
Philosophy and the practice of Bayesian statistics in the social sciences
1
 

 

Andrew Gelman, Dept of Statistics and Dept of Political Science, Columbia University 

Cosma Rohilla Shalizi, Statistics Department, Carnegie Mellon University 

 

19 December 2010
2
 

 

Abstract.  We view Bayesian data analysis--the iterative process of model building, 

posterior inference, and model checking--as fitting well within an error-statistics or 

hypothetico-deductive philosophy of science, with posterior inference playing the role of 

“normal science,” model checking allowing falsification, and model building providing 

the potential for progress in normal science (for small changes in a model) or scientific 

revolutions (for larger re-evaluations). 

     Our practical experience and corresponding philosophy differs in from usual 

presentations of the philosophy of statistics in two ways.  First, we consider posterior 

probabilities to be a form of scientific measurement rather than as subjective statements 

of belief.  Second, we perform Bayesian model checking by comparing predictions to 

observed data (in a generalization of classical statistical hypothesis testing), rather than 

by attempting to compute posterior probabilities of competing models. 

 

This chapter presents our own perspective on the philosophy of Bayesian statistics, based on our 

idiosyncratic readings of the philosophical literature and, more importantly, our experiences 

doing applied statistics in the social sciences and elsewhere.  Think of this as two statistical 

practitioners’ perspective on philosophical and foundational concerns.  What we bring to the 

table are our substantive claims about actual social science research, and we attempt to explain 

those practices here. 

 

We are motivated to write this chapter out of dissatisfaction with what we perceive as the 

standard view of the philosophical foundations of Bayesian statistics. 

 

Here’s what we take as the standard view: 

 

- Bayesian inference--“inverse probability”--is subjective and inductive, learning about the 

general from the particular.  The expression p(H|y) says it all:  the Bayesian learns the 

probability that a hypothesis H is true, given data.  In the conventional view, this is 

completely different from classical frequentist statistics which is based on null hypothesis 

testing, that is, falsification.
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- The paradigmatic setting of Bayesian inference is the computation of the posterior 

probability of hypotheses, with scientific progress represented by the updating of these 

probabilities. 

  

To give a quick sense of our position, we agree essentially entirely with Greenland (1998), who 

attributes to Karl Popper the following attitude toward inductive inference:  “we never use any 

argument based on observed repetition of instances that does not also involve a hypothesis that 

predicts both those repetitions and the unobserved instances of interest.”  To put it another way, 

statistical models are a tool that allow us to do inductive reasoning in a deductive framework. 

 

In taking a broadly Popperian perspective, we are not committing to many of Popper’s specific 

ideas such as the existence of a logical criterion for demarcating science from conscience or that 

there is something called collaboration of a theory which is central to science but provides no 

evidence for the truth of a theory.  Rather, what we view as central is the scientific--and 

statistical--ideal of building serious models that make strong predictions, leaving themselves 

wide open to being falsified by data.  This is “severe testing” in the terminology of Mayo (1996), 

who works in a frequentist framework but whose ideas, we believe, are equally applicable to 

modern Bayesian data analysis.. 

 

What is salient about our social science research experiences is that the models are all wrong.  As 

we like to say, our models are not merely falsifiable, they are also false!  To put it another way, 

we are confident that, by gathering a moderate amount of data, we could reject any model we 

have ever fit to data. 

 

From “null hypothesis testing” to “model checking” 

 

We write that, in our applied work, we fit complex models and check them with data, and we 

characterize model checking as central to statistical learning.  This perspective differs in both 

philosophy and practice from the two dominant conceptions of the philosophy of statistics: 

 

1. Classical frequentist inference is centered upon null hypothesis testing, with the goal 

often being to reject the null, for example demonstrating that two distributions are not in 

fact identical or that a particular parameter is not exactly zero.  In contrast, our models 

are not null hypotheses but rather complex structures within which one can learn about 

parameters of interest. 

