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Gelman’s article is a thought-provoking mix of opinions and creative methodology.
I agree with Gelman that the disjunction of models and exploratory data analysis (EDA)
in mainstream statistics is unsound. The assumption that models belong exclusively to
confirmatory data analysis (CDA) is easily shown to be wrong in practice. Many uses of
models, in particular model selection, are exploratory, and they usually forfeit the possibility
of strict CDA. Gelman’s suggestion that EDA be based on mainstream modeling practices
is long overdue.

1. DOES BAYES HAVE AN EDGE?

Gelman is a Bayesian, but he gives a nod to non-Bayesian alternatives of creating
reference distributions: permutation tests, bootstrap, and cross-validation (Section 2.1). But
then he returns quickly to the Bayesian fold and discusses all further examples in terms of the
“posterior predictive framework.” It should be stated, however, that most of his treatments of
examples have frequentist analogues, so we see very little unique advantage in the Bayesian
version of model-based EDA. It would help us agnostics to hear what particular powers
the predictive posterior framework brings to bear in EDA, other than aesthetic ones (the
Bayesian framework is certainly pretty).

2. HONEST INFERENCE FOR DATA VISUALIZATION

Gelman references our early approaches to visual inference (Buja, Asimov, Hurley, and
McDonald 1988, sec. 5; Swayne, Cook, and Buja 1998). More recently, we (Cook and I)
became interested in the question of how to add some inferential validity at least to parts of
EDA. In various talks (such as www-stat.wharton.upenn.edu/∼buja/PAPERS/jsm99.ps.gz)
we have discussed the possibility of a protocol that would establish for a given plot whether
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the visually perceived structure is “real” or not. Part of the protocol is to hide a plot of the
actual data among a large number of plots of artificial data simulated under a null hypothesis.
We give an example in terms of a visual permutation test. In the spirit of this protocol, we
suggest that Gelman’s Figure 1 be redone as follows: instead of separating the actual data
in the top left of the page, insert them randomly among many simulated data. Spotting the
actual data would then amount to valid inference. In the case of Figure 1, it is quite clear
that the protocol is not needed due to the striking nature of the data artifacts, but as a matter
of principle, it would be a partial answer to the often-heard suspicion that extensive data
snooping is prone to over-interpretation of the data.

3. SIMULTANEOUS INFERENCE, EDA, AND BAYES

No reminder should be needed that simultaneous inference is of interest to Bayesians,
too. Ten statements “parameter θi is in the interval Ii with posterior probability .90”
(i = 1, . . . 10) are to be distinguished from the one statement “the ten parameters θi are
simultaneously in the intervals Ii with posterior probability .90 (i = 1, . . . 10).”

Simultaneous inference is a general concern in EDA because of the potentially large
number of statistics considered in the course of a data analysis. It is common to plot,
for example, confidence bands around smooths that may amount to confidence intervals
for 100 or more statistics. The bands are almost always pointwise, but it is possible to
widen the bands suitably to provide simultaneous coverage. Calibration can be achieved in
simulations whenever a unique reference distribution is available. Buja and Roelke (2003)
have pointed out the generality of achieving simultaneous coverage in a wide variety of
inference approaches.

4. BOOTSTRAP VERSUS POSTERIORS: SINGLE VERSUS
MULTIPLE PARAMETERS

There is an important difference between Bayesian posterior-based and frequentist
bootstrap-based sampling. Here are the two procedures:

• Bayes: repeatedly sample parameter sets θ from the posterior and sample one artifial
dataset yrep from p(y|θ) for each θ.

• Parametric bootstrap: obtain one estimated parameter set θ̂ and repeatedly sample
artifial datasets yrep from p(y|θ̂).

Actually, the difference has not so much to do with Bayes or bootstrap: one can easily
conceive a Bayes version that sees only one set of parameter estimates by using a posterior
mode or mean instead of sampling from the posterior. The important difference is in the
type of variability the two approaches see:

• Between-parameter variation: Posterior sampling shows variation due to differences
between parameter sets that are likely given the observations. That is, one sees
variation due to posterior spread.
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• Within-parameter variation: Parametric bootstrap sampling shows variation for one
single parameter set.

Which one is more desirable? We postpone this question for the moment. First we note that
one can quite easily make both approaches see both types of variation:

• Bayes: Not only sample repeatedly parameter sets θ from the posterior, but sample
repeatedly artificial datasets yrep for each θ.

• Bootstrap: Requires a two-stage sampling approach.
Stage 1. Draw the usual bootstrap samples from the actual data, with nonpara-
metric or parametric bootstrap. From each bootstrap sample, obtain a set of
bootstrap parameter estimates, one set of estimates per sample.
Stage 2. Repeatedly draw parametric bootstrap samples from the bootstrap pa-
rameter estimates of the first stage.

In either case, one obtains a nested set of artificial datasets, where the multiple parameter
sets define the nesting:

y →




θ(1) →
{

yrep
(1)1 , yrep

(1)2 , yrep
(1)3 , . . .

θ(2) →
{

yrep
(2)1 , yrep

(2)2 , yrep
(2)3 , . . .

θ(3) →
{

yrep
(3)1 , yrep

(3)2 , yrep
(3)3 , . . .

. . .

It should now be possible to attribute variation to either source: differences between pa-
rameter values, and differences within a given parameter value. We can gain some insight
into the roles of the two types of variation by analyzing Gelman’s theoretical example of a
two-component mixture model.

