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Abstract

Decisions in statistical data analysis are often justified, criticized, or avoided using concepts
of objectivity and subjectivity. We argue that the words “objective” and “subjective” in statis-
tics discourse are used in a mostly unhelpful way, and we propose to replace each of them
with broader collections of attributes, with objectivity replaced by transparency, consensus, im-
partiality, and correspondence to observable reality, and subjectivity replaced by awareness of
multiple perspectives and context dependence. Together with stability, these make up a collection
of virtues that we think is helpful in discussions of statistical foundations and practice. The
advantage of these reformulations is that the replacement terms do not oppose each other and
that they give more specific guidance about what statistical science strives to achieve. Instead
of debating over whether a given statistical method is subjective or objective (or normatively
debating the relative merits of subjectivity and objectivity in statistical practice), we can rec-
ognize desirable attributes such as transparency and acknowledgment of multiple perspectives
as complementary goals. We demonstrate the implications of our proposal with recent applied
examples from pharmacology, election polling, and socioeconomic stratification. The aim of this
paper is to push users and developers of statistical methods toward more effective use of diverse
sources of information and more open acknowledgement of assumptions and goals.

1. Introduction

We can’t do statistics without data, and as statisticians much of our efforts revolve around modeling

the links between data and substantive constructs of interest. We might analyze national survey

data on purchasing decisions as a way of estimating consumers’ responses to economic conditions; or

gather blood samples over time on a sample of patients with the goal of estimating the metabolism

of a drug, with the ultimate goal of coming up with a more effective dosing schedule; or we might

be performing a more exploratory analysis, seeking clusters in a multivariate dataset with the aim

of discovering patterns not apparent in simple averages of raw data.

As applied researchers we are continually reminded of the value of integrating new data into

an analysis, and the balance between data quality and quantity. In some settings it is possible to

answer questions of interest using a single clean dataset, but more and more we are finding that

this simple textbook approach does not work.

External information can come in many forms, including (a) recommendations on what vari-

ables to adjust for non-representativeness of a survey or imbalance in an experiment or observational

study; (b) the extent to which outliers should be treated as regular, erroneous, or as indicating

something that is meaningful but essentially different from the main body of observations; (c) issues

of measurement, confounding, and substantively meaningful effect sizes; (d) population distribu-

tions that are used in poststratification, age adjustment, and other procedures that attempt to align
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inferences to a common population of interest; (e) restrictions such as smoothness or sparsity that

serve to regularize estimates in high-dimensional settings; (f) the choice of the functional form in

a regression model (which in economics might be chosen to work with a particular utility function,

or in public health might be motivated based on success in similar studies in the literature); and

(g) numerical information about particular parameters in a model. Of all these, only the final item

is traditionally given the name “prior information” in a statistical analysis, but all can be useful

in serious applied work. Other relevant information concerns not the data generating process but

rather how the data and results of an analysis are to be used or interpreted.

We were motivated to write the present paper because we felt that our applied work, and that of

others, was impeded because of the conventional framing of certain statistical analyses as subjective.

It seemed to us that, rather than being in opposition, subjectivity and objectivity both had virtues

that were relevant in making decisions about statistical analyses. We have earlier noted (Gelman

and O’Rourke, 2015) that statisticians typically choose their procedures based on non-statistical

criteria, and philosophical traditions and even the labels attached to particular concepts can affect

real-world practice.

In Section 2 we show how the discussions of objectivity and subjectivity affect statistical practice

and statistical thinking, followed by an outline of our own philosophical attitude to objectivity and

subjectivity in science; an appendix provides an overview of what the philosophy of science has to

say on the matter. In Section 3 we present our proposal, exploding objectivity and subjectivity

into several specific virtues to guide statistical practice. In Section 4 we demonstrate the relevance

of these ideas for three of our active applied research projects: a hierarchical population model

in pharmacology, a procedure for adjustment of opt-in surveys, and a cluster analysis of data on

socioeconomic stratification. In Section 5 we revisit fundamental approaches to statistics using

the proposals of Section 3, demonstrating how they can elaborate advantages and disadvantages

of the various approaches in a more helpful way than the traditional labeling of “objective” and

“subjective.” Section 6 contains a final discussion, including a list of issues in scientific publications

that could be addressed using the virtues proposed here.

2. Objectivity and subjectivity

2.1. Objectivity, subjectivity, and decision making in statistics

Concepts of objectivity and subjectivity are often used to justify, criticize, avoid, or hide the

decisions made in data analysis. Typically, the underlying idea is that science should be objective,

understood as something like “independence of personal biases,” without referring to any clear

definition. Concepts of objectivity can be implicitly invoked when making choices, so that certain

decisions are avoided or hidden in order to not open an analysis to charges of subjectivity.

