by hypothesized irndetermninacies in thle model's param-
eters. However, as will be explained, a substantial part of the uncertainty in these
parameters must be due to other more specific sources.

Indetereminacies

First, the matrix of posterior covariances between parameters is analyzed with
a principal comrsponents analysis. The first seven componienits of this analysis
account for 17.391, 12.6%, 7.9%. 6.4%. 5.4%, 5.0% and 4.6% of the variance,
respectively. A scree test (Gattell, 1966) indicates that a model with four comnpo-
nents is appropriate. Secondly. an orthogonial Procrustes rotation is used to rotate
the loadings of parameters on the fotur components towards the hypothetical
structure that is expected utnder between- and within-feature indetermtlinacy. In
specifying the hypothetical loadings, we rmake sure that the proportion of ex-
plained variance V sof a parameter 0, is the same as *n the unrotated solution.

Table 5 contains the hypothetical loadings of object and attribute parameters
for the Case of two feattures; three components are distinguished. one for
between-feature indeterminacy and two for with in-feature indeterimiinacy. For
the comnponent reflecting between-feature indeterminacy, the hypothetical load-
ings of parameters concerning the same feature have the same sign, unlike
parameters conicerning different features. For a component reflecting within-
feature indeterninacy for a given feature, the hypotlhetical loadinigs of object and
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TABLE 5
Hypothetical Loadings oj'Parameters on Components that Reflect
Between-and Within-frature Indeterminacy

Parameter Between Withinl

Feature I Feature 2

V,,2 1 V 0

Rn2 A1V 1,0, 0- -x /=1-•,
Vo2 2 2

V 2- 

V 2-

attribute parameters conceming that feature have opposite signs; the parameters
regarding the other feature having zero loadings on this component. It is as-
sumed that within-feature indeterminacy independently occurs for each of the
two features.

Table 6 shows the congruence between the hypothetical loadings and the
loadings that are obtained after Procrustes rotation. For the first and the third
componient the congruence coefficients are high (.83 and .93, respectively).
Therefore we mnay conclude that these components reflect betweeni-feature inde-
terminacy and within-feature indeterminacy for the second feature, respectively.
On the other hand, the conigrtience for the second component is only moderate
(.30). Therefore, the interpretation of this componenit as within-feature indeter-
tninacy for the second feature is problematic. The four rotated components
account for 12.5%. 6.7%, 16.8% and 8.0% of the variance, respectively. Heence,
especially the first and the third component seem important, and precisely these
two could be easily identified as expected types of indetenninacy.

Two comments may be added to clarify the only moderate congruence coeffi-
cient concerning within-feeature indeterminacy for the first feature. First, from
the country and the situationi parameter values of the first feature, it may be
concluded that there is not much room for within-feature indeterminacy since
parameters, at both sides, that is, of most countries (except for Portugal and
Spain) and of some situations (i.e., "needle", "blood", and "sex") are already
near the boundary of the parameter space. In case there are at both sides (for
objects and attributes) parameter values near 1, then multiplying at one side and
dividing at the other is not possible without transgressing the boundary of 1.00.
Secondly, in comparison with the other two components, the second component
only accounts for a small part (6.7%) of the variance in the parameters. The
fourth component of the rotated solution is more specific in nature, as it
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TABLE 6
Congruence BRetween typothetical Loadinigs and Loadings Obztained
after- Procrustes Rotation

Rotated

Between Within

Feature I Feature 2

.826 .052 .i44

Hlypothetical .146 .303 .095

.17:3 .0)41 .928

conicerns only a few parameters. It is also less important since it only accounts
for a smaller part of the variance (8.0%).

The loadings of the individual parameters on the rotated components mnay be
used to estimate the proportion of the variance per paramleter that is dtue to tile
correspontding type of trade-off. We will onily sumnmarize the results for the two
well-identified comnponents (I ard 3). For the first comlponent reflecting
between-feature indeteriniinacy, the smallest, median and largest percentage of
posterior variance accoutnted for in an individual paramecter equals .02%, 4.9%
and 36.2% respectively; for the third component, reflecting within-feature inde-
terminacy for the second feature, the smallest, mediani and largest percentage of
posterior variaice accounited for in parameters regarding the second feature
equals .0001%., 4.8% and 39.9% respectively.

