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Philosophy and the practice of Bayesian statistics
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A substantial school in the philosophy of science identifies Bayesian inference with
inductive inference and even rationality as such, and seems to be strengthened by the
rise and practical success of Bayesian statistics. We argue that the most successful
forms of Bayesian statistics do not actually support that particular philosophy but rather
accord much better with sophisticated forms of hypothetico-deductivism. We examine
the actual role played by prior distributions in Bayesian models, and the crucial aspects of
model checking and model revision, which fall outside the scope of Bayesian confirmation
theory. We draw on the literature on the consistency of Bayesian updating and also on
our experience of applied work in social science. Clarity about these matters should
benefit not just philosophy of science, but also statistical practice. At best, the inductivist
view has encouraged researchers to fit and compare models without checking them; at
worst, theorists have actively discouraged practitioners from performing model checking
because it does not fit into their framework.

1. The usual story – which we don’t like

In so far as I have a coherent philosophy of statistics, I hope it is ‘robust’ enough to cope
in principle with the whole of statistics, and sufficiently undogmatic not to imply that all
those who may think rather differently from me are necessarily stupid. If at times I do seem
dogmatic, it is because it is convenient to give my own views as unequivocally as possible.
(Bartlett, 1967, p. 458)

Schools of statistical inference are sometimes linked to approaches to the philosophy
of science. ‘Classical’ statistics – as exemplified by Fisher’s p-values, Neyman–Pearson
hypothesis tests, and Neyman’s confidence intervals – is associated with the hypothetico-
deductive and falsificationist view of science. Scientists devise hypotheses, deduce im-
plications for observations from them, and test those implications. Scientific hypotheses
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Figure 1. Hypothetical picture of idealized Bayesian inference under the conventional inductive
philosophy. The posterior probability of different models changes over time with the expansion
of the likelihood as more data are entered into the analysis. Depending on the context of the
problem, the time scale on the x-axis might be hours, years, or decades, in any case long enough for
information to be gathered and analysed that first knocks out hypothesis 1 in favour of hypothesis
2, which in turn is dethroned in favour of the current champion, model 3.

can be rejected (i.e., falsified), but never really established or accepted in the same way.
Mayo (1996) presents the leading contemporary statement of this view.

In contrast, Bayesian statistics or ‘inverse probability’ – starting with a prior
distribution, getting data, and moving to the posterior distribution – is associated with an
inductive approach of learning about the general from particulars. Rather than employing
tests and attempted falsification, learning proceeds more smoothly: an accretion of
evidence is summarized by a posterior distribution, and scientific process is associated
with the rise and fall in the posterior probabilities of various models; see Figure 1 for a
schematic illustration. In this view, the expression p(!|y) says it all, and the central goal
of Bayesian inference is computing the posterior probabilities of hypotheses. Anything
not contained in the posterior distribution p(!|y) is simply irrelevant, and it would be
irrational (or incoherent) to attempt falsification, unless that somehow shows up in
the posterior. The goal is to learn about general laws, as expressed in the probability
that one model or another is correct. This view, strongly influenced by Savage (1954),
is widespread and influential in the philosophy of science (especially in the form of
Bayesian confirmation theory – see Howson & Urbach, 1989; Earman, 1992) and among
Bayesian statisticians (Bernardo & Smith, 1994). Many people see support for this view in
the rising use of Bayesian methods in applied statistical work over the last few decades.1

1 Consider the current (9 June 2010) state of the Wikipedia article on Bayesian inference, which begins as
follows:

Bayesian inference is statistical inference in which evidence or observations are used to update or to newly
infer the probability that a hypothesis may be true.

It then continues:

Bayesian inference uses aspects of the scientific method, which involves collecting evidence that is meant
to be consistent or inconsistent with a given hypothesis. As evidence accumulates, the degree of belief in
a hypothesis ought to change. With enough evidence, it should become very high or very low. ...Bayesian
inference uses a numerical estimate of the degree of belief in a hypothesis before evidence has been
observed and calculates a numerical estimate of the degree of belief in the hypothesis after evidence
has been observed. ...Bayesian inference usually relies on degrees of belief, or subjective probabilities,
in the induction process and does not necessarily claim to provide an objective method of induction.
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We think most of this received view of Bayesian inference is wrong.2 Bayesian
methods are no more inductive than any other mode of statistical inference. Bayesian data
analysis is much better understood from a hypothetico-deductive perspective.3 Implicit
in the best Bayesian practice is a stance that has much in common with the error-
statistical approach of Mayo (1996), despite the latter’s frequentist orientation. Indeed,
crucial parts of Bayesian data analysis, such as model checking, can be understood as
‘error probes’ in Mayo’s sense.

We proceed by a combination of examining concrete cases of Bayesian data analysis
in empirical social science research, and theoretical results on the consistency and
convergence of Bayesian updating. Social-scientific data analysis is especially salient for
our purposes because there is general agreement that, in this domain, all models in use
are wrong – not merely falsifiable, but actually false. With enough data – and often only
a fairly moderate amount – any analyst could reject any model now in use to any desired
level of confidence. Model fitting is nonetheless a valuable activity, and indeed the crux
of data analysis. To understand why this is so, we need to examine how models are built,
fitted, used and checked, and the effects of misspecification on models.

Our perspective is not new; in methods and also in philosophy we follow statisticians
such as Box (1980, 1983, 1990), Good and Crook (1974), Good (1983), Morris (1986),
Hill (1990) and Jaynes (2003). All these writers emphasized the value of model checking
and frequency evaluation as guidelines for Bayesian inference (or, to look at it another
way, the value of Bayesian inference as an approach for obtaining statistical methods
with good frequency properties; see Rubin, 1984). Despite this literature, and despite
the strong thread of model checking in applied statistics, this philosophy of Box and
others remains a minority view that is much less popular than the idea of Bayes being
used to update the probabilities of different candidate models being true (as can be seen,
for example, by the Wikipedia snippets given in footnote 1).

A puzzle then arises. The evidently successful methods of modelling and model
checking (associated with Box, Rubin and others) seem out of step with the accepted
view of Bayesian inference as inductive reasoning (what we call here ‘the usual story’).
How can we understand this disjunction? One possibility (perhaps held by the authors
of the Wikipedia article) is that the inductive Bayes philosophy is correct and that the
model-building approach of Box and others can, with care, be interpreted in that way.
Another possibility is that the approach characterized by Bayesian model checking and
continuous model expansion could be improved by moving to a fully Bayesian approach
centring on the posterior probabilities of competing models. A third possibility, which
we advocate, is that Box, Rubin and others are correct and that the usual philosophical
story of Bayes as inductive inference is faulty.

Nonetheless, some Bayesian statisticians believe probabilities can have an objective value and therefore
Bayesian inference can provide an objective method of induction.

These views differ from those of, for example, Bernardo and Smith (1994) or Howson and Urbach (1989)
only in the omission of technical details.

2 We are claiming that most of the standard philosophy of Bayes is wrong, not that most of Bayesian inference
itself is wrong. A statistical method can be useful even if its common philosophical justification is in error. It
is precisely because we believe in the importance and utility of Bayesian inference that we are interested in
clarifying its foundations.
3 We are not interested in the hypothetico-deductive ‘confirmation theory’ prominent in philosophy of science
from the 1950s to the 1970s, and linked to the name of Hempel (1965). The hypothetico-deductive account
of scientific method to which we appeal is distinct from, and much older than, this particular sub-branch of
confirmation theory.
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We are interested in philosophy and think it is important for statistical practice – if
nothing else, we believe that strictures derived from philosophy can inhibit research
progress.4 That said, we are statisticians, not philosophers, and we recognize that our
coverage of the philosophical literature will be incomplete. In this presentation, we focus
on the classical ideas of Popper and Kuhn, partly because of their influence in the general
scientific culture and partly because they represent certain attitudes which we believe
are important in understanding the dynamic process of statistical modelling. We also
emphasize the work of Mayo (1996) and Mayo and Spanos (2006) because of its relevance
to our discussion of model checking. We hope and anticipate that others can expand
the links to other modern strands of philosophy of science such as Giere (1988), Haack
(1993), Kitcher (1993) and Laudan (1996) which are relevant to the freewheeling world
of practical statistics; our goal here is to demonstrate a possible Bayesian philosophy that
goes beyond the usual inductivism and can better match Bayesian practice as we know it.

2. The data-analysis cycle
We begin with a very brief reminder of how statistical models are built and used in
data analysis, following Gelman, Carlin, Stern, and Rubin (2004), or, from a frequentist
perspective, Guttorp (1995).

