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Abstract
Every philosophy has holes, and it is the responsibility of proponents of a phi-
losophy to point out these problems. Here are a few holes in Bayesian data
analysis: (1) the usual rules of conditional probability fail in the quantum realm,
(2) !at or weak priors lead to terrible inferences about things we care about, (3)
subjective priors are incoherent, (4) Bayesian decision picks the wrong model,
(5) Bayes factors fail in the presence of !at or weak priors, (6) for Cantorian rea-
sons we need to check our models, but this destroys the coherence of Bayesian
inference. Some of the problems of Bayesian statistics arise from people trying
to do things they should not be trying to do, but other holes are not so easily
patched. In particular, it may be a good idea to avoid !at, weak, or conven-
tional priors, but such advice, if followed, would go against the vast majority
of Bayesian practice and requires us to confront the fundamental incoherence
of Bayesian inference. This does not mean that we think Bayesian inference
is a bad idea, but it does mean that there is a tension between Bayesian logic
and Bayesian work!ow which we believe can only be resolved by considering
Bayesian logic as a tool, a way of revealing inevitable mis"ts and incoherences
in our model assumptions, rather than as an end in itself.

Keywords: Bayesian statistics, foundations of probability, philosophy of statis-
tics

1. Overview

Bayesian inference is logically coherent but only conditional on the assumed probability
model. In the present paper we discuss several holes in the Bayesian philosophy, along with
their practical implications and potential resolutions.
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All statistical methods have holes and, in general, we can understand methods by under-
standing the scenarios where they fail (Lakatos 1963). We focus on Bayesian inference because
this is the approach we use for much of our applied work and so we have an interest in deep-
ening our understanding of it. In addition, to the extent that coherence is a selling point of
Bayesian inference, we should be aware of its limitations.

2. Latent variables don’t always exist (quantum physics)

The standard paradigm of Bayesian statistics is to de"ne a joint distribution of all observed and
unobserved quantities, with the latter including "xed parameters such as physical constants,
varying parameters such as masses of different objects, and latent variables for dif"cult-to-
measure quantities such as concentrations of a toxin within a person’s liver, or, in social
science, variables such as personality characteristics or political ideology that can only be
measured indirectly. The implicit assumption here is that, some joint distribution exists from
which conditional and marginal probabilities can be derived using the rules of probability
theory.

In quantum physics, though, there is no such joint distribution. Or, to put it another way,
quantum superposition implies that leaving a particular observation unmeasured is not the same
as treating it as uncertain in a joint distribution.

Consider the canonical experiment of a light source, two slits, and a screen, with y
being the position where the photon hits the screen. For simplicity, think of the screen as
one-dimensional, so that y is a continuous random variable.

Consider four possible experiments:

(a) Slit 1 is open, slit 2 is closed. Shine light through the slit and observe where the screen
lights up. Or shoot photons through one at a time, it does not matter. Either way you get a
distribution, which we can call p1(y).

(b) Slit 1 is closed, slit 2 is open. Same thing. Now we get p2(y).
(c) Both slits are open. Now we get p3(y).
(d) Now run experiment 3 with detectors at the slits. You will "nd out which slit each photon

goes through. Call the slit x. So x is a discrete random variable taking on two possible
values, 1 or 2. Assuming the experiment has been set up symmetrically, you will "nd that
Pr(x = 1) = Pr(x = 2) = 0.5. You can also record y; label its distribution p4(y).

The dif"culty arises because in experiment 4 you can also observe the conditional
distributions, p4(y|x = 1) and p4(y|x = 2). You will "nd that p4(y|x = 1) = p1(y) and
p4(y|x = 2) = p2(y). You will also "nd that p4(y) = 0.5p1(y) + 0.5p2(y). So far, so good.

The problem is that p4, which is a simple mixture distribution, is not the same as p3, which
has nodes and which cannot be expressed as any linear combination of p1 and p2. This is a
manifestation of Heisenberg’s uncertainty principle: putting detectors at the slits changes the
distribution of the hits on the screen.

This violates the rule of Bayesian statistics, by which a probability distribution is updated
by conditioning on new information. In this case, there is no joint distribution p(x, y) whose
marginal distribution for y is p3 and whose conditional distributions given x = 1 or 2 are p1
and p2. To put it another way, if we start with p(y) = p3(y), we cannot perform the marginal-
conditional decomposition, p(y) = Pr(x = 1)p(y|x = 1) + Pr(x = 2)p(y|x = 2).