For many statistical methods tuning constants need to be decided such as the proportion of

trimmed observations when computing a trimmed mean or bandwidths for smoothing in density

estimation or nonparametric regression; one could also interpret the conventional use of the 0.05

significance level as a kind of tuning parameter. In the statistical literature, methods are advertised

by stating that they don’t require any tuning decisions by the user. Often these choices are hidden

so that users of statistics (particularly those without specific background knowledge in statistics)

expect that for their data analysis task there is a unique correct statistical method. This expectation

is exploited by the marketing strategies for some data analysis software packages such as Beyondcore

that suggest that a default analysis is only one click away. While such an approach obviously tempts

the user by its simplicity, it also appeals on the level of avoiding individual impact or subjectivity.
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Decisions that need to be made are taken out of the hand of the user and are made by the algorithm,

removing an opportunity for manipulation but ignoring valuable information about the data and

their background. This is in stark contrast to the typical trial-and-error way of building one or

more statistical models with lots of subjective decisions starting from data pre-processing via data

exploration and choice of method on to the selection of how to present which results. Realistically,

even one-click methods require user choices on data coding and data exclusion, and these inputs

can have big impacts on end results such as p-values and confidence intervals (Steegen et al., 2006).

More mathematically oriented statisticians design and choose methods that optimize criteria

such as unbiased minimum variance, often relying on restrictive assumptions. This can allow for

elegant theoretical results with narrow scope. When methods are to be compared in simulation

studies, typically there is a huge variety of choices including data generating processes (distributions,

parameters, dimensionality, etc.), performance measures, and tuning of competitors. This can easily

discourage researchers from running such studies at all or at least beyond one or two illustrative

toy setups, but despite their subjective flavor and the difficulty to find a path through a potentially

confusing jungle of results, such studies can be informative and raise important issues. Already

in 1962, Tukey criticized an obsession with mathematical optimization problems concentrating on

one-dimensional criteria and simple parametric models in the name of objectivity, and stated that

“in data analysis we must look to a very heavy emphasis on judgment.”

Researchers often rely on the seeming objectivity of the p < 0.05 criterion without realizing that

theory behind the p-value is invalidated when analysis is contingent on data (Simmons, Nelson, and

Simonsohn, 2011, Gelman and Loken, 2014). Significance testing can be part of a misguided ideol-

ogy that leads researchers to hide, even from themselves, the iterative searching process by which

a scientific theory is mapped into a statistical model or choice of data analysis (Box, 1983). More

generally, overreaction to concerns about subjectivity can lead researchers to avoid incorporating

relevant and available information into their analyses and to not adapt analyses appropriately to

their research questions and potential uses of their results.

Personal decision making cannot be avoided in statistical data analysis, and for want of ap-

proaches to justify such decisions, the pursuit of objectivity degenerates easily to a pursuit to

merely appear objective. Scientists whose methods are branded as subjective have the awkward

choice of either saying, No, we are really objective, or else embracing the subjective label and

turning it into a principle, and the temptation is high to avoid this by hiding researcher degrees

of freedom from the public unless they can be made to appear “objective.” Such attitudes about

objectivity and subjectivity can be an obstacle to good practice in data analysis and its commu-

nication, and we believe that researchers can be guided in a better way by a list of more specific

scientific virtues when choosing and justifying their approaches.

The continuing interest in and discussion of objectivity and subjectivity in statistics is, we

believe, a necessary product of a fundamental tension in science: On one hand, scientific claims

should be impersonal in the sense that a scientific argument should be understandable by anyone

with the necessary training, not just by the person promulgating it, and it should be possible for

scientific claims to be evaluated and tested by outsiders. On the other hand, a reality assumed to be

objective in the sense of being independent of its observers, is only accessible through observations

made by observers and dependent on their perspectives; communication about the observations

and the process of observation and measurement relies on language constructs. Thus objective and

subjective elements arise in the practice of science, and similar considerations hold in statistics.

Within statistics, though, discourse on objectivity and subjectivity is at an impasse. Ideally

these concepts would be part of a consideration of the role of different sorts of information and

assumptions in statistical analysis, but instead they often seemed to be used in restrictive and
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misleading ways.

One problem is that the terms “objective” and “subjective” are loaded with so many associations

and are often used in a mixed descriptive/normative way. For example, a statistical method that

does not require the specification of any tuning parameters is objective in a descriptive sense (it

does not require decisions by the individual scientist). Often this is presented as an advantage of the

method without further discussion, implying objectivity as a norm, but the lack of flexibility caused

by the impossibility of tuning can actually be a disadvantage (and indeed can lead to subjectivity

at a different point in the analysis, when the analyst must make the decision of whether to use an

auto-tuned approach in a setting where its inferences do not appear to make sense). The frequentist

interpretation of probability is objective in the sense that it locates probabilities in an objective

world that exists independently of the observer, but the definition of these probabilities requires a

subjective definition of a reference set. Some proponents of frequentism consider its objectivity (in

the sense of impersonality, conditional on the definition of the reference set) as a virtue, but this

property is ultimately only descriptive; it does not imply on its own that such probabilities indeed

exist in the objective world, nor that they are a worthwhile target for scientific inquiry.