The statistician begins with a model that stochastically generates all the data y,
whose joint distribution is specified as a function of a vector of parameters ! from
a space ! (which may, in the case of some so-called non-parametric models, be
infinite-dimensional). This joint distribution is the likelihood function. The stochastic
model may involve other (unmeasured but potentially observable) variables ỹ – that is,
missing or latent data – and more or less fixed aspects of the data-generating process as
covariates. For both Bayesians and frequentists, the joint distribution of (y, ỹ) depends
on !. Bayesians insist on a full joint distribution, embracing observables, latent variables
and parameters, so that the likelihood function becomes a conditional probability
density, p(y|!). In designing the stochastic process for (y, ỹ), the goal is to represent
the systematic relationships between the variables and between the variables and the
parameters, and as well as to represent the noisy (contingent, accidental, irreproducible)
aspects of the data stochastically. Against the desire for accurate representation one must
balance conceptual, mathematical and computational tractability. Some parameters thus
have fairly concrete real-world referents, such as the famous (in statistics) survey of the rat
population of Baltimore (Brown, Sallow, Davis, & Cochran, 1955). Others, however, will
reflect the specification as a mathematical object more than the reality being modelled
– t-distributions are sometimes used to model heavy-tailed observational noise, with the
number of degrees of freedom for the t representing the shape of the distribution; few
statisticians would take this as realistically as the number of rats.

Bayesian modelling, as mentioned, requires a joint distribution for (y, ỹ, !), which is
conveniently factored (without loss of generality) into a prior distribution for the param-
eters, p(!), and the complete-data likelihood, p(y, ỹ|!), so that p(y|!) =

∫
p(y, ỹ|!)dỹ.

The prior distribution is, as we will see, really part of the model. In practice, the various
parts of the model have functional forms picked by a mix of substantive knowledge,

4 For example, we have more than once encountered Bayesian statisticians who had no interest in assessing
the fit of their models to data because they felt that Bayesian models were by definition subjective, and thus
neither could nor should be tested.
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scientific conjectures, statistical properties, analytical convenience, disciplinary tradition
and computational tractability.

Having completed the specification, the Bayesian analyst calculates the posterior
distribution p(!|y); it is so that this quantity makes sense that the observed y and the
parameters ! must have a joint distribution. The rise of Bayesian methods in applications
has rested on finding new ways to actually carry through this calculation, even if only
approximately, notably by adopting Markov chain Monte Carlo methods, originally
developed in statistical physics to evaluate high-dimensional integrals (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Newman & Barkema, 1999), to sample
from the posterior distribution. The natural counterpart of this stage for non-Bayesian
analyses are various forms of point and interval estimation to identify the set of values of
! that are consistent with the data y.

According to the view sketched in Section 1 above, data analysis basically ends with
the calculation of the posterior p(!|y). At most, this might be elaborated by partitioning
! into a set of models or hypotheses, !1, . . . , !K , each with a prior probability p(!k)
and its own set of parameters !k. One would then compute the posterior parameter
distribution within each model, p(!k|y, !k), and the posterior probabilities of the models,

p(!k|y) = p(!k)p(y|!k)∑
k′ (p(!k′)p(y|!k′))

=
p(!k)

∫
p(y, !k|!k)d!k∑

k′ (p(!k′)
∫

p(y, !k|!k′)d!k′)
.

These posterior probabilities of hypotheses can be used for Bayesian model selection or
Bayesian model averaging (topics to which we return below). Scientific progress, in this
view, consists of gathering data – perhaps through well-designed experiments, designed
to distinguish among interesting competing scientific hypotheses (cf. Atkinson & Donev,
1992; Paninski, 2005) – and then plotting the p(!k|y) over time and watching the system
learn (as sketched in Figure 1).

In our view, the account of the last paragraph is crucially mistaken. The data-analysis
process – Bayesian or otherwise – does not end with calculating parameter estimates
or posterior distributions. Rather, the model can then be checked, by comparing the
implications of the fitted model to the empirical evidence. One asks questions such as
whether simulations from the fitted model resemble the original data, whether the fitted
model is consistent with other data not used in the fitting of the model, and whether
variables that the model says are noise (‘error terms’) in fact display readily-detectable
patterns. Discrepancies between the model and data can be used to learn about the
ways in which the model is inadequate for the scientific purposes at hand, and thus to
motivate expansions and changes to the model (Section 4.).

Example: Estimating voting patterns in subsets of the population
We demonstrate the hypothetico-deductive Bayesian modelling process with an example
from our recent applied research (Gelman, Lee, & Ghitza, 2010). In recent years,
American political scientists have been increasingly interested in the connections
between politics and income inequality (see, for example, McCarty, Poole, & Rosenthal
2006). In our own contribution to this literature, we estimated the attitudes of rich,
middle-income and poor voters in each of the 50 states (Gelman, Park, Shor, Bafumi,
& Cortina, 2008). As we described in our paper on the topic (Gelman, Shor, Park, &
Bafumi, 2008), we began by fitting a varying-intercept logistic regression: modelling
votes (coded as y = 1 for votes for the Republican presidential candidate and y = 0
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for Democratic votes) given family income (coded in five categories from low to high
as x = −2, −1, 0, 1, 2), using a model of the form Pr(y = 1) = logit−1(as + bx), where
s indexes state of residence – the model is fitted to survey responses – and the varying
intercepts as correspond to some states being more Republican-leaning than others.
Thus, for example, as has a positive value in a conservative state such as Utah and
a negative value in a liberal state such as California. The coefficient b represents the
‘slope’ of income, and its positive value indicates that, within any state, richer voters are
more likely to vote Republican.

It turned out that this varying-intercept model did not fit our data, as we learned
by making graphs of the average survey response and fitted curves for the different
income categories within each state. We had to expand to a varying-intercept, varying-
slope model, Pr (y = 1) = logit−1(as + bsx), in which the slopes bs varied by state as
well. This model expansion led to a corresponding expansion in our understanding: we
learned that the gap in voting between rich and poor is much greater in poor states such
as Mississippi than in rich states such as Connecticut. Thus, the polarization between
rich and poor voters varied in important ways geographically.

We found this not through any process of Bayesian induction but rather through
model checking. Bayesian inference was crucial, not for computing the posterior
probability that any particular model was true – we never actually did that – but in
allowing us to fit rich enough models in the first place that we could study state-to-state
variation, incorporating in our analysis relatively small states such as Mississippi and
Connecticut that did not have large samples in our survey.5

Life continues, though, and so do our statistical struggles. After the 2008 election, we
wanted to make similar plots, but this time we found that even our more complicated
logistic regression model did not fit the data – especially when we wanted to expand
our model to estimate voting patterns for different ethnic groups. Comparison of data
to fit led to further model expansions, leading to our current specification, which uses a
varying-intercept, varying-slope logistic regression as a baseline but allows for non-linear
and even non-monotonic patterns on top of that. Figure 2 shows some of our inferences
in map form, while Figure 3 shows one of our diagnostics of data and model fit.

The power of Bayesian inference here is deductive: given the data and some model
assumptions, it allows us to make lots of inferences, many of which can be checked and
potentially falsified. For example, look at New York state (in the bottom row of Figure 3):
apparently, voters in the second income category supported John McCain much more
than did voters in neighbouring income groups in that state. This pattern is theoretically
possible but it arouses suspicion. A careful look at the graph reveals that this is a pattern
in the raw data which was moderated but not entirely smoothed away by our model. The
natural next step would be to examine data from other surveys. We may have exhausted
what we can learn from this particular data set, and Bayesian inference was a key tool in
allowing us to do so.

3. The Bayesian principal–agent problem
Before returning to discussions of induction and falsification, we briefly discuss some
findings relating to Bayesian inference under misspecified models. The key idea is that

5 Gelman and Hill (2006) review the hierarchical models that allow such partial pooling.
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Figure 2. [Colour online]. States won by John McCain and Barack Obama among different ethnic
and income categories, based on a model fitted to survey data. States coloured deep red and
deep blue indicate clear McCain and Obama wins; pink and light blue represent wins by narrower
margins, with a continuous range of shades going to grey for states estimated at exactly 50–50. The
estimates shown here represent the culmination of months of effort, in which we fitted increasingly
complex models, at each stage checking the fit by comparing to data and then modifying aspects
of the prior distribution and likelihood as appropriate. This figure is reproduced from Ghitza and
Gelman (2012) with the permission of the authors.

Bayesian inference for model selection – statements about the posterior probabilities of
candidate models – does not solve the problem of learning from data about problems
with existing models.