At this point, we can rescue probability theory, and Bayesian inference, by including the
measurement step in the conditioning. De"ne a random variable z carrying the information of
which slots are open and closed, and the positions of any detectors, and then we can assign
a joint distribution on (z, y) and perform Bayesian inference: seeing the observed positions of
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photons on the screen gives information about the experimental and measurement process, z.
In essence, the problem with applying probability theory to the slit x and screen position

y arises because it is physically inappropriate to consider x as a latent variable. The photon
does not go through one slit or the other; it goes through both slits, and quantum superposi-
tion is not the same thing as probabilistic averaging over uncertainty. Mathematically, quan-
tum mechanics can be perfectly described by Bayesian probability theory on Hilbert space
given the appropriate de"nition of the measurable space (Hohenberg 2010). As long as we
do not confuse additivity of elements in the vector space (i.e. |1〉 + |2〉 is also a feasible out-
come as long as |1〉 and |2〉 are) with additivity of disjoint events under probability measures
(i.e. Pr(x = 1 or x = 2) = Pr(x = 1) + Pr(x = 2)), the quantum phenomenon is simply
{x = 1 or x = 2} #= {x = |1〉 + |2〉}, which is not surprising either probabilistically or
physically.

We can rede"ne a simplex parameter θ = (θ1, θ2) such that
∑

k θk = 1, 0 ! θk ! 1 and
model the superposition explicitly in the likelihood p(y|θ1, θ2) = ‖

∑2
k=1

√
θkφk(y)‖2, where

φk(y) =
√

(pk(y)) exp(iτk) is the complex-valued wave function. Eventually we still make
inference on θ|y with uncertainty induced from "nite sample observations, and still linearly
average over such uncertainty for predictive distributions

∫
p(ỹ|θ)p(θ|y)dθ. Bayesian inference

cannot resurrect a misspeci"ed model, but it works "ne to incorporate quantum mechanics
within the model.

There are two dif"culties here. The "rst is that Bayesian statistics is always presented in
terms of a joint distribution of all parameters, latent variables, and observables; but in quantum
mechanics there is no joint distribution or hidden-variable interpretation. Quantum superposi-
tion is not merely probabilistic (Bayesian) uncertainty—or, if it is, we require a more complex
probability theory that allows for quantum entanglement.

The second challenge that the uncertainty principle poses for Bayesian statistics is that
when we apply probability theory to analyze macroscopic data such as experimental mea-
surements in the biological and physical sciences or surveys, experiments, and observational
studies in the social sciences, we routinely assume a joint distribution and we routinely treat the
act of measurement as a direct application of conditional probability. If classical probability
theory needs to be generalized to apply to quantum mechanics, then it makes us wonder
if it should be generalized for applications in political science, economics, psychometrics,
astronomy, and so forth.

It is not clear if there are any practical uses to this idea in statistics, outside of quantum
physics. For example, would it make sense to use ‘two-slit-type’ models in psychometrics,
to capture the idea that asking one question affects the response to others? Would it make
sense to model macroscopic phenomena in the physical, biological, and social sciences using
complex amplitudes—thus incorporating ideas of phase and coherence into applied Bayesian
inference? Could nodes, wave behavior, entanglement, and other quantum phenomena manifest
in observable ways in applied statistics, motivating models that go beyond classical Boltzmann
probabilities? We have no idea.

We shall return to the two-slit experiment in section 8; here we emphasize that we are statis-
ticians, not physicists, and our purpose in discussing this example is to better understand the
limitations of Bayesian inference, not to claim any insight into this physics problem.
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3. Weak priors yield unreasonably strong inferences (taking posterior
probabilities seriously)

Consider the following not uncommon scenario. An experiment is conducted to estimate some
continuous causal effect θ. The data are summarized by an unbiased estimate, θ̂(y), whose
sampling distribution is approximately normal with standard error s. The estimate θ̂ ± s is
interpreted Bayesianly under a !at prior to yield θ|y ∼ normal(θ̂, s).

Now suppose the estimate happens to be one standard error from zero, that is, θ̂ = s. In
usual practice this would be taken as weak evidence, perhaps summarized by the 95% posterior
interval s ± 2s, which overlaps zero, thus indicating that, given the information at hand, the true
effect could be either positive or negative.

But the posterior distribution could be summarized in other ways. For example, the
statement θ|y ∼ normal(s, s) implies that Pr(θ > 0|y) = 0.84; that is, there is an approximately
5/6 chance that θ > 0, and we should be willing to bet with 5-to-1 odds on the proposition that
the treatment has a positive effect.

It would seem to be imprudent to offer such strong odds based on data that are statistically
indistinguishable from noise. To put this in a frequentist framework: if we were to repeatedly
run experiments and then offer a 5-to-1 bet on the sign of an effect whenever its estimate is 1
standard error away from 0, we could consistently lose money. How could pure noise result in
such strong bets?