In discussions of the foundations of statistics, objectivity and subjectivity are seen as oppo-

sites. Objectivity is typically seen as a good thing; many see it as a major requirement for good

science. Bayesian statistics is often presented as being subjective because of the choice of a prior

distribution. Some Bayesians (notably Jaynes, 2003, and Berger, 2006) have advocated an objective

approach, whereas others (notably de Finetti, 1974) have embraced subjectivity. It has been argued

that the subjective/objective distinction is meaningless because all statistical methods, Bayesian

or otherwise, require subjective choices, but the choice of prior distribution is sometimes held to

be particularly subjective because, unlike the data model, it cannot be determined even in the

asymptotic limit. In practice, subjective prior distributions often have well known empirical prob-

lems such as overconfidence (Alpert and Raiffa, 1984, Erev, Wallsten, and Budescu, 1994), which

motivates efforts to check and calibrate Bayesian models (Rubin, 1984, Little, 2012) and to situate

Bayesian inference within an error-statistical philosophy (Mayo, 1996, Gelman and Shalizi, 2013).

De Finetti can be credited with acknowledging honestly that subjective decisions cannot be

avoided in statistics, but it is misleading to think that the required subjectivity always takes

the form of prior belief. The confusion arises from two directions: first, prior distributions are

not necessarily any more subjective than other aspects of a statistical model; indeed, in many

applications priors can and are estimated from data frequencies (see Chapter 1 of Gelman, Carlin,

et al., 2013, for several examples). Second, somewhat arbitrary choices come into many aspects of

statistical models, Bayesian and otherwise, and therefore we think it is a mistake to consider the

prior distribution as the exclusive gate at which subjectivity enters a statistical procedure.

On one hand, statistics is sometimes said to be the science of defaults: most applications of

statistics are performed by non-statisticians who adapt existing general methods to their particular

problems, and much of the research within the field of statistics involves devising, evaluating,

and improving such generally applicable procedures (Gelman, 2014b). It is then seen as desirable

that any required data-analytic decisions or tuning are performed in an objective manner, either

determined somehow from the data or justified by some kind of optimality argument.

On the other hand, practitioners must apply their subjective judgment in the choice of what

method to use, what assumptions to invoke, and what data to include in their analyses. Even using

“no need for tuning” as a criterion for method selection or prioritizing bias, for example, or mean

squared error, is a subjective decision. Settings that appear completely mechanical involve choice:

for example, if a researcher has a checklist saying to apply linear regression for continuous data,

logistic regression for binary data, and Poisson regression for count data, he or she still has the
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option to code a response as continuous or to use a threshold to define a binary classification. And

such choices can be far from trivial; for example, when modeling elections or sports outcomes, one

can simply predict the winner or instead predict the numerical point differential or vote margin.

Modeling the binary outcome can be simpler to explain but in general will throw away information,

and subjective judgment arises in deciding what to do in this sort of problem (Gelman, 2013a).

And in both classical and Bayesian statistics, subjective choices arise in defining the sample space

and considering what information to condition on.

2.2. Objectivity, subjectivity, and quantification in scientific measurement

Another issue connected to objectivity and subjectivity relevant to statisticians has to do with

where the data to be analyzed come from. There is an ideology widespread in many areas of science

that sees quantification and numbers and their statistical analysis as key tools for objectivity. An

important function of quantitative scientific measurement is the production of observations that

are thought of as independent of individual points of view. But, even apart from the generally

difficult issue of measurement validity, the focus on what can be quantified can narrow down what

can be observed, and may not necessarily do the measured entities justice.

The social sciences have seen endless arguments over the relative importance of objective condi-

tions and what Keynes (1936) called “animal spirits.” In macroeconomics, for example, the debate

has been between the monetarists who tend to characterize recessions as necessary consequences of

underlying economic conditions (as measured, for example, by current account balances, business

investment, and productivity), and the Keynesians who focus on more subjective factors such as

stock market bubbles and firms’ investment decisions. These disagreements also turn methodologi-

cal, with much dispute, for example, over the virtues and defects of various attempts to objectively

measure the supply and velocity of money, or consumer confidence, or various other inputs to eco-

nomic models. In psychology, there is a big effort to scientifically measure personality traits and

subjective states. For example, Kahneman (1999) defines “objective happiness” as “the average of

utility over a period of time.” Whether or not this definition makes much sense, it illustrates a

movement in the social and behavioral sciences to measure, in supposedly objective manners, what

might previously have been considered unmeasurable. Another example is the use of quantitative

indicators for human rights in different countries; although it has been argued that it is of major

importance that such indicators should be objective to have appropriate impact on political deci-

sion making (Candler et al., 2011), many aspects of their definition and methodology are subject

to controversy and reflect specific political interests and views (Merry, 2011), and we think that it

will help the debate to communicate such indicators transparently together with their limitations

and the involved decisions rather than to sell them as objective and unquestionable.