In economics, the ‘principal–agent problem’ refers to the difficulty of designing
contracts or institutions which ensure that one selfish actor, the ‘agent’, will act in
the interests of another, the ‘principal’, who cannot monitor and sanction their agent
without cost or error. The problem is one of aligning incentives, so that the agent
serves itself by serving the principal (Eggertsson, 1990). There is, as it were, a Bayesian
principal–agent problem as well. The Bayesian agent is the methodological fiction (now
often approximated in software) of a creature with a prior distribution over a well-
defined hypothesis space !, a likelihood function p(y|!), and conditioning as its sole
mechanism of learning and belief revision. The principal is the actual statistician or
scientist.

The ideas of the Bayesian agent are much more precise than those of the actual
scientist; in particular, the Bayesian (in this formulation, with which we disagree) is
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2008 election: McCain share of the two-party vote in each income catetory
within each state among all voters (black) and non-Hispanic whites (green)
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Figure 3. [Colour online]. Some of the data and fitted model used to make the maps shown in
Figure 2. Dots are weighted averages from pooled June–November Pew surveys; error bars show
± 1 standard error bounds. Curves are estimated using multilevel models and have a standard error
of about 3% at each point. States are ordered in decreasing order of McCain vote (Alaska, Hawaii
and the District of Columbia excluded). We fitted a series of models to these data; only this last
model fitted the data well enough that we were satisfied. In working with larger data sets and
studying more complex questions, we encounter increasing opportunities to check model fit and
thus falsify in a way that is helpful for our research goals. This figure is reproduced from Ghitza
and Gelman (2012) with the permission of the authors.

certain that some ! is the exact and complete truth, whereas the scientist is not.6 At
some point in history, a statistician may well write down a model which he or she

6 In claiming that ‘the Bayesian’ is certain that some ! is the exact and complete truth, we are not claiming
that actual Bayesian scientists or statisticians hold this view. Rather, we are saying that this is implied by the
philosophy we are attacking here. All statisticians, Bayesian and otherwise, recognize that the philosophical
position which ignores this approximation is problematic.
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believes contains all the systematic influences among properly defined variables for the
system of interest, with correct functional forms and distributions of noise terms. This
could happen, but we have never seen it, and in social science we have never seen
anything that comes close. If nothing else, our own experience suggests that however
many different specifications we thought of, there are always others which did not occur
to us, but cannot be immediately dismissed a priori, if only because they can be seen
as alternative approximations to the ones we made. Yet the Bayesian agent is required
to start with a prior distribution whose support covers all alternatives that could be
considered.7

This is not a small technical problem to be handled by adding a special value of !, say
!∞ standing for ‘none of the above’; even if one could calculate p(y|!∞), the likelihood
of the data under this catch-all hypothesis, this in general would not lead to just a
small correction to the posterior, but rather would have substantial effects (Fitelson &
Thomason, 2008). Fundamentally, the Bayesian agent is limited by the fact that its beliefs
always remain within the support of its prior. For the Bayesian agent the truth must, so
to speak, be always already partially believed before it can become known. This point
is less than clear in the usual treatments of Bayesian convergence, and so worth some
attention.

Classical results (Doob, 1949; Schervish, 1995; Lijoi, Prünster, & Walker, 2007) show
that the Bayesian agent’s posterior distribution will concentrate on the truth with prior
probability 1, provided some regularity conditions are met. Without diving into the
measure-theoretic technicalities, the conditions amount to: (i) the truth is in the support
of the prior; and (ii) the information set is rich enough that some consistent estimator
exists (see the discussion in Schervish, 1995, Section 7.4.1). When the truth is not in
the support of the prior, the Bayesian agent still thinks that Doob’s theorem applies and
assigns zero prior probability to the set of data under which it does not converge on the
truth.

The convergence behaviour of Bayesian updating with a misspecified model can be
understood as follows (Berk, 1966, 1970; Kleijn & van der Vaart, 2006; Shalizi, 2009). If
the data are actually coming from a distribution q, then the Kullback–Leibler divergence
rate, or relative entropy rate, of the parameter value ! is

d(!) = lim
n→∞

1
n

E
[

log
p(y1, y2, . . . , yn|!)
q(y1, y2, . . . , yn)

]
,

with the expectation being taken under q. (For details on when the limit exists, see
Gray, 1990.) Then, under not-too-onerous regularity conditions, one can show (Shalizi,
2009) that

p(!|y1, y2, . . . , yn) ≈ p(!) exp
{
−n(d(!) − d∗)

}
,

with d∗ being the essential infimum of the divergence rate. More exactly,

−1
n

log p(!|y1, y2, . . . , yn) → d(!) − d∗,

7 It is also not at all clear that Savage and other founders of Bayesian decision theory ever thought that this
principle should apply outside of the small worlds of artificially simplified and stylized problems – see Binmore
(2007). But as scientists we care about the real, large world.

16 Andrew Gelman and Cosma Shalizi



q-almost surely. Thus the posterior distribution comes to concentrate on the parts of
the prior support which have the lowest values of d(!) and the highest expected
likelihood.8 There is a geometric sense in which these parts of the parameter space
are closest approaches to the truth within the support of the prior (Kass & Vos, 1997),
but they may or may not be close to the truth in the sense of giving accurate values for
parameters of scientific interest. They may not even be the parameter values which give
the best predictions (Grünwald & Langford, 2007; Müller, 2011). In fact, one cannot
even guarantee that the posterior will concentrate on a single value of ! at all; if d(!)
has multiple global minima, the posterior can alternate between (concentrating around)
them forever (Berk, 1966).

To sum up, what Bayesian updating does when the model is false (i.e., in reality,
always) is to try to concentrate the posterior on the best attainable approximations to
the distribution of the data, ‘best’ being measured by likelihood. But depending on how
the model is misspecified, and how ! represents the parameters of scientific interest,
the impact of misspecification on inferring the latter can range from non-existent to
profound.9 Since we are quite sure our models are wrong, we need to check whether
the misspecification is so bad that inferences regarding the scientific parameters are
in trouble. It is by this non-Bayesian checking of Bayesian models that we solve our
principal–agent problem.

4. Model checking
In our view, a key part of Bayesian data analysis is model checking, which is where there
are links to falsificationism. In particular, we emphasize the role of posterior predictive
checks, creating simulations and comparing the simulated and actual data. Again, we
are following the lead of Box (1980), Rubin (1984) and others, also mixing in a bit of
Tukey (1977) in that we generally focus on visual comparisons (Gelman et al., 2004,
Chapter 6).

Here is how this works. A Bayesian model gives us a joint distribution for the
parameters ! and the observables y. This implies a marginal distribution for the data,

p ( y) =
∫

p ( y|!)p(!)d!.

If we have observed data y, the prior distribution p(!) shifts to the posterior distribution
p(!|y), and so a different distribution of observables,

p ( yrep|y) =
∫

p ( yrep|!)p(!|y)d!,

where we use yrep to denote hypothetical alternative or future data, a replicated data
set of the same size and shape as the original y, generated under the assumption that

8 More precisely, regions of ! where d(!) > d∗ tend to have exponentially small posterior probability; this
statement covers situations such as d(!) only approaching its essential infimum as ∥!∥ → ∞. See Shalizi (2009)
for details.
9 White (1994) gives examples of econometric models where the influence of misspecification on the
parameters of interest runs through this whole range, though only considering maximum likelihood and
maximum quasi-likelihood estimation.
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the fitted model, prior and likelihood both, is true. By simulating from the posterior
distribution of yrep, we see what typical realizations of the fitted model are like, and
in particular whether the observed data set is the kind of thing that the fitted model
produces with reasonably high probability.10

If we summarize the data with a test statistic T (y), we can perform graphical
comparisons with replicated data. In practice, we recommend graphical comparisons
(as illustrated by our example above), but for continuity with much of the statistical
literature, we focus here on p-values,

Pr
(
T ( yrep) > T ( y)|y

)
,

which can be approximated to arbitrary accuracy as soon as we can simulate yrep. (This
is a valid posterior probability in the model, and its interpretation is no more problematic
than that of any other probability in a Bayesian model.) In practice, we find graphical test
summaries more illuminating than p-values, but in considering ideas of (probabilistic)
falsification, it can be helpful to think about numerical test statistics.11

Under the usual understanding that T is chosen so that large values indicate poor
fits, these p-values work rather like classical ones (Mayo, 1996; Mayo & Cox, 2006) –
they are in fact generalizations of classical p-values, merely replacing point estimates of
parameters ! with averages over the posterior distribution – and their basic logic is one
of falsification. A very low p-value says that it is very improbable, under the model, to get
data as extreme along the T -dimension as the actual y; we are seeing something which
would be very improbable if the model were true. On the other hand, a high p-value
merely indicates that T (y) is an aspect of the data which would be unsurprising if the
model is true. Whether this is evidence for the usefulness of the model depends how
likely it is to get such a high p-value when the model is false: the ‘severity’ of the test, in
the terminology of Mayo (1996) and Mayo and Cox (2006).