 

2. The dominant strain of Bayesian philosophy, as presented by Savage (1954) and others, 

subsumes inference within decision theory and treats all probabilities are subjective.  In 

contrast, we agree that probabilities are model-dependent, but we treat statistical models 

as testable and thus as potentially objective as any other scientific measurements. 

 

We are not claiming that our approach to applied statistics is optimal or even, in many cases, 

qualitatively different from other methodologies.  For example, there is a well-developed 
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classical framework of estimation, prediction, and multiple comparisons which can handle 

complex models without recourse to the Bayesian formalism. 

 

What we are claiming is Bayes need not be associated with subjectivity and inductive reasoning.  

It is possible to work within a model-checking, error-statistical framework without being tied to 

classical null hypotheses.  And, conversely, one can use Bayesian methods without being 

required to perform typically meaningless task of evaluating the posterior probability of models. 

 

The usual story 
 

Is statistical inference inductive or deductive reasoning? What is the connection between 

statistics and the philosophy of science? Why do we care? 

 

Schools of statistical inference are sometimes linked to philosophical approaches. "Classical" 

statistics--as exemplified by Fisher's p-values and Neyman's hypothesis tests--is associated with 

a deductive, Popperian, or error-statistical view of science:  a hypothesis is made and then it is 

tested.  It can never be accepted, but it can be rejected (that is, falsified).  In the language of 

Mayo (1996), statistics and science interact via the design and analysis of experiments that yield 

severe tests of models. 

 

Bayesian statistics--starting with a prior distribution, getting data, and moving to the posterior 

distribution--is associated with a formal inductive approach in which new information is 

smoothly integrated into scientific understanding via the updating of posterior probabilities of 

competing hypotheses, paradigms, or statistical models. 

 

Our disagreement with the usual philosophical understanding of statistics can be conveniently 

expressed with reference to the following passage from the the Wikipedia
4
 entry on Bayesian 

statistics: 
 

Bayesian inference uses aspects of the scientific method, which involves collecting 

evidence that is meant to be consistent or inconsistent with a given hypothesis.  As 

evidence accumulates, the degree of belief in a hypothesis ought to change.  With enough 

evidence, it should become very high or very low. . . .  Bayesian inference uses a 

numerical estimate of the degree of belief in a hypothesis before evidence has been 

observed and calculates a numerical estimate of the degree of belief in the hypothesis 

after evidence has been observed. . . .  Bayesian inference usually relies on degrees of 

belief, or subjective probabilities, in the induction process and does not necessarily claim 

to provide an objective method of induction.  Nonetheless, some Bayesian statisticians 

believe probabilities can have an objective value and therefore Bayesian inference can 

provide an objective method of induction. 

 

This story does not fit applied Bayesian statistics as we have experienced it.  Except in some 

very narrowly construed problems, we do not view “the degree of belief in a hypothesis” as a 

meaningful scientific statement, we do not consider probabilities to be subjective (or, at least, no 
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more subjective than any other aspects of scientific modeling), nor do we believe Bayesian 

inference to provide a method of induction, if that is meant to imply a direct mapping from data 

to posterior probabilities of hypotheses.  We elaborate on these points below. 

 

Our alternative story 
 

We have no quarrel with the general idea that scientific knowledge builds upon the past, or that 

we can learn inductively from the particular to the general.  As has been long realized, induction 

is most effective within the context of a good model. 

 

Our key departure from the usually expressed Bayesian philosophy is that we have experienced 

two kinds of learning:  inference about parameters within a model and decisive rejections of 

models that have forced us to improve or simply replace earlier paradigms.  In our applied work, 

we have not found ourselves making gradual conceptual transitions based on evaluations of 

posterior probabilities of models. 

 

Our progress in applied modeling has fit the hypothetico-deductive pattern pretty well:  we build 

a model out of available parts and drive it as far as it can take us, and then a little farther.  When 

the model breaks down, we take it apart, figure out what went wrong, and tinker with it, or else 

try a radically new design.  In either case, we are using deductive reasoning as a tool to get the 

most out of a model, and we test the model--it is falsifiable, and when it is falsified, we alter or 

abandon it.  To give this story a little Kuhnian flavor, we are doing “normal science” when we 

apply the deductive reasoning and learn from a model, or when we tinker with it to get it to fit 

the data, and occasionally enough problems build up that a “new paradigm” is helpful. 