Connected to quantification as a means of objectification is an attitude to statistics of many

researchers in various areas who use standard routines in statistical software without much under-

standing of how the methods’ assumptions and motivation relate to their specific research problem,

in the expectation that the software can condense their research into a single summary (most often

a p-value) that “objectifies” their results. This idea of objectivity is in stark contrast with the

realisation by many of these researchers at some point that depending on individual inventiveness

there are many ways to arrive at such a number.

See Porter (1996), Desrosieres (2002), Douglas (2009) for more discussion of the connection

between quantification and objectivity. As with choices in statistical modeling and analysis, we

believe that when considering measurement the objective/subjective antagonism is less helpful than

a more detailed discussion of what quantification can achieve and what its limitations are.
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2.3. Our attitude toward objectivity and subjectivity in science

Many users of the terms “objective” and “subjective” in discussions concerning statistics do not

acknowledge that these terms are quite controversial in the philosophy of science (as is “realism”)

and that they are used with a variety of different meanings and are therefore prone to misunder-

standings. An overview is given in the Appendix.

The attitude taken in the present paper is based on Hennig (2010). According to this per-

spective, human inquiry starts from observations that are made by personal observers (“personal

reality”). Through communication, people share observations and generate “social realities” that

go beyond a personal point of view. These shared realities include for example measurement pro-

cedures that standardize observations, and mathematical models that connect observations to an

abstract formal system that is meant to create a thought system cleaned from individually different

point of views. Nevertheless, human beings only have access to “observer-independent reality”

through personal observations and how these are brought together in social reality.

Science aims at arriving at a view of reality that is stable and reliable and can be agreed

freely by general observers and is therefore as observer-independent as possible. In this sense we

see objectivity as a scientific ideal. But at the same time we acknowledge what gave rise to the

criticism of objectivity: the existence of different individual perspectives and also of perspectives

that differ between social systems, and therefore the ultimate inaccessibility of a reality that is

truly independent of observers, is a basic human condition. Objectivity can only be attributed by

observers, and if observers disagree about what is objective, there is no privileged position from

which this can be decided. Ideal objectivity can never be achieved.

How to resolve scientific disputes by scientific means without throwing up our hands and giving

up on the possibility of scientific consensus is a key problem, and science should be guided by

principles that at the same time aim at stable and reliable consensus as usually associated with

“objectivity” while remaining open to a variety of perspectives, often associated with “subjectivity,”

exchange between which is needed in order to build a stable and reliable scientific world view.

Although there is no objective access to observer-independent reality, we acknowledge that there

is an almost universal human experience of a reality perceived as located outside the observer and

as not controllable by the observer. We see this reality as a target of science, which makes observed

reality a main guiding light for science. We are therefore “active scientific realists” in the sense of

Chang (2012), who writes: “I take reality as whatever is not subject to one’s will, and knowledge

as an ability to act without being frustrated by resistance from reality. This perspective allows an

optimistic rendition of the pessimistic induction, which celebrates the fact that we can be successful

in science without even knowing the truth. The standard realist argument from success to truth

is shown to be ill-defined and flawed.” Or, more informally, “Reality is that which, when you stop

believing in it, doesn’t go away” (Dick, 1981). Active scientific realism implies that finding out

the truth about objective reality is not the ultimate aim of science, but that science rather aims at

supporting human actions. This means that scientific methodology has to be assessed relative to

the specific aims and actions connected to its use.

Because science aims at agreement, communication is central to science, as are transparency

and techniques for supporting the clarity of communication. Among these techniques are formal

and mathematical language, standardized measurement procedures, and scientific models. Such

techniques provide a basis for scientific discussion and consensus, but at the same time the scientific

consensus should not be based on authority and it always needs to be open to new points of view

that challenge an established consensus. Therefore, in science there is always a tension between

the ideal of general agreement and the reality of heterogeneous perspectives, and the virtues listed
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in Section 3 are meant to help statisticians navigating this tension.

3. Our proposal

In order to move the conversation toward principles of good science, we propose to replace, where

ever possible, the words “objectivity” and “subjectivity” with broader collections of attributes,

namely by transparency, consensus, impartiality, and correspondence to observable reality, all related

to objectivity; awareness of multiple perspectives and context dependence, related to subjectivity;

and investigation of stability, related to both.

The advantage of this reformulation is that the replacement terms do not oppose each other.

Instead of debating over whether a given statistical method is subjective or objective (or normatively

debating the relative merits of subjectivity and objectivity in statistical practice), we can recognize

attributes such as transparency and acknowledgment of multiple perspectives as complementary.