Put a little more abstractly, the hypothesized model makes certain probabilistic
assumptions, from which other probabilistic implications follow deductively. Simulation
works out what those implications are, and tests check whether the data conform to
them. Extreme p-values indicate that the data violate regularities implied by the model,
or approach doing so. If these were strict violations of deterministic implications, we
could just apply modus tollens to conclude that the model was wrong; as it is, we
nonetheless have evidence and probabilities. Our view of model checking, then, is
firmly in the long hypothetico-deductive tradition, running from Popper (1934/1959)
back through Bernard (1865/1927) and beyond (Laudan, 1981). A more direct influence
on our thinking about these matters is the work of Jaynes (2003), who illustrated how

10 For notational simplicity, we leave out the possibility of generating new values of the hidden variables ỹ and
set aside choices of which parameters to vary and which to hold fixed in the replications; see Gelman, Meng,
and Stern (1996).
11 There is some controversy in the literature about whether posterior predictive checks have too little power
to be useful statistical tools (Bayarri & Berger, 2000, 2004), how they might be modified to increase their
power (Robins, van der Vaart, & Ventura, 2000; Fraser & Rousseau, 2008), whether some form of empirical
prior predictive check might not be better (Bayarri & Castellanos, 2007), etc. This is not the place to rehash
this debate over the interpretation or calculation of various Bayesian tail-area probabilities (Gelman, 2007).
Rather, the salient fact is that all participants in the debate agree on why the tail-area probabilities are relevant:
they make it possible to reject a Bayesian model without recourse to a specific alternative. All participants
thus disagree with the standard inductive view, which reduces inference to the probability that a hypothesis
is true, and are simply trying to find the most convenient and informative way to check Bayesian models.
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we may learn the most when we find that our model does not fit the data – that is, when
it is falsified – because then we have found a problem with our model’s assumptions.12

And the better our probability model encodes our scientific or substantive assumptions,
the more we learn from specific falsification.

In this connection, the prior distribution p(!) is one of the assumptions of the model
and does not need to represent the statistician’s personal degree of belief in alternative
parameter values. The prior is connected to the data, and so is potentially testable, via
the posterior predictive distribution of future data yrep:

p ( yrep|y) =
∫

p ( yrep|!)p(!|y)d! =
∫

p ( yrep|!)
p ( y|!)p(!)∫

p ( y|!′)p(!′)d!′ d!.

The prior distribution thus has implications for the distribution of replicated data, and
so can be checked using the type of tests we have described and illustrated above.13

When it makes sense to think of further data coming from the same source, as in certain
kinds of sampling, time-series or longitudinal problems, the prior also has implications
for these new data (through the same formula as above, changing the interpretation of
yrep), and so becomes testable in a second way. There is thus a connection between the
model-checking aspect of Bayesian data analysis and ‘prequentialism’ (Dawid & Vovk,
1999; Grünwald, 2007), but exploring that would take us too far afield.

One advantage of recognizing that the prior distribution is a testable part of a Bayesian
model is that it clarifies the role of the prior in inference, and where it comes from. To
reiterate, it is hard to claim that the prior distributions used in applied work represent
statisticians’ states of knowledge and belief before examining their data, if only because
most statisticians do not believe their models are true, so their prior degree of belief
in all of ! is not 1 but 0. The prior distribution is more like a regularization device,
akin to the penalization terms added to the sum of squared errors when doing ridge
regression and the lasso (Hastie, Tibshirani, & Friedman, 2009) or spline smoothing
(Wahba, 1990). All such devices exploit a sensitivity–stability trade-off: they stabilize
estimates and predictions by making fitted models less sensitive to certain details of
the data. Using an informative prior distribution (even if only weakly informative, as in
Gelman, Jakulin, Pittau, & Su, 2008) makes our estimates less sensitive to the data than,
say, maximum-likelihood estimates would be, which can be a net gain.

Because we see the prior distribution as a testable part of the Bayesian model,
we do not need to follow Jaynes in trying to devise a unique, objectively correct
prior distribution for each situation – an enterprise with an uninspiring track record
(Kass & Wasserman, 1996), even leaving aside doubts about Jaynes’s specific proposal
(Seidenfeld, 1979, 1987; Csiszár, 1995; Uffink, 1995, 1996). To put it even more
succinctly, ‘the model’, for a Bayesian, is the combination of the prior distribution and

12 A similar point was expressed by the sociologist and social historian Charles Tilly (2004, p. 597), writing
from a very different disciplinary background: ‘Most social researchers learn more from being wrong than
from being right – provided they then recognize that they were wrong, see why they were wrong, and
go on to improve their arguments. Post hoc interpretation of data minimizes the opportunity to recognize
contradictions between arguments and evidence, while adoption of formalisms increases that opportunity.
Formalisms blindly followed induce blindness. Intelligently adopted, however, they improve vision. Being
obliged to spell out the argument, check its logical implications, and examine whether the evidence conforms
to the argument promotes both visual acuity and intellectual responsibility.’
13 Admittedly, the prior only has observable implications in conjunction with the likelihood, but for a Bayesian
the reverse is also true.
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the likelihood, each of which represents some compromise among scientific knowledge,
mathematical convenience and computational tractability.

This gives us a lot of flexibility in modelling. We do not have to worry about making
our prior distributions match our subjective beliefs, still less about our model containing
all possible truths. Instead we make some assumptions, state them clearly, see what they
imply, and check the implications. This applies just much to the prior distribution as it
does to the parts of the model showing up in the likelihood function.

Testing to reveal problems with a model
We are not interested in falsifying our model for its own sake – among other things,
having built it ourselves, we know all the shortcuts taken in doing so, and can already
be morally certain it is false. With enough data, we can certainly detect departures from
the model – this is why, for example, statistical folklore says that the chi-squared statistic
is ultimately a measure of sample size (cf. Lindsay & Liu, 2009). As writers such as Giere
(1988, Chapter 3) explain, the hypothesis linking mathematical models to empirical data
is not that the data-generating process is exactly isomorphic to the model, but that the
data source resembles the model closely enough, in the respects which matter to us, that
reasoning based on the model will be reliable. Such reliability does not require complete
fidelity to the model.

The goal of model checking, then, is not to demonstrate the foregone conclusion of
falsity as such, but rather to learn how, in particular, this model fails (Gelman, 2003).14

When we find such particular failures, they tell us how the model must be improved;
when severe tests cannot find them, the inferences we draw about those aspects of
the real world from our fitted model become more credible. In designing a good test
for model checking, we are interested in finding particular errors which, if present,
would mess up particular inferences, and devise a test statistic which is sensitive to
this sort of misspecification. This process of examining, and ruling out, possible errors
or misspecifications is of course very much in line with the ‘eliminative induction’
advocated by Kitcher (1993, Chapter 7).15

All models will have errors of approximation. Statistical models, however, typically
assert that their errors of approximation will be unsystematic and patternless – ‘noise’
(Spanos, 2007). Testing this can be valuable in revising the model. In looking at the red-
state/blue-state example, for instance, we concluded that the varying slopes mattered
not just because of the magnitudes of departures from the equal-slope assumption, but
also because there was a pattern, with richer states tending to have shallower slopes.

What we are advocating, then, is what Cox and Hinkley (1974) call ‘pure significance
testing’, in which certain of the model’s implications are compared directly to the data,
rather than entering into a contest with some alternative model. This is, we think, more
in line with what actually happens in science, where it can become clear that even

14 In addition, no model is safe from criticism, even if it ‘passes’ all possible checks. Modern Bayesian models
in particular are full of unobserved, latent and unobservable variables, and non-identifiability is an inevitable
concern in assessing such models; see, for example, Gustafson (2005), Vansteelandt, Goetghebeur, Kenward,
& Molenberghs (2006) and Greenland (2009). We find it somewhat dubious to claim that simply putting a prior
distribution on non-identified quantities somehow resolves the problem; the ‘bounds’ or ‘partial identification’
approach, pioneered by Manski (2007), seems to be in better accord with scientific norms of explicitly
acknowledging uncertainty (see also Vansteelandt et al., 2006; Greenland, 2009).
15 Despite the name, this is, as Kitcher notes, actually a deductive argument.
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large-scale theories are in serious trouble and cannot be accepted unmodified even
if there is no alternative available yet. A classical instance is the status of Newtonian
physics at the beginning of the twentieth century, where there were enough difficulties
– the Michaelson–Morley effect, anomalies in the orbit of Mercury, the photoelectric
effect, the black-body paradox, the stability of charged matter, etc. – that it was clear,
even before relativity and quantum mechanics, that something would have to give. Even
today, our current best theories of fundamental physics, namely general relativity and the
standard model of particle physics, an instance of quantum field theory, are universally
agreed to be ultimately wrong, not least because they are mutually incompatible, and
recognizing this does not require that one have a replacement theory (Weinberg,
1999).