 

OK, all fine.  But the twist is that we are using Bayesian methods, not classical hypothesis 

testing.  We do not think of a Bayesian prior distribution as a personal belief; rather, it is part of a 

hypothesized model, which we posit as potentially useful and abandon to the extent that it is 

falsified. 

 

Subjective Bayesian theory has no place for falsification of a prior distribution, except to the 

extent that it can be placed within a larger model in competition with other candidate prior 

distributions.  But if we think of the model just as a set of assumptions, they can be falsified if 

their predictions--our deductive inferences--do not fit the data. 

 

Here’s an example of what we consider to be a flaw of the standard view of Bayesian learning 

about models.  In the 1800s, physicists believed that Newton’s laws were true, an attitude 

potentially expressible as Pr (Newton | information available as of 1890) = 0.99.  But after 

Einstein’s theory came out and was tested by experiment, the evidence moved to Pr (Einstein | 

information available as of 1920) = 0.999 and Pr (Newton | information available as of 1920) = 

0.001, or something of the sort. 

 

We see two big problems with this standard approach.  First, a lot of data and analysis showed 

critical problems with Newton’s laws--even if the relativistic alternative had not been proposed.  

Quantum states, the blackbody paradox, the stability of the atom, and all the rest.  We would like 

our philosophical model to be able to “reject” Newton’s model--to reveal serious problems with 



it—without the need for an alternative that beats it under a likelihood ratio criterion or any 

other.
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The second problem with this framing is that physicists do not think Einstein’s theory, as stated, 

is true either.  Relativity has problems too, and researchers have been working for decades to 

come up with possible alternatives.  In this search for new models, the various falsifications of 

classical relativity theory have been crucial.  What is important is not Einstein’s theory has been 

“rejected” but rather the particular ways that it does not correspond to reality.
6
 

 

Why does this matter? 
 

Philosophy matters, even to practitioners, because philosophy is used as a guide to practice.  We 

believe that the idea of Bayesian inference as inductive, culminating in the computation of the 

posterior probability of scientific hypotheses, has had malign effects on statistical practice.  At 

best, the inductivist view has encouraged researchers to fit and compare models without 

checking them; at worst, theorists have actively discouraged practitioners from performing 

model checking because it does not fit into their conventional framework. 

 

In contrast, a philosophy of deductive reasoning, accompanied by falsifiability, gives us a lot of 

flexibility in modeling.  We do not have to worry about making our prior distributions match our 

subjective knowledge, or about our model containing all possible truths.  Instead we make some 

assumptions, state them clearly, and see what they imply.  Then we try to falsify the model--that 

is, we perform posterior predictive checks, creating simulations of the data and comparing them 
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to the actual data.  The comparison can often be done visually; see chapter 6 of Bayesian Data 

Analysis (Gelman et al., 2003) for lots of examples. 

 

We associate this “objective Bayes” approach--making strong assumptions and then testing 

model fit--with the work of the philosophically-minded physicist E. T. Jaynes.  As he has 

illustrated (Jaynes, 1983, 1996), the biggest learning experience can occur when we find that our 

model does not fit the data--that is, when it is falsified--because then we have found a problem 

with our underlying assumptions. 

 

Conversely, a problem with the inductive philosophy of Bayesian statistics--in which science 

“learns” by updating the probabilities that various competing models are true--is that it assumes 

that the true model is one of the possibilities being considered.  This can does not fit our own 

experiences of learning by finding that a model doesn't fit and needing to expand beyond the 

existing class of models to fix the problem.
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We fear that a philosophy of Bayesian statistics as subjective, inductive inference can encourage 

a complacency about picking or averaging over existing models rather than trying to falsify and 

go further.  Likelihood and Bayesian inference are powerful, and with great power comes great 

responsibility.  Complex models can and should be checked and falsified. 