In the estimation section we noted that the pararneter of Portugal for the first
feature and the parameters of "needle", "blood" and "sex" for the second
feature have a somewhat larger 95% posterior interval It can now be examined
to what extent this is due to the two identified types of indeterminacy. Fromr the
mnatrix of component loadings it can be derived that 26.9% of the variance in the
paramneter of Portugal regarding the first feature, is accounted for by between-
feature incdeteiminacy. Furthermore, only 3.6%iX of the variance in this paranmeter
is accounted for by the component reflectinig within-feature indeterminacy for
the second feature. For the paratmeters of "needle", "blood" and "sex" con-
certling the second feature, the component reflectitng between-feature indetermi-
nacy accounts for 36.2%, 25.9%, ansd 13.9%, respectively, of the variance.
Besides, the comnponrent reflecting withina-feature indeterminacy for the second
feature accounts for 9.6%. 23.9%, andi 5.4%, respectively, of the variance in
these parameters. Nevertheless, the posterior uncertainty of most paraeniters
seems to be relatively smnall in general, and indeteriiinacies in the model's
parameters otnly account for a small part of this uincertainty.

In this respect it is interesting to note that the present analysis yields even
more reliable paramneter estimates (smnaller 95% posterior intervals) and fewer
indieteirminiacies in the model's param-leters than an alterinative analysis in which
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the data were dichotomized in a slightly different way, namely by adding the
"possibly" category to the category with the lowest frequency. The latter proce-
dure yielded different observed data only for the items "needle", "blood" and
"sex": Fewer respondents (especially for Portugal and to a lesser extent for
Spain) had the opinion that AIDS can be contracted in these situations.

In this alternative analysis two hypothesized components could also be iden-
tified, as in the analysis reported on earlier, namely one reflecting between-
feature indeterminacy and another reflecting within-feature indeterminacy for
the second feature. These components accounted for 24.4% and 16.8% of the
variance in the sample of the posterior, respectively. The 95% posterior intervals
of the parameter of Portugal for the first feature ([.25, .761) and of the param-
eters of "needle", "biood" and "sex" for the second feature ([.27, .87], [.35,
.88], [.30, .881, respectively) were larger than in the present analysis and more of
this posterior uncertainty could be explained by the identified components. In
particular, the conmponent reflecting between-feature indeterminacy accounted
for 50.8% of the variance in the parameter of Portugal regarding the first feature
and it accounted for 38.2%, 35.5% and 36.7% of the variance in the parameters
of "needle', "blood" and "sex" concerning the second feature. Furthermore,
the component reflectinig within-feature indetermrinacy for the second feature.
accounted for 20.1 % of the variance in the parameter of Portugal regarding the
first feature and it accounted for 18.7%, 16.8% and 20.1 % of the variance in the
parameters of "'needle", "blood" and "sex" regarding the second feature.

Figure 1 shows a plot of the two-dimensional histogram of the scores of the
posterior draws on the first two unrotated principal components from the origi-
nal analysis (with "possibly" and "yes" coded as 1). The plot approximnates the
joint posterior density of the principal components and so it may be interpreted
as the best possible two-dimensional reduction of the observed posterior distri-
bution. Figure 1 does not show any clearly separated regions of high posterior
density. Another way to investigate whether separate regions of posterior density
exist, is through visual inspection of (a) the ma rginal posterior distributions of
all the parameters and (b) the joint posterior distributions of all pairs of param-
eters. In these plots as well, no separate regions of high posterior density could
be identified.

One may wonder whether some of the indeterminacies discussed above could
be elimiinated during the estimation procedure by restricting the paramiieter
space. Regarding within-feature indeterminacy, this could for instance be done
by fixing for each feature one parameter at the posterior mode estimate. Apply-
ing the latter procedure, however, appeared to have little effect on the pattern of
posterior covariances and on the results of the principal components analysis. In
other words, within-feature indeterminacy can still be atn issue if one parameter
for each feature is fixed.
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Mo)del Checking

TIhe test quantity 420 (fY) is used to test mnodels with different numnbers of
features against each other. In particular mnodels with: one, two, and three
features are considered.