Connection to non-Bayesian model checking
Many of these ideas about model checking are not unique to Bayesian data analysis and
are used more or less explicitly by many communities of practitioners working with
complex stochastic models (Ripley, 1988; Guttorp, 1995). The reasoning is the same:
a model is a story of how the data could have been generated; the fitted model should
therefore be able to generate synthetic data that look like the real data; failures to do so
in important ways indicate faults in the model.

For instance, simulation-based model checking is now widely accepted for assessing
the goodness of fit of statistical models of social networks (Hunter, Goodreau, &
Handcock, 2008). That community was pushed toward predictive model checking
by the observation that many model specifications were ‘degenerate’ in various ways
(Handcock, 2003). For example, under certain exponential-family network models, the
maximum likelihood estimate gave a distribution over networks which was bimodal,
with both modes being very different from observed networks, but located so that the
expected value of the sufficient statistics matched observations. It was thus clear that
these specifications could not be right even before more adequate specifications were
developed (Snijders, Pattison, Robins, & Handcock, 2006).

At a more philosophical level, the idea that a central task of statistical analysis is the
search for specific, consequential errors has been forcefully advocated by Mayo (1996),
Mayo and Cox (2006), Mayo and Spanos (2004), and Mayo and Spanos (2006). Mayo has
placed a special emphasis on the idea of severe testing – a model being severely tested
if it passes a probe which had a high probability of detecting an error if it is present.
(The exact definition of a test’s severity is related to, but not quite, that of its power; see
Mayo, 1996, or Mayo & Spanos, 2006, for extensive discussions.) Something like this is
implicit in discussions about the relative merits of particular posterior predictive checks
(which can also be framed in a non-Bayesian manner as graphical hypothesis tests based
on the parametric bootstrap).

Our contribution here is to connect this hypothetico-deductive philosophy to
Bayesian data analysis, going beyond the evaluation of Bayesian methods based on
their frequency properties – as recommended by Rubin (1984) and Wasserman (2006),
among others – to emphasize the learning that comes from the discovery of systematic
differences between model and data. At the very least, we hope this paper will motivate
philosophers of hypothetico-deductive inference to take a more serious look at Bayesian
data analysis (as distinct from Bayesian theory) and, conversely, motivate philosophically
minded Bayesian statisticians to consider alternatives to the inductive interpretation of
Bayesian learning.
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Why not just compare the posterior probabilities of different models?
As mentioned above, the standard view of scientific learning in the Bayesian community
is, roughly, that posterior odds of the models under consideration are compared, given
the current data.16 When Bayesian data analysis is understood as simply getting the
posterior distribution, it is held that ‘pure significance tests have no role to play in the
Bayesian framework’ (Schervish, 1995, p. 218). The dismissal rests on the idea that the
prior distribution can accurately reflect our actual knowledge and beliefs.17 At the risk of
boring the reader by repetition, there is just no way we can ever have any hope of making
! include all the probability distributions which might be correct, let alone getting p(!|y)
if we did so, so this is deeply unhelpful advice. The main point where we disagree with
many Bayesians is that we do not see Bayesian methods as generally useful for giving
the posterior probability that a model is true, or the probability for preferring model A
over model B, or whatever.18 Beyond the philosophical difficulties, there are technical
problems with methods that purport to determine the posterior probability of models,
most notably that in models with continuous parameters, aspects of the model that have
essentially no effect on posterior inferences within a model can have huge effects on
the comparison of posterior probability among models.19 Bayesian inference is good for
deductive inference within a model we prefer to evaluate a model by comparing it to
data.

In rehashing the well-known problems with computing Bayesian posterior probabili-
ties of models, we are not claiming that classical p-values are the answer. As is indicated
by the literature on the Jeffreys–Lindley paradox (notably Berger & Sellke, 1987), p-values
can drastically overstate the evidence against a null hypothesis. From our model-building
Bayesian perspective, the purpose of p-values (and model checking more generally) is
not to reject a null hypothesis but rather to explore aspects of a model’s misfit to data.

In practice, if we are in a setting where model A or model B might be true, we are
inclined not to do model selection among these specified options, or even to perform
model averaging over them (perhaps with a statement such as ‘we assign 40% of our

16 Some would prefer to compare the modification of those odds called the Bayes factor (Kass & Raftery, 1995).
Everything we have to say about posterior odds carries over to Bayes factors with few changes.
17 As Schervish (1995) continues: ‘If the [parameter space !] describes all of the probability distributions
one is willing to entertain, then one cannot reject [!] without rejecting probability models altogether. If one
is willing to entertain models not in [!], then one needs to take them into account’ by enlarging !, and
computing the posterior distribution over the enlarged space.
18 There is a vast literature on Bayes factors, model comparison, model averaging, and the evaluation of
posterior probabilities of models, and although we believe most of this work to be philosophically unsound
(to the extent that it is designed to be a direct vehicle for scientific learning), we recognize that these can
be useful techniques. Like all statistical methods, Bayesian and otherwise, these methods are summaries of
available information that can be important data-analytic tools. Even if none of a class of models is plausible
as truth, and even if we are not comfortable accepting posterior model probabilities as degrees of belief in
alternative models, these probabilities can still be useful as tools for prediction and for understanding structure
in data, as long as these probabilities are not taken too seriously. See Raftery (1995) for a discussion of the
value of posterior model probabilities in social science research and Gelman and Rubin (1995) for a discussion
of their limitations, and Claeskens and Hjort (2008) for a general review of model selection. (Some of the
work on ‘model-selection tests’ in econometrics (e.g., Vuong, 1989; Rivers & Vuong, 2002) is exempt from
our strictures, as it tries to find which model is closest to the data-generating process, while allowing that all
of the models may be misspecified, but it would take us too far afield to discuss this work in detail.)
19 This problem has been called the Jeffreys–Lindley paradox and is the subject of a large literature.
Unfortunately (from our perspective) the problem has usually been studied by Bayesians with an eye on
‘solving’ it – that is, coming up with reasonable definitions that allow the computation of non-degenerate
posterior probabilities for continuously parameterized models – but we think that this is really a problem
without a solution; see Gelman et al. (2004, Section 6.7).
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posterior belief to A and 60% to B’) but rather to do continuous model expansion by
forming a larger model that includes both A and B as special cases. For example, Merrill
(1994) used electoral and survey data from Norway and Sweden to compare two models
of political ideology and voting: the ‘proximity model’ (in which you prefer the political
party that is closest to you in some space of issues and ideology) and the ‘directional
model’ (in which you like the parties that are in the same direction as you in issue space,
but with a stronger preference to parties further from the centre). Rather than using
the data to pick one model or the other, we would prefer to think of a model in which
voters consider both proximity and directionality in forming their preferences (Gelman,
1994).

In the social sciences, it is rare for there to be an underlying theory that can provide
meaningful constraints on the functional form of the expected relationships among
variables, let alone the distribution of noise terms.20 Taken to its limit, then, the idea
of continuous model expansion counsels social scientists pretty much to give up using
parametric statistical models in favour of non-parametric, infinite-dimensional models,
advice which the ongoing rapid development of Bayesian non-parametrics (Ghosh &
Ramamoorthi, 2003; Hjort, Holmes, Müller, & Walker, 2010) makes increasingly practical.
While we are certainly sympathetic to this, and believe a greater use of nonparametric
models in empirical research is desirable on its own merits (cf. Li & Racine, 2007), it is
worth sounding a few notes of caution.

A technical, but important, point concerns the representation of uncertainty in
Bayesian non-parametrics. In finite-dimensional problems, the use of the posterior
distribution to represent uncertainty is in part supported by the Bernstein–von Mises
phenomenon, which ensures that large-sample credible regions are also confidence
regions. This simply fails in infinite-dimensional situations (Cox, 1993; Freedman, 1999),
so that a naive use of the posterior distribution becomes unwise.21 (Since we regard
the prior and posterior distributions as regularization devices, this is not especially
troublesome for us.) Relatedly, the prior distribution in a Bayesian non-parametric model
is a stochastic process, always chosen for tractability (Ghosh & Ramamoorthi, 2003; Hjort
et al., 2010), and any pretense of representing an actual inquirer’s beliefs abandoned.