To be fair, there are problems with using betting to assess subjective probability: every
bet needs a taker, and the existence of someone willing to lay money on an event supplies
information about its probability—but, even if we forget about betting and just treat that 0.84
as a probability to be used in decision making, it seems too strong.

Mathematically, 0.84 is the correct probability given the statement of the problem; if we
claim that the regular application of this probability would lead to bad bets, in aggregate, this is
tantamount to arguing that the distribution of scenarios over which we are averaging is different
from the prior distribution used in the model.

This example is not some sort of pathological edge case. Estimates that are in the range of
one standard error away from zero happen all the time. And uniform priors are often taken as
a default, including in our own writing (Gelman et al 2014). If Bayesians were to regularly lay
5-to-1 bets in this setting, they’d have lost all their money many years ago.

In practice, Bayesian statisticians deal with this problem by ignoring it, for example report-
ing the posterior distribution or the posterior 95% interval and implicitly treating it as noisy
and beneath notice, rather than focusing on the idea that this noisy result has, according to the
model, identi"ed the sign of θ with 5/6 probability.

The problem here is with the prior, and it is not resolved by replacing the !at prior with a
proper but very weak prior, as this will still lead to a posterior probability close to 5/6 that the
true effect is positive.

And this is not just an issue with extremely noisy estimates. Consider the same example but
now with an estimate θ̂ = 2s, a comfortable two standard deviations from zero. The resulting
posterior probability is now 39/40 that θ is positive, but, again, such a claim would be much
too strong in practice. By ‘too strong in practice’, we mean that this 39/40 probability would
not come close to holding up, if we average over a reasonable prior distribution on true effect
sizes.

Studies are commonly designed to have just enough power so that effects can just about be
estimated from data. Hence effect sizes are of the same order of magnitude as standard errors,
and something like a normal(0, s) prior may be more reasonable choice than a uniform or very
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weak prior on θ. Studies are often optimistic, so that we’d expect true effect sizes less than s
much of the time.

One might say this is not a ‘hole in Bayesian statistics’; it is just a implementation error
to use priors that are too vague. Sure, but then at the very least this is a mistake not just in
common practice but in the recommendations in just about every textbook. Indeed, Bayesian
statisticians are often wary of strong priors because they want to ‘let the data speak’. The trou-
ble is that letting the data speak in this way will result in many erroneously strong statements.
Paradoxically, weak priors imply inappropriately strong conclusions in certain dimensions of
the posterior, a point which we have pointed out before in more complex multivariate exam-
ples; see section 3 of Gelman (1996). Again, our point is not that a high-variance prior for a
parameter of interest is necessarily wrong; rather we are emphasizing that using such a prior
has implications for the applicability of the model, as it can result in strong posterior claims
from what might seem like weak evidence.

4. The incoherence of subjective priors (Bayesian updating)

Bayesians have sometimes taken the position that their models should not be externally ques-
tioned because they represent subjective belief. The problem with this view is that, if you could
in general express your knowledge in a subjective prior, you would not need formal Bayesian
statistics at all: you could just look at your data and write your subjective posterior distribution.

To put it another way, the inferential procedure of Bayesian statistics is to assume a prior
distribution and a probability model for data and then use probability theory to determine the
posterior. But if these steps, or something approximating them, are necessary, if you cannot just
look at your data and come up with a subjective posterior distribution, then how is it reasonable
to suppose that you could come up with an unassailable subjective distribution before seeing
the data?

We are not saying that Bayesian methods are valueless. One virtue of the enforced consis-
tency of Bayesian inference is that it can go in both directions. Start with a prior and a data
model, get posterior inferences, and if these inferences do not make sense, this implies they
violate some aspect of your prior understanding, and you can go back and see what went wrong
in your model of the world. This is the attitude of Jaynes (2003), who takes it as a strength,
not a weakness, of Bayesian inference that it makes strong claims, as these allow a model to
more readily be rejected and then improved. As O’Hagan (1994) puts it, by breaking the infer-
ence problem into smaller pieces, Bayesian inference provides a path to decision making in
problems that would be too complicated to combine data and base rate information intuitively.

Our problem is with a solipsistic doctrine of subjective priors that is sometimes expressed,
in which one’s prior is considered irrefutable because it is said by de"nition to represent one’s
subjective information. We are much more comfortable thinking about the prior (and, for that
matter, the likelihood) as the product of assumptions rather than as a subjective belief.

This has implications for Bayesian practice (openness to checking and revising models) and
for Bayesian theory as well: the modeling process cannot be viewed as a closed system. The
previous section demonstrated a serious, even potentially fatal, problem with noninformative
or weak priors; the present section demonstrates that we cannot, except in some special cases,
assume that subjectivity implies logical coherence.