3.1. “Transparency,” “consensus,” “impartiality,” and “correspondence to observable reality,”
instead of “objectivity”

Science is practiced by human beings, who only have access to the real world through interpretation

of their perceptions. Taking objectivity seriously as an ideal, scientists need to make the sharing of

their perceptions and interpretations possible. When applied to statistics, the implication is that

choices in data analysis (including the prior distribution, if any, but also the model for the data,

methodology, and the choice of what information to include in the first place) should be motivated

based on factual, externally verifiable information and transparent criteria. This is similar to the

idea of the concept of “institutional decision analysis” (Section 9.5 of Gelman, Carlin, et al., 2013),

under which the mathematics of formal decision theory can be used to ensure that decisions can be

justified based on clearly-stated criteria. Different stakeholders will disagree on decision criteria,

and different scientists will differ on statistical modeling decisions, so, in general, there is no unique

“objective” analysis, but we can aim at communicating and justifying analyses in ways that support

scrutiny and eventually consensus. Similar thoughts have motivated the slogan “transparency is

the new objectivity” in journalism (Weinberger, 2009).

In the context of statistical analysis, a key aspect of objectivity is therefore a process of trans-

parency, in which the choices involved are justified based on external, potentially verifiable sources

or at least transparent considerations (ideally accompanied by sensitivity analyses if such consid-

erations leave alternative options open), a sort of “paper trail” leading from external information,

through modeling assumptions and decisions about statistical analysis, all the way to inferences

and decision recommendations. The current push of some journals to share data and computer code

and the advent of tools to better organize code and projects such as Github and version control

goes in this direction. Transparency also comprises spelling out explicit and implicit assumptions

about the data production, some of which may be unverifiable.

But transparency is not enough. Science aims at stable consensus in potentially free exchange

(see Section 2.3), which is one reason that the current crisis of non-replication is taken so seriously

in psychology (Yong, 2012). Transparency contributes to this building of consensus by allowing

scholars to trace the sources and information used in statistical reasoning (Gelman and Basbøll,

2013). Furthermore, scientific consensus, as far as it deserves to be called “objective,” requires

rationales, clear arguments, and motivation, along with elucidation of how this relates to already

existing knowledge. Following generally accepted rules and procedures counters the dependence of

results on the personalities of individual researchers, although there is always a danger that such
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generally accepted rules and procedures are inappropriate or suboptimal for the specific situation at

hand. For such reasons, one might question the inclusion of consensus as a virtue. Its importance

stems from the impossibility to access observer-independent reality which means that exchange

between observers is necessary to find out about what can be taken as real and stable. Consensus

cannot be enforced; as a virtue it refers to behavior that facilitates consensus.

In any case, consensus can only be achieved if researchers attempt to be impartial by taking

into account competing perspectives, avoiding to favor pre-chosen hypotheses, and being open to

criticism. In the context of epidemiology, Greenland (2012) proposes transparency and neutrality

as replacements for objectivity.

Going on, the world outside the observer’s mind plays a key role in usual concepts of objectivity,

and as explained in Section 2.3 we see it as a major target of science. We acknowledge that the

“real world” is only accessible to human beings through observation, and that scientific observation

and measurement cannot be independent of human preconceptions and theories. As statisticians

we are concerned with making general statements based on systematized observations, and this

makes correspondence to observed reality a core concern regarding objectivity. This is not meant to

imply that empirical statements about observations are the only meaningful ones that can be made

about reality; we think that scientific theories that cannot be verified (but potentially be falsified) by

observations are meaningful thought constructs, particularly because observations are never “pure”

and truly independent of thought constructs. Certainly in some cases the measurements, i.e., the

observations the statistician deals with, require critical scrutiny before discussing any statistical

analysis of them, see Section 2.2.

Formal statistical methods contribute to objectivity as far as they contribute to the fulfillment

of these desiderata, particularly by making procedures and their implied rationales transparent and

unambiguous.

For example, Bayesian statistics is commonly characterized as “subjective” by Bayesians and

non-Bayesians alike. But depending on how exactly prior distributions are interpreted and used

(see Sections 5.3–5.5), they fulfill or aid some or all of the virtues listed above. Priors make the

researchers’ prior point of view transparent; different approaches of interpreting them provide dif-

ferent rationales for consensus; “objective Bayesians” (see Section 5.4) try to make them impartial;

and if suitably interpreted (see Section 5.5) they can be properly grounded in observations.

3.2. “Multiple perspectives” and “context dependence,” instead of “subjectivity”

Science is normally seen as striving for objectivity, and therefore acknowledging subjectivity can be

awkward. But as noted above already, reality and the facts are only accessible through individual

personal experiences. Different people bring different information and different viewpoints to the

table, and they will use scientific results in different ways. In order to enable clear communication

and consensus, differing perspectives need to be acknowledged, which contributes to transparency

and thus to objectivity. Therefore, subjectivity is important to the scientific process. Subjectivity

is valuable in statistics in that it represents a way to incorporate the information coming from

differing perspectives, which are the building blocks of scientific consensus.