 

Example:  Estimating voting patterns in subsets of the population 
 

In recent years, political scientists have been increasingly interested in the connections between 

politics and income inequality (see, for example, McCarty, Poole, and Rosenthal, 2006).  In our 

own contribution to this literature, we estimated the attitudes of rich, middle-income, and poor 

voters in each of the fifty states (Gelman, Park, et al., 2008).  As we described in our article on 

the topic (Gelman, Shor, et al., 2008), we began by fitting a varying-intercept logistic regression:  

modeling votes (coded as y=1 for votes for the Republican presidential candidate or y=0 for 

Democratic votes) given family income (coded in five categories from low to high as -2, -1, 0, 1, 

2), using a model of the form, logit Pr(y=1) = as + bx, where s indexes state of residence--the 

model is fit to survey responses--and the varying intercepts as correspond to some states being 

more Republican-leaning than others.  Thus, for example as has a positive value in a conservative 

state such as Utah and a negative value in a liberal state such as California.  The coefficient b 

represents the “slope” of income, and its positive value indicates that, within any state, richer 

voters are more likely to vote Republican. 

 

Anyway, it turned out that this varying-intercept model did not fit our data, as we learned by 

making graphs of the average survey response and fitted curves for the different income 

categories within each state.  We had to expand to a varying-intercept, varying-slope model:  

logit Pr(y=1) = as + bsx, in which the slopes bs varied by state as well.  This model expansion led 

to a corresponding expansion in our understanding:  we learned that the gap in voting between 
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rich and poor is much greater in poor states such as Mississippi than in rich states such as 

Connecticut.  Thus, the polarization between rich and poor voters varied in important ways 

geographically. 

 

We found this not through any process of Bayesian induction as usually defined (via the 

computation of the posterior probabilities of competing hypotheses, paradigms, or scientific 

models) but rather through model checking.  Bayesian inference was crucial, not for computing 

the posterior probability that any particular model was true--we did not do that--but in allowing 

us to fit rich enough models in the first place that we could study state-to-state variation, 

incorporating in our analysis relatively small states such as Mississippi and Connecticut that did 

not have large samples in our survey. 

 

Life continues, though, and so do our statistical struggles.  After the 2008 election, we wanted to 

make similar plots, but this time we found that even our more complicated logistic regression 

model did not fit the data--especially when we wanted to expand our model to estimate voting 

patterns for different ethnic groups.  Comparison of data to fit led to further model expansions, 

leading to our current specification, which uses a varying-intercept, varying-slope logistic 

regression as a baseline but allows for nonlinear and even non-monotonic patterns on top of that.  

Figure 1 shows some of our inferences in map form, and Figure 2 shows some of the data and 

model fit. 

 

Again, the power of Bayesian inference is deductive:  given the data and some model 

assumptions, it allows us to make lots of inferences, many of which can be checked and 

potentially falsified.  For example, look at New York State (in the bottom row of Figure 2):  

apparently, voters in the second income category supported John McCain much more than did 

voters in neighboring income groups in that state.  This pattern is possible but it arouses 

suspicion.  A careful look at the graph reveals that this is a pattern in the raw data which was 

moderated but not entirely smoothed away by our model.  The natural next step could be to 

examine data from other surveys.  We may have exhausted what we can learn from this 

particular dataset, and Bayesian inference was a key tool in allowing us to do so. 

 

Inductive inference and the Kuhnian paradigm 
 

We see Bayesian data analysis--or, really, applied statistical analysis in general--as fitting well 

into the falsificationist approach--as long as we recognize that data analysis includes model 

checking (as in Chapter 6 of Gelman et al., 2003) as well as inference (which, as far as we can 

see, is purely deductive--proceeding from assumptions to conclusions).  Yes, we “learn,” in a 

short-term sense, from Bayesian inference--updating the prior to get the posterior--but this is 

more along the lines of what a Kuhnian might call “normal science.”  The real learning comes in 

the model-checking stage, when we can reject a model and move forward. The inference is a 

necessary stage in this process, however, as it creates the strong conclusions that are falsifiable. 