5. Bayesian decision theory can be tricky (model evaluation)

In a decision theory based prediction framework, we equip the observable outcome y and any
probabilistic prediction p with a scoring rule, for example, the logarithmic scoring rule log p(y),
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and averaging over the actual distribution of y yields the expected log predictive densities
Ey log p(y). The logarithmic scoring rule is strictly proper, which ensures such utility, as a
function of any probabilistic predictions p, only attains the maximum at the true data generating
process of y.

Now think about experimental data in which the outcome is discrete, such as chemical
measurements based on visual readings of a test strip at discrete levels. Say we are mea-
suring ionizing radiation using a sloppy test kit that can only return discrete measurements:
y = 0, 1, . . . , 10 mR h−1. We also collect other predictors x, such as the temperature of the
reaction, and the goal is to discover the relation between x and y. Suppose the true expected
pattern follows an ordered logistic regression, Pr(y ! k) = logit−1(ck + βx), k = 0, 1, . . . , 9,
but the practitioner chooses to "t a linear regression y ∼ normal(βx + β0, σ) instead. We
know this model is wrong, but it could have a higher log predictive density when "t to data.
To see this clearly, assume that now the test kit can only return y = 0 and 1 with proba-
bilities 0.9 and 0.1 independent of x, so that the true data generate process Bernoulli(0.1)
has the log predictive density, or negative entropy loss, 0.9 log(0.9) + 0.1 log(0.1) = −0.33,
whereas a wrong normal model y ∼ normal(0, 0.3) achieves a higher log predictive density
0.9 log

(
normal(0|0 0.3)

)
+ 0.1 log

(
normal(1|0 0.3)

)
= −0.27.

In this example, the mistake is that the calculation above mixes the continuous probability
density and the discrete probability mass function, and more generally, we assign the outcome
y a discrete space {0, 1} with counting measure and simultaneously a continuous real line with
Lebesgue measure. Indeed, changing the unit from mR h−1 to R h−1 would further in!ate the
log predictive density of the wrong normal model by log(106), while the true discrete model
remains unchanged and is always bounded above from log(1) = 0.

However, the measurement itself from a black box experiment cannot automatically tell
which space it lives in. With observations y1 = 1, y2 = 0, it is not always clear to distinguish
among the following possibilities: (1) the outcome is continuous, and it is the test kit that induce
discretization errors; (2) the outcome has certain quantum property and is itself discrete; (3)
the test kit is accurate, but it by chance runs into a few integer values in the "rst few trials; or
(4) the test kit is nearly accurate with certain rounding precision. These four schemes imply
different sample spaces of the outcome. Though {0}, {1} as two elements in space {0, 1}, and
as elements on real line have the same notation, they are different objects. By adopting another
parameter z re!ecting our knowledge on what the sampling space is, there two sets of elements
become {0, 1|z = discrete}, {0, 1|z = continuous}, akin to how conditioning on the number
of open slits changes the meaning of the outcome space in the two slit experiment. A fully
Bayesian model evaluation would also average over z with respect to its posterior inference
when computing the utility.

6. Failure of Bayes factors (strong dependence on irrelevant aspects of the
model)

Bayesian inference is conditional on a model. Thus, instead of p(θ|y) ∝ p(θ)p(y|θ), we could
more formally write, p(θ|y, M) ∝ p(θ|M)p(y|θ, M), where M is the assumed model. But then
we can go up one level of abstraction and consider a distribution p(M) of possible models and
then perform joint inference on models and parameters: p(θ, M|y) ∝ p(M)p(θ|M)p(y|θ, M).

But this joint distribution of parameters and model can be dif"cult to interpret, as different
models can have different parameterizations so that there is no common parameter vector θ
that can be usefully de"ned. It can make sense to integrate over parameters to get the marginal
posterior probability of each model: p(M|y) =

∫
p(θ, M|y)dθ = p(M)

∫
p(θ|M)p(y|θ, M)dθ.
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This last factor,
∫

p(θ|M)p(y|θ, M)dθ = p(M|y), is called the marginal likelihood of M, and
when used to compare two models, p(M1|y)/p(M2|y), is called the Bayes factor.

The problem with the Bayes factor is the strong dependence of the integral,∫
p(θ|M)p(y|θ, M)dθ, on aspects of the prior distribution, p(θ|M), that have minimal impact

on the conditional posterior distribution, p(θ|y, M). From a practical standpoint, weak or non-
informative priors can often be justi"ed on the grounds that, with strong data, inferences for
quantities of interest are not seriously affected by the details of the prior—but this is not the
case for the marginal likelihood.

As with all the other problems discussed in this article, there is nothing wrong with the
Bayes factor from a mathematical perspective. The problem, when it comes, arises from the
application.

There are three sorts of examples where Bayes factors can be applied, two where the
approach can make sense (if performed carefully) and one where it does not.