We propose awareness of multiple perspectives and context dependence as key virtues making

explicit the value of subjectivity. To the extent that subjectivity in statistics is a good thing, it is

because information truly is dispersed, and, for any particular problem, different stakeholders have

different goals. A counterproductive implication of the idea that science should be “objective”

is that there is a tendency in the communication of statistical analyses to either avoid or hide

decisions that cannot be made in an automatic, seemingly “objective” fashion by the available
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data. Given that all observations of reality depend on the perspective of an observer, interpreting

science as striving for a unique (“objective”) perspective is illusory. Multiple perspectives are a

reality to be reckoned with and should not be hidden. Furthermore, by avoiding personal decisions,

researchers often waste opportunities to adapt their analyses appropriately to the context, the

specific background and their specific research aims, and to communicate their perspective more

clearly. Therefore we see the acknowledgment of multiple perspectives and context dependence as

virtues, making clearer in which sense subjectivity can be productive and helpful.

The term “subjective” is often used to characterize aspects of certain statistical procedures that

cannot be derived automatically from the data to be analyzed, such as Bayesian prior distributions,

tuning parameters (for example, the proportion of trimmed observations in trimmed means, or

the threshold in wavelet smoothing), or interpretations of data visualisation. Such decisions are

entry points for multiple perspectives and context dependence. The first decisions of this kind are

typically the choice of data to be analyzed and the family of statistical models to be fit.

To connect with the other part of our proposal, the recognition of different perspectives should

be done in a transparent way. We should not say we set a tuning parameter to 2.5 (say) just

because that is our belief. Rather, we should justify the choice explaining clearly how it supports

the research aims. This could be by embedding the choice in a statistical model that can ultimately

be linked back to observable reality and empirical data, or by reference to desirable characteristics

(or avoidance of undesirable artifacts) of the methodology given the use of the chosen parameter;

actually, many tuning parameters are related to such characteristics and aims of the analysis rather

than to some assumed underlying “belief” (see Section 4.3). In many cases, such a justification

may be imprecise, for example because background knowledge may be only qualitative and not

quantitative or not precise enough to tell possible alternative choices apart, but often it can be

argued that even then conscious tuning or specification of a prior distribution comes with benefits

compared to using default methods of which the main attraction often is that seemingly “subjective”

decisions can be avoided.

To consider an important example, regularization requires such decisions. Default priors on

regression coefficients are used to express the belief that coefficients are typically close to zero,

and from a non-Bayesian perspective, lasso shrinkage can be interpreted as encoding an external

assumption of sparsity. Sparsity assumptions can be connected to an implicit or explicit model in

which problems are in some sense being sampled from some distribution or probability measure of

possible situations; see Section 5.5. This general perspective (which can be seen as Bayesian with

an implicit prior on states of nature, or classical with an implicit reference set for the evaluation of

statistical procedures) provides a potential basis to connect choices to experience; at least it makes

transparent what kind of view of reality is encoded in the choices.

Tibshirani (2014) writes that enforcing sparsity is not primarily motivated by beliefs about

the world, but rather by benefits such as computability and interpretability, hinting at the fact

that considerations other than being “close to the real world” often play an important role in

statistics and more generally in science. Even in areas such as social science where no underlying

truly sparse structure exists, imposing sparsity can have advantages such as supporting stability

(Gelman, 2013).

In a wider sense, if one is performing a linear or logistic regression, for example, and considering

options of maximum likelihood, lasso, or hierarchical Bayes with a particular structure of priors,

all of these choices are “subjective” in the sense of encoding aims regarding possible outputs and

assumptions, and all are “objective” as far as these aims and assumptions are made transparent and

the assumptions can be justified based on past data and ultimately be checked given enough future

data. So the conventional labeling of Bayesian analyses or regularized estimates as “subjective”
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misses the point.

For another example, the binomial-data confidence interval based on (y+2)/(n+4) gives better

coverage than the classical interval based on y/n (Agresti and Coull, 1998). Whereas the latter has

a straightforward justification, the former is based on trading interval width against conservatism

and involves some approximation and simplification, which the authors justify by the fact that the

resulting formula can be presented in elementary courses. Debating whether this is more subjective

than the classical approach, and whether this is a problem, is not helpful. Similarly, when comparing

Bayesian estimates of public opinion using multilevel regression and poststratification to taking raw

survey means (which indeed correspond to Bayesian analyses under unreasonable flat priors), it is

irrelevant which is considered more subjective.

Tuning parameters can be set or estimated based on past data, and also based on understanding

of the impact of the choice on results and a clear explanation why a certain impact is desired or

not. In robust statistics, for example, the breakdown point of some methods can be tuned and may

be chosen lower than the optimal 50%, because if there is a too large percentage of data deviating

strongly from the majority, one may rather want the method to deliver a compromise between

all observations, but if the percentage of outliers is quite low, one may rather want them to be

disregarded, with borderline percentages depending on the application (particularly on to what

extent outliers are interpreted as erroneous observations rather than as somewhat special but still

relevant cases).

Here is an example in which awareness of multiple perspectives can help with a problem with

impartiality. Simulation studies for comparing statistical methods are often run by the designers

of one of the competing approaches, and even if this is not the case, the person running the study

may have prior opinions about the competitors that may affect the study. There is simply no

“objective” way how this can be avoided; taking into account multiple perspectives by for example

asking designers of all competing methods to provide simulation setups might help here.