Most fundamentally, switching to non-parametric models does not really resolve
the issue of needing to make approximations and check their adequacy. All non-
parametric models themselves embody assumptions such as conditional independence
which are hard to defend except as approximations. Expanding our prior distribution
to embrace all the models which are actually compatible with our prior knowledge
would result in a mess we simply could not work with, nor interpret if we could.
This being the case, we feel there is no contradiction between our preference
for continuous model expansion and our use of adequately checked parametric
models.22

20 See Manski (2007) for a critique of the econometric practice of making modelling assumptions (such as
linearity) with no support in economic theory, simply to get identifiability.
21 Even in parametric problems, Müller (2011) shows that misspecification can lead credible intervals to have
sub-optimal coverage properties – which, however, can be fixed by a modification to their usual calculation.
22 A different perspective – common in econometrics (e.g., Wooldridge, 2002) and machine learning (e.g.,
Hastie et al., 2009) – reduces the importance of models of the data source, either by using robust procedures
that are valid under departures from modelling assumptions, or by focusing on prediction and external
validation. We recognize the theoretical and practical appeal of both these approaches, which can be relevant
to Bayesian inference. (For example, Rubin, 1978, justifies random assignment from a Bayesian perspective as a
tool for obtaining robust inferences.) But it is not possible to work with all possible models when considering
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Figure 4. Sketch of the usual statistical model for before-after data. The difference between the
fitted lines for the two groups is the estimated treatment effect. The default is to regress the ‘after’
measurement on the treatment indicator and the ‘before’ measurement, thus implicitly assuming
parallel lines.

Example: Estimating the effects of legislative redistricting
We use one of our own experiences (Gelman & King, 1994) to illustrate scientific
progress through model rejection. We began by fitting a model comparing treated
and control units – state legislatures, immediately after redistricting or not – following
the usual practice of assuming a constant treatment effect (parallel regression lines in
‘before–after’ plots, with the treatment effect representing the difference between the
lines). In this example, the outcome was a measure of partisan bias, with positive values
representing state legislatures where the Democrats were overrepresented (compared
to how we estimated the Republicans would have done with comparable vote shares)
and negative values in states where the Republicans were overrepresented. A positive
treatment effect here would correspond to a redrawing of the district lines that favoured
the Democrats.

Figure 4 shows the default model that we (and others) typically use for estimating
causal effects in before–after data. We fitted such a no-interaction model in our example
too, but then we made some graphs and realized that the model did not fit the data. The
line for the control units actually had a much steeper slope than the treated units. We
fitted a new model, and it had a completely different story about what the treatment
effects meant.

The graph for the new model with interactions is shown in Figure 5. The largest
effect of the treatment was not to benefit the Democrats or Republicans (i.e., to change
the intercept in the regression, shifting the fitted line up or down) but rather to change
the slope of the line, to reduce partisan bias.

Rejecting the constant-treatment-effect model and replacing it with the interaction
model was, in retrospect, a crucial step in this research project. This pattern of
higher before–after correlation in the control group than in the treated group is

fully probabilistic methods – that is, Bayesian inferences that are summarized by joint posterior distributions
rather than point estimates or predictions. This difficulty may well be a motivation for shifting the foundations
of statistics away from probability and scientific inference, and towards developing a technology of robust
prediction. (Even when prediction is the only goal, with limited data bias–variance considerations can make
even misspecified parametric models superior to non-parametric models.) This, however, goes far beyond the
scope of the present paper, which aims merely to explicate the implicit philosophy guiding current practice.
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Figure 5. Effect of redistricting on partisan bias. Each symbol represents a state election year,
with dots indicating controls (years with no redistricting) and the other symbols corresponding
to different types of redistricting. As indicated by the fitted lines, the ‘before’ value is much more
predictive of the ‘after’ value for the control cases than for the treated (redistricting) cases. The
dominant effect of the treatment is to bring the expected value of partisan bias towards zero, and
this effect would not be discovered with the usual approach (pictured in Figure 4), which is to
fit a model assuming parallel regression lines for treated and control cases. This figure is re-drawn
after Gelman and King (1994), with the permission of the authors.

quite general (Gelman, 2004), but at the time we did this study we discovered it
only through the graph of model and data, which falsified the original model and
motivated us to think of something better. In our experience, falsification is about plots
and predictive checks, not about Bayes factors or posterior probabilities of candidate
models.

The relevance of this example to the philosophy of statistics is that we began by fitting
the usual regression model with no interactions. Only after visually checking the model
fit – and thus falsifying it in a useful way without the specification of any alternative –
did we take the crucial next step of including an interaction, which changed the whole
direction of our research. The shift was induced by a falsification – a bit of deductive
inference from the data and the earlier version of our model. In this case the falsification
came from a graph rather than a p-value, which in one way is just a technical issue, but
in a larger sense is important in that the graph revealed not just a lack of fit but also a
sense of the direction of the misfit, a refutation that sent us usefully in a direction of
substantive model improvement.

5. The question of induction
As we mentioned at the beginning, Bayesian inference is often held to be inductive in a
way that classical statistics (following the Fisher or Neyman–Pearson traditions) is not.
We need to address this, as we are arguing that all these forms of statistical reasoning
are better seen as hypothetico-deductive.

The common core of various conceptions of induction is some form of inference
from particulars to the general – in the statistical context, presumably, inference from
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the observations y to parameters ! describing the data-generating process. But if that
were all that was meant, then not only is ‘frequentist statistics a theory of inductive
inference’ (Mayo & Cox, 2006), but the whole range of guess-and-test behaviors engaged
in by animals (Holland, Holyoak, Nisbett, & Thagard, 1986), including those formalized in
the hypothetico-deductive method, are also inductive. Even the unpromising-sounding
procedure, ‘pick a model at random and keep it until its accumulated error gets too
big, then pick another model completely at random’, would qualify (and could work
surprisingly well under some circumstances – cf. Ashby, 1960; Foster & Young, 2003).
So would utterly irrational procedures (‘pick a new random ! when the sum of the least
significant digits in y is 13’). Clearly something more is required, or at least implied, by
those claiming that Bayesian updating is inductive.

One possibility for that ‘something more’ is to generalize the truth-preserving
property of valid deductive inferences: just as valid deductions from true premises
are themselves true, good inductions from true observations should also be true, at
least in the limit of increasing evidence.23 This, however, is just the requirement that
our inferential procedures be consistent. As discussed above, using Bayes’s rule is not
sufficient to ensure consistency, nor is it necessary. In fact, every proof of Bayesian
consistency known to us either posits that there is a consistent non-Bayesian procedure
for the same problem, or makes other assumptions which entail the existence of such a
procedure. In any case, theorems establishing consistency of statistical procedures make
deductively valid guarantees about these procedures – they are theorems, after all – but
do so on the basis of probabilistic assumptions linking future events to past data.

It is also no good to say that what makes Bayesian updating inductive is its conformity
to some axiomatization of rationality. If one accepts the Kolmogorov axioms for
probability, and the Savage axioms (or something like them) for decision-making,24 then
updating by conditioning follows, and a prior belief state p(!) plus data y deductively
entail that the new belief state is p(!|y). In any case, lots of learning procedures can be
axiomatized (all those which can be implemented algorithmically, to start with). To pick
this system, we would need to know that it produces good results (cf. Manski, 2011),
and this returns us to previous problems. To know that this axiom system leads us to
approach the truth rather than become convinced of falsehoods, for instance, is just the
question of consistency again.