Example 1. Continuous parameter. The simplest example of Bayes factors is when the
model index M represents a continuous parameter. For example, consider a logistic regression
with two coef"cients, Pr(yi = 1) = logit−1(a + bxi), for i = 1, . . . , n, with the model implic-
itly conditional on the values of the predictor x. Suppose we identify the intercept, a, as the
continuous model index M, and the slope b as the parameter θ. The we can work with the joint
distribution p(θ, M|y), the marginal model probability distribution p(M|y), the marginal likeli-
hood p(y|M), the model-averaged posterior p(θ|y), and so forth. There is no problem at all; it
is just Bayesian inference.

Example 2. Truly discrete model. Another setting where Bayes factors can make sense is
in a discrete mixture model. For example, M = 1 or 2, depending on whether a person was or
was not at the scene of a particular crime, with data y representing some sort of surveillance
measurement characterized by some parameters θ. Here, if we want to compute the posterior
probability of the person being at the crime, we need to integrate over θ.

Example 3. Model choice. Bayes factors run into trouble when used to compare discrete
probabilities of continuous models. For example, consider the problem of comparing two
logistic regressions, one with just an intercept (M1 : Pr(yi = 1) = logit−1(a)) and the other
including a slope as well (M2 : Pr(yi = 1) = logit−1(a + bxi)). The Bayes factor comparing
the two models will depend crucially on the prior distribution for the slope, b, in the second
model. For example, suppose the models are on unit scale so that we expect the parameters a
and b to be of order 1. Then switching from the priors b|M2 ∼ normal(0, 10) to b|M2 ∼ normal
(0, 1000) will multiply the Bayes factor by approximately 100, even though this change will
have essentially no in!uence on the parameters a and b within the model. In real-world physics
modeling, this sort of indeterminacy should not occur, as our understanding of the units of the
problem should allow us to set a reasonable prior to within an order of magnitude, but for
models with many parameters, smaller factors can still accumulate to the extent that the Bayes
factor can still depend strongly on arbitrary settings of the priors. In the literature on the Bayes
factor, solutions to this problem have been proposed, along the lines of setting some conven-
tional prior on parameters within each of the candidate models. But we have never found these
arguments convincing—and, to the extent that are convincing, they run counter to the goal
of coherence, by which prior distributions are intended to represent actual populations to be
averaged over when evaluating inferences.
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7. Cantor’s corner (model updating)

A model does what it does, then we look for problems; having done that, we expand the model
and push it harder, until it breaks down and we need to replace it. This is basic philosophy of
science since Lakatos (1968), and it maps directly to Cantor’s diagonal argument, a proof that
the real numbers are uncountable.

Here’s the story in Ascii art:

For each model, the dots represent successful applications, and the X represents a failure,
a place where the model needs to be improved. The X’s form Cantor’s diagonal, and the most
recent X is Cantor’s corner. Cantor’s diagonal argument, taken metaphorically, is that we can
never fully anticipate what is needed in future models. Or, to put it another way, the sequence
of problems associated with the sequence of X’s cannot, by de"nition, be "t by any single
model in the list.

Scienti"c research is all about discovery of the unexpected: to do research, you
need to be open to new possibilities, to design experiments to force anomalies, and to
learn from them. The sweet spot for any researcher is at Cantor’s corner. As such, direct
Bayesian inference—either the discrete version with model averaging criticized in section 6,
or a more desirable approach of continuous model averaging—is, ultimately, impossible in
that it would require the anticipation of future steps along the diagonal, which by construction
cannot be done. There is a connection here to the classical idea of sieves: models that expand
with the data (Grenander 1981, Geman and Hwang 1982).

One way to "x ideas here is to imagine a computer program or arti"cial intelligence that
would perform statistical inference on arbitrary datasets. One could stock this program with
some classes of useful models such as linear regressions, logistic regressions, splines, tree
models, and so forth, along with some rules that would allow us to put these pieces together
into arbitrarily—countably many—larger models, for example using interactions, hierarchi-
cal modeling, network connections, deep nets, nets of nets, etc. The computer program could
then try out a series of models on any given dataset, using cross validation and more compli-
cated evaluation and combination rules such as random forests. Each of these steps allows a
model, or class of models, to last longer, to work deeper in the class of applied problems, but at
some point the model would suffer serious mis"t and stop performing better. To be an effective
general-purpose statistics problem solver, the AI would need to include a module for model
criticism: a sort of ‘red team’ to detect problems which at some point would require ripping
out many stitches of modeling before future progress can be made. This idea is similar to gen-
erative adversarial networks in machine learning (Goodfellow et al 2014); our point is that
the potentially unlimited nature of Cantorian updating reveals another way in which Bayesian
inference cannot hope to be coherent in the sense of being expressible as conditional statements
from a single joint distribution.