3.3. Stability

As outlined in Section 2.3, we believe that science aims at a stable and reliable view of reality.

Human beings do not have direct access to observer-independent reality, but phenomena that

remain stable when perceived through different channels, at different times, and that are confirmed

as stable by different observers, are the best contenders to be attributed “objective existence.”

The term stability is hard to find in philosophical accounts of objectivity, but it seems that

Mayo’s (1996) view of the growth of experimental knowledge through piecemeal testing of aspects

of scientific theories and learning from error (which to her is a key feature of objectivity) implicitly

aims at probing the stability of these theories. Stability is also connected to subjectivity in the

sense that in the best case stability persists under inquiry from as many perspectives and in as

many contexts as possible.

The accommodation and analysis of variability is something that statistical modeling brought

to science, and in this sense statisticians investigate stability (of observations as well as of the

statistics and estimators computed from them) all the time. An investigation of stability just based

on variability assuming a parametric model is quite narrow, though, and there are many further

sources of potential instabilities. Stability can refer to reproducibility of conclusions on new data,

or to alternative analyses of the same data making different choices regarding for example tuning

constants, Bayesian priors, transformations, resampling, removing outliers, or even completely

different methodology as far as this aims at investigating the same issue (alternative analyses that

can be interpreted as doing something essentially different cannot expected to deliver a similar
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result). On the most basic (but not always trivial) level, the same analysis on the same data

should be replicable by different researchers. In statistical theory, basic variability assuming a

parametric model can be augmented by robustness against various violations of model assumptions

and Bayesian sensitivity analysis.

There are many aspects of stability that can be investigated, and only so much can be expected

from a single study or publication; the generation of reliable scientific knowledge generally requires

investigation of phenomena from more points of view than that of a single researcher or team.

3.4. A list of specific virtues

To summarize the above discussion, here is a more detailed list of the virtues discussed above, which

we think will improve on discussions in which approaches, analyses and arguments are branded

“subjective” or “objective”:

1. Transparency:

(a) Clear and unambiguous definitions of concepts,

(b) Open planning and following agreed protocols,

(c) Full communication of reasoning, procedures, spelling out of (potentially unverifiable)

assumptions and potential limitations;

2. Consensus:

(a) Accounting for relevant knowledge and existing related work,

(b) Following generally accepted rules where possible and reasonable,

(c) Provision of rationales for consensus and unification;

3. Impartiality:

(a) Thorough consideration of relevant and potentially competing theories and points of

view,

(b) Thorough consideration and if possible removal of potential biases: factors that may

jeopardize consensus and the intended interpretation of results,

(c) Openness to criticism and exchange;

4. Correspondence to observable reality:

(a) Clear connection of concepts and models to observables,

(b) Clear conditions for reproduction, testing, and falsification;

5. Awareness of multiple perspectives;

6. Awareness of context dependence:

(a) Recognition of dependence on specific contexts and aims,

(b) Honest acknowledgment of the researcher’s position, goals, experiences, and subjective

point of view;

7. Investigation of stability:

(a) Consequences of alternative decisions and assumptions that could have been made in

the analysis,

(b) Variability and reproducibility of conclusions on new data.
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In the subsequent discussion we refer to the item numbers in the above list starting by V for

virtue, such as V4b for “clear conditions for reproduction, testing, and falsification.”

We are aware that in some situations some of these virtues may oppose each other, for example

“consensus” can contradict “awareness of multiple perspectives,” and indeed dissent is essential to

scientific progress. This tension between impersonal consensus and creative debate is an unavoidable

aspect of science. Sometimes the consensus can only be that there are different legitimate points of

view. Furthermore, the listed virtues are not all fully autonomous; clear reference to observations

may be both a main rationale for consensus and a key contribution to transparency; and the

subjective virtues contribute to both transparency and openness to criticism and exchange.

Not all items on the list apply to all situations. For example, in Section 5 we apply the list to

the foundations of statistics, but some virtues (such as full communication of procedures) rather

apply to specific studies.

4. Applied examples

In conventional statistics, assumptions are commonly minimized. Classical statistics and econo-

metrics is often framed in terms of robustness, with the goal being methods that work with minimal

assumptions. But the decisions about what information to include and how to frame the model—

these are typically buried, not stated formally as assumptions but just baldly stated: “Here is the

analysis we did . . . ,” sometimes with the statement or implication that these have a theoretical

basis but typically with little clear connection between subject-matter theory and details of mea-

surements. From the other perspective, Bayesian analyses are often boldly assumption-based but

with the implication that these assumptions, being subjective, need no justification and cannot be

checked from data.