Karl Popper, the leading advocate of hypothetico-deductivism in the last century,
denied that induction was even possible; his attitude is well paraphrased by Greenland
(1998) as: ‘we never use any argument based on observed repetition of instances
that does not also involve a hypothesis that predicts both those repetitions and the
unobserved instances of interest’. This is a recent instantiation of a tradition of anti-
inductive arguments that goes back to Hume, but also beyond him to al Ghazali
(1100/1997) in the Middle Ages, and indeed to the ancient Sceptics (Kolakowski, 1968).
As forcefully put by Stove (1982, 1986), many apparent arguments against this view of
induction can be viewed as statements of abstract premises linking both the observed
data and unobserved instances – various versions of the ‘uniformity of nature’ thesis
have been popular, sometimes resolved into a set of more detailed postulates, as in

23 We owe this suggestion to conversation with Kevin Kelly; cf. Kelly (1996, especially Chapter 13).
24 Despite his ideas on testing, Jaynes (2003) was a prominent and emphatic advocate of the claim that Bayesian
inference is the logic of inductive inference as such, but preferred to follow Cox (1946, 1961) rather than
Savage. See Halpern (1999) on the formal invalidity of Cox’s proofs.
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Russell (1948, Part VI, Chapter 9), though Stove rather maliciously crafted a parallel
argument for the existence of ‘angels, or something very much like them’.25 As Norton
(2003) argues, these highly abstract premises are both dubious and often superfluous for
supporting the sort of actual inferences scientists make – ‘inductions’ are supported not
by their matching certain formal criteria (as deductions are), but rather by material facts.
To generalize about the melting point of bismuth (to use one of Norton’s examples)
requires very few samples, provided we accept certain facts about the homogeneity of
the physical properties of elemental substances; whether nature in general is uniform is
not really at issue.26

Simply put, we think the anti-inductivist view is pretty much right, but that statistical
models are tools that let us draw inductive inferences on a deductive background. Most
directly, random sampling allows us to learn about unsampled people (unobserved balls
in an urn, as it were), but such inference, however inductive it may appear, relies
not any axiom of induction but rather on deductions from the statistical properties of
random samples, and the ability to actually conduct such sampling. The appropriate
design depends on many contingent material facts about the system we are studying,
exactly as Norton argues.

Some results in statistical learning theory establish that certain procedures are
‘probably approximately correct’ in what is called a ‘distribution-free’ manner (Bousquet,
Boucheron, & Lugosi, 2004, Vidyasagar 2003); some of these results embrace Bayesian
updating (McAllister, 1999). But here ‘distribution-free’ just means ‘holding uniformly
over all distributions in a very large class’, for example requiring the data to be
independent and identically distributed, or from a stationary, mixing stochastic process.
Another branch of learning theory does avoid making any probabilistic assumptions,
getting results which hold universally across all possible data sets, and again these
results apply to Bayesian updating, at least over some parameter spaces (Cesa-Bianchi
& Lugosi, 2006). However, these results are all of the form ‘in retrospect, the posterior
predictive distribution will have predicted almost as well as the best individual model
could have done’, speaking entirely about performance on the past training data and
revealing nothing about extrapolation to hitherto unobserved cases.

To sum up, one is free to describe statistical inference as a theory of inductive logic,
but these would be inductions which are deductively guaranteed by the probabilistic
assumptions of stochastic models. We can see no interesting and correct sense in which
Bayesian statistics is a logic of induction which does not equally imply that frequentist
statistics is also a theory of inductive inference (cf. Mayo & Cox, 2006), which is to say,
not very inductive at all.

25 Stove (1986) further argues that induction by simple enumeration is reliable without making such
assumptions, at least sometimes. However, his calculations make no sense unless his data are independent and
identically distributed.
26 Within environments where such premises hold, it may of course be adaptive for organisms to develop
inductive propensities, whose scope would be more or less tied to the domain of the relevant material
premises. Barkow, Cosmides, and Tooby (1992) develop this theme with reference to the evolution of domain-
specific mechanisms of learning and induction; Gigerenzer (2000) and Gigerenzer, Todd, and ABC Research
Group (1999) consider proximate mechanisms and ecological aspects, and Holland et al. (1986) propose a
unified framework for modelling such inductive propensities in terms of generate-and-test processes. All of
this, however, is more within the field of psychology than either statistics or philosophy, as (to paraphrase the
philosopher Ian Hacking, 2001) it does not so much solve the problem of induction as evade it.
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6. What about Popper and Kuhn?
The two most famous modern philosophers of science are undoubtedly Karl Popper
(1934/1959) and Thomas Kuhn (1970), and if statisticians (like other non-philosophers)
know about philosophy of science at all, it is generally some version of their ideas. It may
therefore help readers to see how our ideas relate to theirs. We do not pretend that our
sketch fully portrays these figures, let alone the literatures of exegesis and controversy
they inspired, or even how the philosophy of science has moved on since 1970.

Popper’s key idea was that of ‘falsification’ or ‘conjectures and refutations’. The
inspiring example, for Popper, was the replacement of classical physics, after several
centuries as the core of the best-established science, by modern physics, especially
the replacement of Newtonian gravitation by Einstein’s general relativity. Science, for
Popper, advances by scientists advancing theories which make strong, wide-ranging
predictions capable of being refuted by observations. A good experiment or observational
study is one which tests a specific theory (or theories) by confronting their predictions
with data in such a way that a match is not automatically assured; good studies are
designed with theories in mind, to give them a chance to fail. Theories which conflict
with any evidence must be rejected, since a single counter-example implies that a
generalization is false. Theories which are not falsifiable by any conceivable evidence
are, for Popper, simply not scientific, though they may have other virtues.27 Even those
falsifiable theories which have survived contact with data so far must be regarded as more
or less provisional, since no finite amount of data can ever establish a generalization, nor
is there any non-circular principle of induction which could let us regard theories which
are compatible with lots of evidence as probably true.28 Since people are fallible, and
often obstinate and overly fond of their own ideas, the objectivity of the process which
tests conjectures lies not in the emotional detachment and impartiality of individual
scientists, but rather in the scientific community being organized in certain ways, with
certain institutions, norms and traditions, so that individuals’ prejudices more or less
wash out (Popper, 1945, Chapters 23–24).

Clearly, we find much here to agree with, especially the general hypothetico-
deductive view of scientific method and the anti-inductivist stance. On the other hand,
Popper’s specific ideas about testing require, at the least, substantial modification. His
idea of a test comes down to the rule of deduction which says that if p implies q, and
q is false, then p must be false, with the roles of p and q being played by hypotheses
and data, respectively. This is plainly inadequate for statistical hypotheses, yet, as critics
have noted since Braithwaite (1953) at least, he oddly ignored the theory of statistical
hypothesis testing.29 It is possible to do better, both through standard hypothesis tests
and the kind of predictive checks we have described. In particular, as Mayo (1996) has
emphasized, it is vital to consider the severity of tests, their capacity to detect violations
of hypotheses when they are present.

Popper tried to say how science ought to work, supplemented by arguments that
his ideals could at least be approximated and often had been. Kuhn’s work, in contrast,

27 This ‘demarcation criterion’ has received a lot of criticism, much of it justified. The question of what makes
something ‘scientific’ is fortunately not one we have to answer; cf. Laudan (1996, Chapters 11–12) and Ziman
(2000).
28 Popper tried to work out notions of ‘corroboration’ and increasing truth content, or ‘verisimilitude’, to fit
with these stances, but these are generally regarded as failures.
29 We have generally found Popper’s ideas on probability and statistics to be of little use and will not discuss
them here.
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was much more an attempt to describe how science had, in point of historical fact,
developed, supported by arguments that alternatives were infeasible, from which some
morals might be drawn. His central idea was that of a ‘paradigm’, a scientific problem and
its solution which served as a model or exemplar, so that solutions to other problems
could be developed in imitation of it.30 Paradigms come along with presuppositions
about the terms available for describing problems and their solutions, what counts as a
valid problem, what counts as a solution, background assumptions which can be taken as
a matter of course, etc. Once a scientific community accepts a paradigm and all that goes
with it, its members can communicate with one another and get on with the business
of solving puzzles, rather than arguing about what they should be doing. Such ‘normal
science’ includes a certain amount of developing and testing of hypotheses but leaves
the central presuppositions of the paradigm unquestioned.

During periods of normal science, according to Kuhn, there will always be some
‘anomalies’ – things within the domain of the paradigm which it currently cannot
explain, or which even seem to refute its assumptions. These are generally ignored,
or at most regarded as problems which somebody ought to investigate eventually.
(Is a special adjustment for odd local circumstances called for? Might there be some
clever calculational trick which fixes things? How sound are those anomalous observa-
tions?) More formally, Kuhn invokes the ‘Quine–Duhem thesis’ (Quine, 1961; Duhem,
1914/1954). A paradigm only makes predictions about observations in conjunction with
‘auxiliary’ hypotheses about specific circumstances, measurement procedures, etc. If
the predictions are wrong, Quine and Duhem claimed that one is always free to fix the
blame on the auxiliary hypotheses, and preserve belief in the core assumptions of the
paradigm ‘come what may’.31 The Quine–Duhem thesis was also used by Lakatos (1978)
as part of his ‘methodology of scientific research programmes’, a falsificationism more
historically oriented than Popper’s distinguishing between progressive development of
auxiliary hypotheses and degenerate research programmes where auxiliaries become ad
hoc devices for saving core assumptions from data.