8. Implications for statistical practice

We continue by discussing how we can incorporate into Bayesian work!ow our understanding
of the holes in Bayesian inference.
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First consider the problem in section 2 of the two-slit experiment, again emphasizing that
our purpose here is not to contribute to understanding of this physics problem but rather to
gain insight into the challenges of statistical inference in problems of quantum indeterminacy.
Bayesian (Boltzmann) probability works in experiments 1, 2, and 4, but not in experiment
3, where there is no joint distribution for the slit x and the screen position y. One way to
rescue this situation and make it amenable to standard Bayesian analysis is to fully respect the
uncertainty principle and only apply probability models to what is measured in the experiment.
Thus, if both slits are open and there are no detectors at the slits, we do not express x as
a random variable at all. In a predictive paradigm, inference should only be on observable
quantities (Bernardo and Smith 1994). This is related to the argument of Dawid (2000) that it
can be mistake to model the joint distribution of quantities such as potential outcomes that can
never be jointly observed.

Bayes’ rule by default aggregates uncertainty of potential outcomes under different mea-
surements through a linear mixture: the marginal distribution of y is a mixture of the con-
ditional distributions under the prior distribution: p(y) =

∫
p(y|x)p(x)dx, and the posterior

predictive distribution of future outcome ỹ is a mixture under the posterior distribution of
x: p(ỹ|y) =

∫
p(ỹ|x)p(x|y)dx. However, the linear mixture is just one operator on the space

of predictive distributions, among many others such as convolution, multiplication of den-
sities, or superposition. That said, restricting the average form to a linear mixture is not
unique to Bayesian inference: a con"dence interval from Neyman–Pearson theory also makes a
claim that is linearly averaged over all possible scenarios under consideration.

We explained in section 2 that the Bayesian inference can be rescued by careful modeling. A
challenge of this model-the-observables approach is that it requires some external knowledge.
In particular, the mathematics of wave mechanics are required to come up with the distribution
p3(y) as a superposition of p1(y) and p2(y), with its counterintuitive interference pattern. In
addition, there is the awkwardness that x can be measured for some conditions of the number
of open slits but not others.

But, from the standpoint of usual statistical practice, it is not at all unusual for different mod-
els for the same outcome to have parameters that are not directly comparable. For example,
in pharmacology, one might model the concentration of a compound in the bloodstream (an
observable outcome) jointly with its unobservable concentrations within internal compart-
ments of the body, or simply "t a curve directly to the blood measurements. Similarly, an
economist might "t a ‘structural’ model including latent variables representing individual utili-
ties, or a ‘reduced-form’ or phenomenologicalmodel to data on purchases. In the pharmacology
example, the latent variables seem uncontroversial and we could hope that the direct model
of blood concentration could be expressed mathematically as an integral over the unknown
internal concentrations, thus following Bayes’ rule. But in the economics example, it has often
been argued that preferences do not exist until they are measured (Lichtenstein and Slovic
2006), hence any joint model would depend on the measurement protocol.

More generally, we can think about the question of what to model as part of the mod-
eling process. Without an explicit model, it is the default linear mixture (0.5p(y|x = 1)
+ 0.5p(y|x = 2)) that mis"ts the quantum observations. Likewise, without an explicit prior,
the default uniform prior on all parameters can yield undesired results.

In section 3 we considered problems of noninformative or weakly informative priors, but
arguably the key mistake in such settings comes from the decision not to include relevant
prior information on a parameter θ, a decision which in the Bayesian setting corresponds to
a refusal to consider θ as a draw from some real or "ctive population of possible parameters.
In the example of section 3, these would be the possibility that individual treatment effects
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vary across sub population, whereas the posterior inference θ|y ignores such unmodeled epis-
temic uncertainty and has to converge to the average treatment effect regardless, thereby result-
ing in an overcon"dent bet for individual outcomes. By contrast, point estimation procedures
such as maximum likelihood do not even try to this end.

To be more constructive, in any given applied problem we can consider potential decision
rules such as betting on the posterior probability that θ > 0 and, if its implications under
hypothetical repeated sampling seem undesirable, we can consider this as a prior predictive
check (Box 1980) or ‘device of imaginary results’ (Good 1950) that reveals additional beliefs
that we have which are inconsistent with our assumed model. This revelation of incoherence
does not immediately tell us what to do, but it motivates a more careful engagement with our
assumptions. In particular, the model itself does not know how it will be used in the decision
problem: a time series model good at one-day ahead prediction does not necessarily yield the
optimal one-year ahead prediction.