 

We don't see Bayesian statistics as subjective (any more than any science is subjective in the 

choice of problems to study and data to focus on).  We see a Bayesian model as a clear set of 

assumptions, whose implications are then deductively evaluated.  The assumptions can be 



subjective but they need not be--except to the extent that all statistical procedures are 

“subjective” in requiring some choice of what to do. 

 

In our view, a key part of model-based data analysis is model checking.  This is where we see the 

link to falsification.  To take the most famous example, Newton's laws of motion really have 

been falsified.  And we really can use methods such as chi-squared tests to falsify little models in 

statistics.  Now, once we've falsified, we have to decide what to do next, and that isn't obvious. A 

falsified model can still be useful in many domains (once again, Newton's laws are the famous 

example).  But we like to know that it's falsified. 

 

In our own philosophy of statistics (derived, in part, from our own readings, interpretations, and 

extrapolations of Jaynes, Popper, and Lakatos), the point of falsifying a model is not to learn that 

the model is false--certainly, all models that we've ever considered are false, which is why the 

chi-squared test is sometimes described as a “measure of sample size”--but rather to learn the 

ways in which a model is false.  Just as with exploratory data analysis, the goal is to learn about 

aspects of reality not captured by the model (see Gelman, 2003, for more on this). 

 

So, yes, the goal of “falsification” (as we see it), is not to demonstrate falsity but rather to learn 

particular aspects of falsity.  We are interested in learning about flaws in a model without 

needing a new model to compare it to. 

 

A standard view of Bayesian model comparison is that you just throw a new model into your 

class of explanations, and see what comes out having the best posterior odds.  This doesn't really 

work for us, at least not in the problems we've worked on. 

 

Example:  Estimating the effects of legislative redistricting 
 

Our stories of model rejection and new models are more on the lines of:  We fitted a model 

comparing treated and control units (in the particular example that comes to mind, these are state 

legislatures, immediately after redistrictings or not), and assumed a constant treatment effect (in 

this case, parallel regression lines in “after” vs. “before” plots, with the treatment effect 

representing the difference between the lines).  We made some graphs and realized that this 

model made no sense.  The control units had a much steeper slope than the treated units.  We fit 

a new model, and it had a completely different story about what the treatment effects meant. The 

graph falsified the first model and motivated us to think of something better.  The graph for the 

new model with interactions is shown in Figure 3.  For us, falsification is about plots and 

predictive checks.  Not about Bayes factors or posterior probabilities of candidate models. 

 

Connections to Popper’s falsificationism 

 

To get back to the philosophers:  We suspect that our Popperianism follows the ideas of an 

idealized Popper (following Lakatos, 1978, who introduced the concepts of Popper0, Popper1, 

and Popper2 to capture different extrapolations of his mentor’s ideas). 

 

Apparently the actual Popper didn't want to recognize probabilistic falsification.  When one of us 

read (or attempted to read) The Logic of Scientific Discovery 20 years or so ago, we skipped over 



the probability parts because they seemed full of utopian and probably unrealizable ideas such as 

philosophical definitions of randomness.  But the idea of falsification--and the dismissal of 

“inductive inference”--well, that part resonated.  We’re on Popper's side in not believing in 

“induction” as a mode of inference.  We don't mind “induction” in the sense of prediction and 

minimum-description-length (with more data in a time series, we should be able to better form an 

accurate prediction rule using fewer bits to describe the rule), but "induction" doesn't fit our 

understanding of scientific (or social-scientific) inference. 

 

The main point where we disagree with many Bayesians is that we do not think that Bayesian 

methods are generally useful for giving the posterior probability that a model is true, or the 

probability for preferring model A over model B, or whatever.  Bayesian inference is good for 

deductive inference within a model, but for evaluating a model, we prefer to compare it to data 

(what Cox and Hinkley, 1974, call “pure significance testing”) without requiring that a new 

model be there to beat it. 