5. WHAT DISCREPANCY MEASURE?

The two-component mixture model of Section 2.4 illustrates potential estimation prob-
lems that require diagnostics. Estimation is likely to produce degenerate estimates in which
one component is a spike at one of the observations. Such degenerate estimates are easy
enough to spot by the human eye, but how can they be detected in terms of a test? Humans
have prior insight that enables them to tell an unreasonable estimate when they see one.
They easily notice if replicated data consistently show 50% ties but the actual data do not.
Not so a computer, unless it is programmed with a test statistic that measures spiky-ness.

In item “1” of Section 2.4, Gelman describes the situation correctly: “The misfit of
model to data will then be apparent, either from a visual comparison of the histogram of the
data y to the histogram of the yrep’s,. . . .” He continues by describing two automatic ways
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of reconstructing the human eyes’ performance. He seems to think that the two ways are
identical, whereas the first way is correct, while the second is not, but can be fixed. Here is
an analysis of Gelman’s text:

• He continues by saying: “. . . or using an antisymmetric discrepancy function such as
the difference between the histograms of yrep and y.” True: assuming identical bin locations
for both, the differences between histogram heights constitute a family of discrepancy
measures Ti(y) − Ti(yrep), where i indexes the bins. If one chooses the bin containing the
spike of yrep, then the bin height Ti(yrep) of the artificial data will be much greater than the
bin height Ti(y) of the real data. Therefore, Ti(y) will be shown as unlikely small by falling
in the extreme left tail of the Ti(yrep) values. The remaining problem is that we do not know
the spike location beforehand, but this can be remedied with simultaneous coverage for all
bins (Buja and Rolke 2003). In summary, simultaneous inference across all bin heights will
show the histogram of y to be significantly different from the histograms of the yrep’s.

• Curiously, Gelman finishes his discussion with a throw-away remark that is incorrect:
“The discrepancy could be summarized by the p value from a numerical discrepancy such
as the Kolmogorov-Smirnoff distance between the empirical distributions of yrep and y.”
This recipe does in fact not work. A distance between actual and artificial data is not a
discrepancy measure because it is symmetric rather than antisymmetric. We do not know
how the fitted model could be rejected knowing the distribution of dist(yrep, y) for fixed y.
Recall how discrepancy measures T (y)−T (yrep) work: they suggest rejection of the model
if the replication distribution with regard to yrep is mostly to the left of zero. By comparison,
we cannot say anything about the replication distribution of dist(yrep, y).

Is there a solution? There is, but it involves two idependent copies of replication data,
yrep and y′ rep. The idea is to compare dist(y, yrep) with dist(y′ rep, yrep): if the model does
not fit well, then y is quite different from yrep, more different than most y′ rep. Hence we
may define T (y) = Ey′ rep dist(y, y′ rep), and T (y) − T (yrep) will be a discrepancy measure
that responds to spikes: yrep and y′ rep both have spikes, but y does not, which sets y apart.

I find both approaches intriguing because they have the potential of being universal
diagnostics for model fit. They are very general ideas:

• Map a dataset y to a collection of test statistics Ti(y), such as the heights of histogram
bins, and apply simultaneous inference with regard to the reference distribution Ti(yrep).

• Compare y and yrep in relation to y′ rep by using T (y) = Ey′ rep dist(y, y′ rep). Apply
inference with regard to the reference distribution T (yrep). The function dist() is not nec-
essarily a distance measure; it could be any two-sample test statistic, including Friedman
and Rafky’s (1981) minimal spanning tree statistics, which have excellent performance in
high dimensions.
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6. VARIATION BETWEEN PARAMETER VALUES OR WITHIN?

In the previous section we made an implicit assumption in analyzing Gelman’s mixture
example: that the spike was in a fixed location. The spike location is implicit in the parameter
set θ = (µ1, σ1, µ2, σ2): if σi is near zero, then µi is the spike location. The requirement of
a fixed spike location seems to point to the requirement of a fixed parameter set θ, which
in turn seems to exclude between-parameter variation. We realize now that the analysis
was targeted at a particular θ and detection of model misfit between the observed y and
this particular model distribution p(yrep|θ). If multiple θ’s came into play, as they would
in posterior sampling, multiple spikes would most likely deteriorate the power of detection
of misfit: 50 replicates yrep with the same spike will be more powerful evidence than 50
replicates yrep with 50 different spikes. This leads to the (to me) unexpected conclusion that
between-parameter variation is not always desirable, in particular when there are qualitative
differences between fitted models, such as differing spike locations.

This raises the question as to the value of between-parameter variation. With the two-
component mixture model in mind, one could conjecture that multiple θ’s could give in-
formation about the prevalence of degenerate fits. Assuming computational feasibility, one
could conceive of a within-parameter analysis for each parameter, indicating for a fixed θ(i)

whether its replicates yrep
(i)j (j = 1, 2, . . .) are incompatible with y. Subsequent between-

parameter analysis will show how often this is the case. In the end, one has a quantitative
assessment of the degeneracy problem for this model.

7. CONCLUSIONS

I thank Andrew Gelman for a thought-provoking article. We have independently arrived
at similar conclusions on several issues, but his interpretation of EDA as model-checking
with artificial replications from a model is the clearest formulation we have seen yet. The
clarity of this program could establish EDA as a mainstream research activity, as opposed to
an idiosyncratic bag of tricks. This program also demonstrates that EDA is not a preliminary
stage of data analysis; it is woven into all stages of data analysis.
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