According to Kuhn, however, anomalies can accumulate, becoming so serious as to
create a crisis for the paradigm, beginning a period of ‘revolutionary science’. It is then
that a new paradigm can form, one which is generally ‘incommensurable’ with the old: it
makes different presuppositions, takes a different problem and its solution as exemplars,
redefines the meaning of terms. Kuhn insisted that scientists who retain the old paradigm
are not being irrational, because (by the Quine–Duhem thesis) they can always explain
away the anomalies somehow; but neither are the scientists who embrace and develop
the new paradigm being irrational. Switching to the new paradigm is more like a bistable
illusion flipping (the apparent duck becomes an obvious rabbit) than any process of
ratiocination governed by sound rules of method.32

30 Examples are Newton’s deduction of Kepler’s laws of planetary motion and other facts of astronomy from
the inverse square law of gravitation, and Planck’s derivation of the black-body radiation distribution from
Boltzmann’s statistical mechanics and the quantization of the electromagnetic field. An internal example for
statistics might be the way the Neyman–Pearson lemma inspired the search for uniformly most powerful tests
in a variety of complicated situations.
31 This thesis can be attacked from many directions, perhaps the most vulnerable being that one can often find
multiple lines of evidence which bear on either the main principles or the auxiliary hypotheses separately,
thereby localizing the problems (Glymour, 1980; Kitcher, 1993; Laudan, 1996; Mayo, 1996).
32 Salmon (1990) proposed a connection between Kuhn and Bayesian reasoning, suggesting that the choice
between paradigms could be made rationally by using Bayes’s rule to compute their posterior probabilities,
with the prior probabilities for the paradigms encoding such things as preferences for parsimony. This has
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In some way, Kuhn’s distinction between normal and revolutionary science is
analogous to the distinction between learning within a Bayesian model, and checking
the model in preparation to discarding or expanding it. Just as the work of normal
science proceeds within the presuppositions of the paradigm, updating a posterior
distribution by conditioning on new data takes the assumptions embodied in the prior
distribution and the likelihood function as unchallengeable truths. Model checking, on
the other hand, corresponds to the identification of anomalies, with a switch to a new
model when they become intolerable. Even the problems with translations between
paradigms have something of a counterpart in statistical practice; for example, the
intercept coefficients in a varying-intercept, constant-slope regression model have a
somewhat different meaning than do the intercepts in a varying-slope model. We do
not want to push the analogy too far, however, since most model checking and model
reformulation would by Kuhn have been regarded as puzzle-solving within a single
paradigm, and his views of how people switch between paradigms are, as we just saw,
rather different.

Kuhn’s ideas about scientific revolutions are famous because they raise so many
disturbing questions about the scientific enterprise. For instance, there has been
considerable controversy over whether Kuhn believed in any notion of scientific
progress, and over whether or not he should have, given his theory. Yet detailed historical
case studies (Donovan, Laudan, & Laudan, 1988) have shown that Kuhn’s picture of
sharp breaks between normal and revolutionary science is hard to sustain.33 The leads
to a tendency, already remarked by Toulmin (1972, pp. 112–117), either to expand
paradigms or to shrink them. Expanding paradigms into persistent and all-embracing,
because abstract and vague, bodies of ideas lets one preserve the idea of abrupt
breaks in thought, but makes them rare and leaves almost everything to puzzle-solving
normal science. (In the limit, there has only been one paradigm in astronomy since
the Mesopotamians, something like ‘many lights in the night sky are objects which are
very large but very far away, and they move in interrelated, mathematically describable,
discernible patterns’.) This corresponds, we might say, to relentlessly enlarging the
support of the prior. The other alternative is to shrink paradigms into increasingly
concrete, specific theories and even models, making the standard for a ‘revolutionary’
change very small indeed, in the limit reaching any kind of conceptual change
whatsoever.

We suggest that there is actually some validity to both moves, that there is a sort of
(weak) self-similarity involved in scientific change. Every scale of size and complexity,
from local problem-solving to big-picture science, features progress of the ‘normal
science’ type, punctuated by occasional revolutions. For example, in working on an
applied research or consulting problem, one typically will start in a certain direction,
then suddenly realize one was thinking about it incorrectly, then move forward, and so
forth. In a consulting setting, this re-evaluation can happen several times in a couple of

at least three big problems. First, all our earlier objections to using posterior probabilities to chose between
theories apply, with all the more force because every paradigm is compatible with a broad range of specific
theories. Second, devising priors encoding those methodological preferences – particularly a non-vacuous
preference for parsimony – is hard or impossible in practice (Kelly, 2010). Third, it implies a truly remarkable
form of Platonism: for scientists to give a paradigm positive posterior probability, they must, by Bayes’s rule,
have always given it strictly positive prior probability, even before having encountered a statement of the
paradigm.
33 Arguably this is true even of Kuhn (1957).
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hours. At a slightly longer time scale, we commonly reassess any approach to an applied
problem after a few months, realizing there was some key feature of the problem we
were misunderstanding, and so forth. There is a link between the size and the typical
time scales of these changes, with small revolutions occurring fairly frequently (every
few minutes for an exam-type problem), up to every few decades for a major scientific
consensus. (This is related to but somewhat different from the recursive subject-matter
divisions discussed by Abbott, 2001.) The big changes are more exciting, even glamorous,
but they rest on the hard work of extending the implications of theories far enough that
they can be decisively refuted.

To sum up, our views are much closer to Popper’s than to Kuhn’s. The latter
encouraged a close attention to the history of science and to explaining the process
of scientific change, as well as putting on the agenda many genuinely deep ques-
tions, such as when and how scientific fields achieve consensus. There are even
analogies between Kuhn’s ideas and what happens in good data-analytic practice.
Fundamentally, however, we feel that deductive model checking is central to statistical
and scientific progress, and that it is the threat of such checks that motivates us
to perform inferences within complex models that we know ahead of time to be
false.

7. Why does this matter?
Philosophy matters to practitioners because they use it to guide their practice; even those
who believe themselves quite exempt from any philosophical influences are usually the
slaves of some defunct methodologist. The idea of Bayesian inference as inductive,
culminating in the computation of the posterior probability of scientific hypotheses, has
had malign effects on statistical practice. At best, the inductivist view has encouraged
researchers to fit and compare models without checking them; at worst, theorists have
actively discouraged practitioners from performing model checking because it does not
fit into their framework.

In our hypothetico-deductive view of data analysis, we build a statistical model out
of available parts and drive it as far as it can take us, and then a little farther. When the
model breaks down, we dissect it and figure out what went wrong. For Bayesian models,
the most useful way of figuring out how the model breaks down is through posterior
predictive checks, creating simulations of the data and comparing them to the actual
data. The comparison can often be done visually; see Gelman et al. (2004, Chapter 6)
for a range of examples. Once we have an idea about where the problem lies, we can
tinker with the model, or perhaps try a radically new design. Either way, we are using
deductive reasoning as a tool to get the most out of a model, and we test the model – it
is falsifiable, and when it is consequentially falsified, we alter or abandon it. None of this
is especially subjective, or at least no more so than any other kind of scientific inquiry,
which likewise requires choices as to the problem to study, the data to use, the models
to employ, etc. – but these choices are by no means arbitrary whims, uncontrolled by
objective conditions.

Conversely, a problem with the inductive philosophy of Bayesian statistics – in which
science ‘learns’ by updating the probabilities that various competing models are true – is
that it assumes that the true model (or, at least, the models among which we will choose
or over which we will average) is one of the possibilities being considered. This does

Philosophy and the practice of Bayesian statistics 31



not fit our own experiences of learning by finding that a model does not fit and needing
to expand beyond the existing class of models to fix the problem.

Our methodological suggestions are to construct large models that are capable of
incorporating diverse sources of data, to use Bayesian inference to summarize uncertainty
about parameters in the models, to use graphical model checks to understand the
limitations of the models, and to move forward via continuous model expansion rather
than model selection or discrete model averaging. Again, we do not claim any novelty in
these ideas, which we and others have presented in many publications and which reflect
decades of statistical practice, expressed particularly forcefully in recent times by Box
(1980) and Jaynes (2003). These ideas, important as they are, are hardly ground-breaking
advances in statistical methodology. Rather, the point of this paper is to demonstrate
that our commonplace (if not universally accepted) approach to the practice of Bayesian
statistics is compatible with a hypothetico-deductive framework for the philosophy of
science.

We fear that a philosophy of Bayesian statistics as subjective, inductive inference
can encourage a complacency about picking or averaging over existing models rather
than trying to falsify and go further.34 Likelihood and Bayesian inference are powerful,
and with great power comes great responsibility. Complex models can and should be
checked and falsified. This is how we can learn from our mistakes.
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