 

The fractal nature of scientific revolutions 
 

With all this discussion of Kuhn and scientific revolutions, we have been thinking of the 

applicability of these ideas to our own research experiences. 

 

At the risk of being trendy, we would characterize scientific progress as self-similar (that is, 

fractal).  Each level of abstraction, from local problem solving to big-picture science, features 

progress of the “normal science” type, punctuated by occasional revolutions. The revolutions 

themselves have a fractal time scale, with small revolutions occurring fairly frequently (every 

few minutes for an exam-type problem, up to every few years or decades for a major scientific 

consensus).  This is related to but somewhat different from the fractality-in-subject-matter 

discussed by Abbott (2001). 

 

At the largest level, human inquiry has perhaps moved from a magical to a scientific paradigm. 

Within science, the dominant paradigm has moved from Newtonian billiard balls, to Einsteinan 

physics, to biology and neuroscience and perhaps to developments such as nanotechnology.  

Within, say, psychology, the paradigm has moved from behaviorism to cognitive psychology.  

But even on smaller scales, we see paradigm shifts.  For example, in working on an applied 

research or consulting problem, we typically will start in a certain direction, then suddenly 

realize we were thinking about it wrong, then move forward, and so forth.  In a consulting 

setting, this reevaluation can happen several times in a couple of hours.  At a slightly longer time 

scale, we commonly reassess our approach to an applied problem after a few months, realizing 

there was some key feature we were misunderstanding. 

 

Thus, we see this normal-science and revolution pattern as fundamental.  Which, we think, ties 

nicely into our perspective of deductive inference (Bayesian or otherwise) as normal science and 

model checking as potentially revolutionary. 

 

In conclusion, we emphasize that this chapter is our attempt to connect modern Bayesian 

statistical practice with falsificationist philosophy of science, and does not represent anything 

like a comprehensive overview of the philosophy-of-science literature.  Because we feel the 



status quo perception of Bayesian philosophy is wrong, we thought it more helpful to present our 

own perspective forcefully, with the understanding that this is only part of the larger 

philosophical picture. 
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Figure 1.  Based on a model fit to survey data:  states won by John McCain and Barack Obama 

among different categories of income and ethnicity (Gelman, Lee, and Ghitza, 2010).  States 

colored deep red and deep blue indicate clear McCain and Obama wins; pink and light blue 

represent wins by narrower margins, with a continuous range of shades going to pure white for 

states estimated at exactly 50/50. 



 
 

Figure 2.  Data and fitted model used to make the maps shown in Figure 1.  Dots are weighted 

averages from pooled June-Nov Pew surveys; error bars show +/- 1 standard error bounds.  

Curves are estimated using multilevel models and have a standard error of about 3% at each 

point.  States are ordered in decreasing order of McCain vote (Alaska, Hawaii, and D.C. 

excluded).  We fit a series of models to these data; only this last model fit the data well enough 

that we were satisfied.  In working with larger datasets and studying more complex questions, we 

encounter increasing opportunities to check model fit and thus falsify in a way that is helpful for 

our research goals. 



                    
 

 

Figure 3.  Effect of redistricting on partisan bias.  Each symbol represents a state election year, 

with dots indicating controls (years with no redistricting) and the other symbols corresponding to 

different types of redistricting.  As indicated by the fitted lines, the “before” value is much more 

predictive of the “after” value for the control cases than for the treated (redistricting) cases. The 

dominant effect of the treatment is to bring the expected value of partisan bias toward 0, and this 

effect would not be discovered with the usual approach, which is to fit a model assuming parallel 

regression lines for treated and control cases. 

     The relevance of this example to the philosophy of statistics is that we began by fitting the 

usual regression model with no interactions.  Only after visually checking the model fit--and thus 

falsifying it in a useful way without the specification of any alternative--did we take the crucial 

next step of including an interaction, which changed the whole direction of our research.  The 

paradigm shift was induced by a falsification--a bit of deductive inference from the data and the 

earlier version of our model. 

 