Figure 2 shows the results of this procedure for a onse-fSeature model versus a
two-feature mnodel and a two-feature model versus a three-feature mosdel. The
left panel displays the simulated reference distribrution /L2i0f(YrcP) for one versus
two features. The quantity L%tif(Y). wvhich is based on the observed data, is not
displayed inl the figure because it has a very large value, namely 297.2. The
correspo:nding, p alue eqluals .00). lHence, a model withl two features is clearly
superior to a model wit.h one feature. On the other hanld the righlt panel shows
the simulated reference dlistrilbution L%n (tyreP) for two versus three features.
This figure also displays the quantity L,%{HJY) whichf equals 16.0. The corre-
sponding p value equals .XS, which ml[eans that there is nlO reason to pref-er a
three-feature over a two-feature model.

After having determineed the appropriate numblter of: features, we also assess
the absolute fit: olF thbe selected model using a Pearson chi-square discrepancy
measure. Frigure 3 shows a plot of a sample of X2 rP',tt) values against the
correpsonIding yL(y, 0 (m)4) values. The replicated discrepancies xX2(rePt9,(?n))
exceed or equal the observed discrepancies xN(y.OtBZ) for abaout 66% of the
rep)licated data sets. '['he corresponding p value equals .66. In other words, the
observed frequencies do not deviate systematically fromf frequencies whlich were
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1 Versus 2 Features 2 Versus 3 Features
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FIGUTRF 2. The simtulated reference distribution of the quxantit-l LdiffYeP for tile
co)nparisonx fs) rzodels u4th (a) one vsersus two.features and (bl two versus three features

generated from the posterior density of 0f given the real data. Thus it call be
concluded that the two-featuare rnodel fits the data fairly well.

Conclusion

In general, a fully Bayesian analysis, which implies simulating a sample of
the entire posterior distribution, has three irmpoitant advantages. First, the 1POste-
rior samnple provides the entire rnarginal posterior distribution of any estimand of
interest, and thus goes beyond only locating tihe posterior mode. Second, the
posterior sam-ple provides information about inldeterniinacies in a mlodel's pa-
rameters. M[ore specifically, principal components analysis may be used in a
confirrnatory way to identify hypothesized indeterminlacies which irnply a spe-
cific pattemi of covarianlces between parameters and to compute their impact oni
the posterior uncertainty of the parameters. In addition, the results of the
pri:ncipal componients analysis rnay be used fromi an exploratory viewpoint to
visualize the posteriolr distribution in a low-dirnensional space, which may
reveal interesting features of the posterior distritsution. Third. the posterior
samiple rmay be used to assess the fit of the model with the technique of posterior
predictive checks.

In the present paper we illustrated each of these advantages inl a specific
applic.ation with the PMD iioclel. First, the use of a Gibbs sampling algorithim to
compute a sample of the entlire posterior distribution was shown to be straight-
forward since the augmlented posterior distribution has a mathematically trac-
tab~le form. As a result, a ( I -- ea)% posterior inlterval of any estimnand of interest
was easily obtained witlhout any extra computational effort and withotit rclying
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Two-feature Model
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FIGURE 3. Scatterplot of replicated X2 discrepancy, X2Ny,,"p", Q'-i)) vs. realized dis-
crepancy;, 1 YA2 (W)' )r 5000 random der ws of (Ot

s, Y'"P'-)from the posterior distribut-
tifn qf the o-Jeature mnodel

on normal appr-oxim-nations, in contrast to the conmptutation of standard errors in

the context of the EM algorithm. Second, a principal components analysis was
shownl to be an informiative tool for tracing regions with a relatively high
posterior density. in particular, Procrustes rotation of the obtained component
loadings towards a hypothetical structure, which was expected from between-
and within-feature indeterminacies, was shown to help to identify two compo-

176

ciu

CL
3



Bayesian intference With PMD Models

nents. In addition, a histogramn of the scores of the posterior draws on the first
two principal components was shown to be a useful way to approximate the
observed posterior distribution in a two-dimnensional space. Third, the posterior
sample was used to assess the fit of the PMD model both in a relative sense atld
in an absolute sense.