To put it another way, it is a fundamental principle of Bayesian inference that statistical
procedures do not apply universally; rather, they are optimal only when averaging over the
prior distribution. This implies a proof-by-contradiction sort of logic, relating to the discussion
of subjective priors in section 4 by which it should be possible to deduce properties of the prior
based on understanding of the range of applicability of a method.

The example in section 5 makes it clear that decision theory itself is not immune to sub-
jective model building, or the subjective basis of knowledge. We need prior knowledge, an
interpretation of how the observations are generated, to extrapolate the measurements to the
underlying constructs of interest. In many problems it is acceptable to use a linear regression
for people’s height with a normal error even though we know the measurement has to be posi-
tive and bounded, and knowing that all measurements recorded by !oat numbers are in essence
discrete does not prevent us applying continuous probability densities. The choice of sampling
space is part of the model assumptions and approximations we are willing to make, and in
principle we can further check how sensitive the analysis is to these assumptions as part of the
model.

What about the failure of Bayes factors, as discussed in section 6? At the most immediate
level of statistical practice, we can use more robust Bayesian model averaging techniques such
as stacking (Yao et al 2018) so as to use the "t of models to data to obtain better predictive per-
formance without the pathologies of the marginal likelihood. At a more fundamental level, we
are again seeing the consequences of a refusal to model a parameter θ, which has unfortunate
implications when integrating over θ in the prior distribution.

It would be awkward, however, to simply insist on realistic priors for all parameters in our
Bayesian inferences. Realistically it is not possible to capture all features of reality in a sta-
tistical model. The relevant point here is that the refusal to model some part of our problem
is a choice that narrows the range of what can be done going forward. There is no fundamen-
tal problem with Bayes factors and Bayesian model averaging, but there is a problem with
integrating over a parameter that is essentially unmodeled.

Alternatively we view the drawback of Bayesian model averaging as the refusal to model
how individual models are combined. Bayesian model averaging is indeed a form of aver-
aging, but it assumes that one of the candidate models is true, with individual models
aggregated according to the probability of each model being that true model. With more and
more data, the Bayesian model averaging will asymptotically only pick one model and becomes
marginal likelihood based model selection, which is inappropriate in a model-open environ-
ment in which none of the posited models are correct (Yao et al 2018). The default assumption
behind the notation p(M|y), that there is one true model and it is in the set under considera-
tion, is akin to the implicit assumption that only one slit is open in the protocol induced by
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the notation p(x|y) in the two-slit experiment. Although the Bayesian inference from "nite
sample induces nonzero epistemic uncertainty on M or x, the underlying decision space is
essentially discrete, either allowing individual models Mk to be binarily true or false, or the
slit to be open or closed. Through additional modeling in the two-slit experiment, we are
expanding the binary decision x into a two-dimensional simplex θ and likewise expanding
the binary model of truth

{
Mk : Mk = 0 or 1,

∑K
k=1 Mk = 1

}
into a K-dimensional simplex

{
wk : 0 ! w ! 1,

∑K
k=1 wk = 1

}
. The enlarged decision space is a continuous extension of

the original one, rendering more !exibility to express the data generating process.
Finally, as discussed in section 7, Cantor’s diagonal argument points to the essential ongo-

ing nature of these problems: there will always be more aspects of reality that have not yet
been included in any model. Lest this be seen as an endorsement of some sort of !abby
humanism of the ‘scientists are people too’ variety, let us emphasize that the same issues arise
with extrapolation and generalization from automatic machine learning algorithms.

9. Discussion

There are various reasons to care about holes in Bayesian statistics. Most directly, we want
to avoid these holes in our applied work, and we want to be aware of alternative approaches,
going beyond default noninformative models or naive overcon"dence in subjective models.
Stepping back, we should be appropriately wary of statistical inferences produced using any
method, Bayesian or otherwise, as the Cantorian argument implies that coherence will never
be within reach.

The holes discussed in this article are not simply the errors of inference resulting from
inevitable imperfections in model misspeci"cation. Rather, each hole in its own way repre-
sents a potentially catastrophic failure: in the two-slit experiment, the naive application of
conditional and joint probability leads to a mixture distribution rather than the actual result
with nodes; in the !at-priors example, the objectionably strong claim that Pr(θ > 0) = 0.84
can arise from noisy data; the incoherence of Bayesian updating eliminates any theoretical
basis for a behavioristic interpretation of the prior distribution; Bayes factors cannot be res-
cued, even approximately, by the use of conventional priors; and the essence of Cantor’s corner
is that any model, if used in a changing world, will eventually need radical overhaul. These
holes represent real challenges to any philosophy of automatic Bayesian inference.

