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Posterior distribution

The posterior distribution summarizes the current
state of knowledge about all the uncertain quan-
tities (including unobservable parameters and also
missing, latent, and unobserved potential data) in
a Bayesian analysis (see Bayesian methods and
modeling). Analytically, the posterior density is the
product of the prior density (see Prior distribution)
and the likelihood. In a complicated analysis, the
joint posterior distribution can be summarized by a
set of L simulation draws of the vector of uncertain
quantitiesw1, . . . , wJ, as illustrated in the following
matrix:

l w1 w2 Ð Ð Ð wJ

1 Ð Ð Ð Ð Ð Ð
2 Ð Ð Ð Ð Ð Ð
...

...
...

. . .
...

L Ð Ð Ð Ð Ð Ð
Themarginal posterior distribution for any unknown
quantity wl can be summarized by its column ofL
simulation draws. In many examples it is not nec-
essary to construct the entire table ahead of time;
rather, one creates theL vectors of posterior sim-
ulations for the parameters of the model and then
uses these to construct posterior simulations for other
unknown quantities of interest (e.g. predictions), as
necessary.

Example

Suppose you are interested inRi, the annual average
living area concentration of radon in your home.
Radon is a naturally occurring carcinogenic gas, and
the US Government has recommended that you re-
mediate your house if its radon level exceeds
4 pCi l�1. Any decision you make about remediating
your home should use your posterior distribution for
Ri.

A model has been fit to radon measurements in
a national survey of houses, leading to an estimate
of the distribution of radon levels in any set of
houses given their location and other house charac-
teristics. For example, suppose you live in Chester
County, PA, and your house has a basement which
is sometimes used as a living area. Then the model
says that the radon levels of houses like yours

have an approximatelognormal distribution with
geometric meanMi and geometric standard devia-
tion Sifthat is, logRijMi, Si ¾ N[log Mi, �log Si�2]g,
with Si ³ 1.21 and the posterior distribution for
Mi itself being approximately lognormal with geo-
metric mean 2.74 and geometric standard deviation
2.10. Averaging over the uncertainty inMi yields
a lognormal posterior distribution forRi with geo-
metric mean 2.74 and geometric standard deviation
expf[�log 1.21�2 C �log 2.10�2]1/2gD 2.15.

This is a posterior distribution with respect to
the data from the national survey, and it can be
summarized in various ways: for example, the poste-
rior median ofRi is 2.74, the posterior expectation
of Ri is exp[log 2.74C �log 2.15�2/2] D 3.67, and
the posterior probability thatRi exceeds 4 pCi l�1

is [�log 2.74� log 4�/ log 2.15] D 0.31. Of these
summaries, the posterior expectation is probably
the most important since it estimates total radon
exposure.

As is standard in Bayesian inference, the pos-
terior distribution acts as aprior distribution for
any analysis of further data. For example, sup-
pose you measure the radon level in your home as
6.6 pCi l�1, and this sort of measurement is known
to be lognormally distributed (actually, not an
unreasonable assumption here at all) with multi-
plicative bias of 1.6 and geometric standard devi-
ation of 1.8. Then the new posterior distribu-
tion for Ri is lognormal with geometric mean
expf[log 2.74/�log 2.15�2 C log�6.6/1.6�/�log 1.8�2]
/[1/�log 2.15�2 C 1/�log 1.8�2]g D 3.54 and geomet-
ric standard deviation expf�1/[1/�log 2.15�2 C 1/
�log 1.8�2]�1/2g D 1.59. Thus the updated posterior
expectation ofRi is exp[log 3.54C �log 1.59�2/2] D
3.94, and so forth.

Literature

Recent theoretical and applied overviews of Bayesian
statistics, including many examples and uses of
posterior distributions, appear in [1]–[3]. The use
of posterior distributions for decision-making about
home radon exposure is discussed in [4].
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(See also Bayesian computation; Hierarchical
model; Markov chain Monte Carlo (MCMC))
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