Finally, it may be noted that the approach presented in this paper can be
extended to several other models inside as well as outside the PMD family. First,
it is straightforward to imnplemenlt the Gibbs sampler for PMD models with other

detern-llistic mapping rules (Maris, De Boeck, & Van Mechelen, 1996). As a

matter of fact, every possible niapping of latent variables into an observed data
point can be used. Furthermiiore, it is possible to extend the approach to PMD
models with a stochastic mapping rule; for this the vectors of realized latent
response variables for an observed data point are saminpled according to a
prespecified probability distribution. Finally, given the promiising results for the
PMD model it may be worthwhile to extend the novel multivariate posterior
analysis method we proposed here, to models outside the PMD framily for which
a fulil Bayesian approach is currently a topic of interest (Gelman, Carlin, Stern,
& Rubin, 1995; Tanmier, 1996; Hoijtink & Molenaar, 19971).

References

Candel, M.J.J.M., & Mans, E. (1997). Perceptual analysis of two-way two-mode fre-
quency data: Probability matrix decomposition and two alternatives. International
Journal of Research in Marketin7g. 14, 321-339.

Carroll, J. 1)., & Arabie, P. (1980). Multiditiiensional scaling. to M. R. Rosenzweig and
L. W. Porter (Eds.), Anrnual Review of Psychology, 31, 607-649.

Cattell, R. (1966). Haenidbook of mnidtivariate eAperimental psychology. Chicago: Rand
McNally.

Cowles, K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnos-
tics: A comparative review. Journal of the Amnerican Statistical Association. 91,
883-904.

De Boeck, P., & Roseniberg, S. (1988). Ilierarchical classes: Model and data analysis.
Psychometrika, 53, 361-381.

de Bonis, M., De Boeck, P., P6rez-)iaz., E, & Nahas. M. (1999). A two-process theory of
facial perception of emotions. Lif Scienc.es, 322, 669--675.

Dempster, A. P.. Laird, N. M., & Rubin, D). B. (1977). Maximum likelihood estimnation
frotn incomplete data via the EM algorithm (with dliscussion). Journal of the Royal
Statistical Society, Series B, 39, 1-38.

Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal
qf the American Statistical Associationi, 87, 476-486.

Gelfand, A. E., & Smith, A.F.M. (1990). Samnpling based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85, 398--409.

Gielmnan, A., Carlin, J. B., Stern, R4. S., & Rubin, D. B. (1995). Bayesian data analysis.
London: Chapmani & Hall.

GeLinan, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequtences. Statistical Science, 7, 457-472.

177



M'euilders et aL

Gielmai, A., Meng. X. M., & Stern, 11. (1996). Posterior predictive assessmient of model
ritness via realized discrepancies. Statistica Sinica, 4, 733--.807.

Gernan, S., & Gemaan, ). (1984) Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. 7EETransactions on Pattern Analysis and Maichine
Iltelligenrce, 6. 721-741.

Gilks, W R., Richardson, S., & Spiegelhalter, D. (1996). Practical Markov chain Monte
Carlo. New York Chapman & flall.

Goo(dman, L. A. (1974). Exploratory latent structure analysis using both identifiable and
unidentifiable models. Biometrika, 61, 215 -231.

Huijtink, LI., & Molenaat, I. W. (1997). A multidimensional item response model: Con-
strained latent class analysis using the Gibbs sampler and posterior predictive checks.
Psvchometrika., 62, 171-189.

Maris, E. (1995). Psychometric latent responise models. Psychometrika, 60, 523-547.
Maris, E., De Boeck, P., & Van Mechelen, 1. (1996). Probability rnatrix decomposition

moidels. Ps,ychro7netrika, 61, 7-29.