As we have discussed elsewhere (Gelman and Robert 2013), ‘in the popular and techni-
cal press, we have noticed that ‘Bayesian’ is sometimes used as a catchall label for rational
behavior’. But ‘rationality (both in the common-sense and statistical meanings of the word) is
complex. At any given time, different statistical philosophies will be useful in solving differ-
ent applied problems. As Bayesian researchers, we take this not as a reason to give up in some
areas but rather as a motivation to improve our methods: if a non-Bayesian method works well,
we want to understand how’. Awareness of the holes in Bayesian statistics should allow us to
be better Bayesians in the short run, while pointing to research directions for the future.

There are various levels of Bayesian statistical practice. Bayesian inference goes from
likelihood and prior to posterior, a deterministic procedure followed by Bayes’ theorem
after one model is set. Bayesian logic contains both Bayesian inference and decision theory.
Bayesian data analysis involves three steps of model building, inference, and model check-
ing and improvement. A complete Bayesian work!ow refers to Bayesian data analysis for a
sequence of models, not just for the purpose of model choice or model averaging but more
importantly to understand these models.
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When discussing logical gaps, our target of criticism is not Bayesian inference as a prior-to-
posterior mapping or Bayesian inference as model-based reasoning; rather, we are pointing out
!aws in a static form of Bayesian inference in which the model is a "xed, passive receptacle
for the data. Here is the challenge: it is "ne to say that we should be !exible and learn from
our models’ failures, and indeed that is how we view Bayesian work!ow (Gabry et al 2019),
but this directly con!icts with one of the usual justi"cations for Bayesian inference, which is
its logical consistency (Cox 1946, Savage 1954). Again, the recognition of these holes should
not be taken as a reason to abandon Bayesian methods or Bayesian reasoning, but rather as
a motivation to better understand then to improve modeling and inferential work!ow, and to
better understand the dependence of inferences on model assumptions.

Bayesian statistics has no holes in theory, only in practice. When the model and all
model assumptions are taken for granted, the Bayesian procedure is unique. But we prefer
to break such enforced coherence by questioning the validity of the model and assumptions.
On the other hand, perhaps these practical holes imply the existence of a theoretical hole, if
theoretical statistics indeed is the theory of applied statistics.

Appendix. Things that seem like problems with Bayesian inference but aren’t

Bayesian inference has been criticized from many directions. Here we wish to brie!y supple-
ment the holes described in the main body of this paper, with some other criticisms that we see
as less fundamental.

A.1. Bayes as a pretty but impractical theory

A famous probabilist once wrote that Bayesian methods ‘can be defended but not applied’
(Feller 1950). There is a pragmatist appeal to the idea that Bayesian inference is doomed by
its own consistency, but ultimately we "nd this particular anti-Bayesian argument unconvinc-
ing, for two reasons. First, much as changed since 1950, and Bayesian methods can and are
applied in many areas of science, engineering, and policy. Second, the consistency of Bayesian
inference is only a problem if you are in!exible. As discussed in section 3, if a posterior
distribution yields unappealing inferences, this is an opportunity to interrogate the model and
add information as appropriate. A probability model is a tool for learning, not a suicide pact.

In making his comparison, Feller was de"ning Bayesian statistics by its limitations while
crediting classical hypothesis testing with the 1950 equivalent of vaporware. He perhaps leapt
from the existence of a philosophical justi"cation for Bayesianism to an assumption that
philosophical arguments were the only justi"cation for Bayesian inference.

A.2. Bayes as an automatic inference engine

In bygone days, Bayesian inference was criticized as too impractical to apply in any but the
simplest problems. With the advent of algorithms such as the Gibbs sampler, Metropolis, and
Hamiltonian Monte Carlo, along with black-box implementations such as Bugs and Stan, we
sometimes hear the reverse criticism, that Bayesian models can be "t too easily and thought-
lessly, in contrast to classical inference, where the properties of statistical models have to be
"t laboriously, one at a time. We agree that the relative ease of Bayesian model "tting puts
more of a burden on model evaluation—with great power comes great responsibility—but
we take this as a criticism of rigid, "xed-model Bayesian inference, not applying to the open
version discussed in section 7.
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A.3. Bayesian inference as subjective and thus nonscientific

We have proposed to replace the words ‘objective’ and ‘subjective’ in statistics discourse
with broader collections of attributes, with objectivity replaced by transparency, consensus,
impartiality, and correspondence to observable reality, and subjectivity replaced by aware-
ness of multiple perspectives and context dependence (Gelman and Hennig 2017). With this
in mind, we believe that concerns about the subjectivity of Bayesian prior distributions and
likelihoods can be addressed "rst, by grounding these choices in correspondence to observable
reality (i.e. prior data); and, second, by making these choices transparently and with an aware-
ness of contexts. Thus, rather than criticizing Bayesian modeling as subjective, we think of
modeling choices as embedded in a larger work!ow of information gathering, synthesis, and
evaluation.
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