McLachlan. G. J., & Basford, K. E. (1988). Mixture models. New York: Marcel Dekker.
Meng, X. 1. (1994). Posterior predictive p values. The Ann1als of Statistics, 22,

1142-1160.
Meulders, M., De Boeck, P., & Van Mechelen, 1. (2000). A tcaxonom7y of latenit structure

assumptions for probabilitv matrix decomposition models. Manuscript submiittedi for
publication.

Reif, K., & Melich, A. (1992). Fiurobaromneter 32: The single European market, dtugs,

alcohol and cancer November 1989 [computer file]. Conducted by INRA (Europe),
Brussels. 2nd ICPSR ed. Ann Arbor. MI: Inter-university Consortium for Political and
Social Research [producer and distributor].

Rubin, D. B. (1984). Bayesianly justitiable and relevant frequency calculations for the
applied statistician. Annals of Statistics, 12, 1151-1172.

Rubin. D. B., & Stern, H. S. (1994). Testing in latent class models using a posterior
predictive chleck distribution. In A. Von Eye & C. Clogg (Eds.), Latent variables
analysis: Application.s for developmetntal researcht (pp. 420-438). Thousand Oaks,
CA: Sage.

Schdnemanin, P. l . ( 1 966). A generalized solution of the orthogonal Procrustes problem.
Psxvchconerrika, 31, 1-10

Srmith, A.F.M., & Roberts, G. 0. (1993). Bayesian computation via the Gibbs sampler
and related Markov chain Monte Carlo methods. Journal of the Royal Statistical
Socinet Series B, 55, 3 -23.

Tanner, M. A. (1996). Rholsf tr statistical intereuce: Methodyfs r exploration of poste-
rior distributions and likelihood functions, third edition. New York: Springer-Verlag.

Tanner, M. A., & Wonig, W. H. (1987). The calculation of posterior distribution by data
augmentation. Journal of the Americcan Statistical Association, 82, 528--540.

Van Mechelen, I, De Boeck, P.. & Rosenberg, S. (1995) The conjunctive hierarchical
classes model. Psychomnetrika, 60, 5t5- 521.

Wassernian, S,, & Faust, K. (1994). Social nenwork analysis. Methods and applications.
New York: Cambridge UJniversity PXress.

178



Bayesian Iuiference WVith lPMI) Models

Authors

MICHEL MEULDERS, Professor, Department of Psychology, Katholieke tUniversiteit
Leuven, Tiensestraat 102, B-3000 leuven, Belgiurn; Michel.Meulders@
psy.kuleuven.ac.be. He specializes in psychomietric models.

PAUL DOE BOECK, Professor, Department of Psychology, Katholieke Universiteit Len-
ven, Tiensestraat 102, B-3000 leuven, Belgium; Paul.DeBoeck@?psy.kuleuven.ac.be.
He specializes in psychometric models.

IVEN VAN MECHELEN, Professor. Department of Psychology, Katholieke Universiteit
Leuven, Tiensestraat 102, B-3000 leuven, Belgium; Iven. VanMechelen(@ psy.
kuleuven.ac.be. H-ie specializes in psychometric models.

ANDREW GELMAN, Professor, Department of Statistics, Columbia University, New
York, NY 10027; Gelman@neyman.stat.coiunmbia.edu. Ile specializes in Bayesian data
analysis.

ERIC MARIS, Professor, Nijmegen Institute of Cognition and Infornation, Katholieke
Universiteit Nijmegen. P.O. Box 9104, 6500( HE Nijmegen, The Netherlands; Maris.
nici.kun.nl. He specializes in mathematical models.

Received January 1999
Revision Received August 2000

Accepted September 2000

179



COPYRIGHT INFORMATION

TITLE: Bayesian inference with probability matrix decomposition
models

SOURCE: Journal of Educational and Behavioral Statistics 26 no2
Summ 2001

WN: 0119604897002

The magazine publisher is the copyright holder of this article and it
is reproduced with permission. Further reproduction of this article in
violation of the copyright is prohibited. To contact the publisher:
http://jebs.uchicago.edu/.

Copyright 1982-2002 The H.W. Wilson Company.  All rights reserved.