We would like statistical practice, Bayesian and otherwise, to move toward more transparency

regarding the steps linking theory and data to models, and recognition of multiple perspectives in

the information that is included in this paper trail and this model. In this section we show how

we are trying to move in this direction in some of our recent research projects. We present these

examples not as any sort of ideals but rather to demonstrate how we are grappling with these ideas

and, in particular, the ways in which active awareness of the concepts of transparency, consensus,

impartiality, correspondence to observable reality, multiple perspectives and context dependence is

changing our applied work.

4.1. A hierarchical Bayesian model in pharmacology

Statistical inference in pharmacokinetics/pharmacodynamics involves many challenges: data are

indirect and often noisy; the mathematical models are nonlinear and computationally expensive,

requiring the solution of differential equations; and parameters vary by person but often with only

a small amount of data on each experimental subject. Hierarchical models and Bayesian inference

are often used to get a handle on the many levels of variation and uncertainty (see, for example,

Sheiner, 1984, and Gelman, Bois, and Jiang, 1996).

One of us is currently working on a project in drug development involving a Bayesian model

that was difficult to fit, even when using advanced statistical algorithms and software. Following

the so-called folk theorem of statistical computing (Gelman, 2008), we suspected that the problems

with computing could be attributed to a problem with our statistical model. In this case, the issue

did not seem to be lack of fit, or a missing interaction, or unmodeled measurement error—problems

we had seen in other settings of this sort. Rather, the fit appeared to be insufficiently constrained,
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with the Bayesian fitting algorithm being stuck going through remote regions of parameter space

that corresponded to implausible or unphysical parameter values.

In short, the model as written was only weakly identified, and the given data and priors were

consistent with all sorts of parameter values that did not make scientific sense. Our iterative

Bayesian computation had poor convergence—that is, the algorithm was having difficulty approx-

imating the posterior distribution—and the simulations were going through zones of parameter

space that were not consistent with the scientific understanding of our pharmacology colleagues.

To put it another way, our research team had access to prior information that had not been

included in the model. So we took the time to specify a more informative prior. The initial model

thus played the role of a placeholder or default which could be elaborated as needed, following the

iterative prescription of falsificationist Bayesianism (Box, 1980, Gelman et al., 2013, Section 5.5).

In our experience, informative priors are not so common in applied Bayesian inference, and

when they are used, they often seem to be presented without clear justification. In this instance,

though, we decided to follow the principle of transparency and write a note explaining the genesis

of each prior distribution. To give a sense of what we’re talking about, we present a subset of these

notes here:

• γ1: mean of population distribution of log(BVAlatent
j /50), centered at 0 because the mean of the

BVA values in the population should indeed be near 50. We set the prior sd to 0.2 which is close to
log(60/50) = 0.18 to indicate that we’re pretty sure the mean is between 40 and 60.

• γ2: mean of pop dist of log(kinj /k
out
j ), centered at 3.7 because we started with −2.1 for kin and −5.9 for

kout, specified from the literature about the disease. We use a sd of 0.5 to represent a certain amount
of ignorance: we’re saying that our prior guess for the population mean of kin/kout could easily be off
by a factor of exp(0.5) = 1.6.

• γ3: mean of pop dist of log koutj , centered at −5.8 with a sd of 0.8, which is the prior that we were
given before, from the time scale of the natural disease progression.

• γ4: logE0
max, centered at 0 with sd 2.0 because that’s what we were given earlier.

The γ’s here already represent a transformation of the original parameters, BVA (baseline visual

acuity; this is a drug for treating vision problems), kin and kout (rate constants for differential

equations that model the diffusion of the drug), and E0
max, a saturation parameter in the model.

One goal in this sort of work is to reparameterize to unbounded scales (so that normal distributions

are more reasonable, and we can specify parameters based on location and scale) and to aim for

approximate independence in the prior distribution because of the practical difficulties of eliciting

prior correlations. The “literature about the disease” comes from previously published trials of

other drugs for this disease; these trials also include control arms which give us information on the

natural progression of visual acuity in the absence of any treatment.

We see this sort of painfully honest justification as a template for future Bayesian data analyses.

The above snippet certainly does not represent an exemplar of best practices, but we see it as a

“good enough” effort that presents our modeling decisions in the context in which they were made.

To label this prior specification as “objective” or “subjective” would miss the point. Rather, we

see it as having some of the virtues of objectivity and subjectivity—notably, transparency (V1) and

some aspects of consensus (V2) and awareness of multiple perspectives (V5)—while recognizing its

clear imperfections and incompleteness. Other desirable features would derive from other aspects

of the statistical analysis—for example, we use external validation to approach correspondence to

observable reality (V4), and our awareness of context dependence (V6) comes from the placement

of our analysis within the larger goal, which is to model dosing options for a particular drug.
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One concern about our analysis which we have not yet thoroughly addressed is sensitivity to

model assumptions. We have established that the prior distribution makes a difference but it is

possible that different reasonable priors yield posteriors with greatly differing real-world implica-

tions, which would raise concern about consensus (V2) and impartiality (V3). Our response to

such concerns, if this sensitivity is indeed a problem, would be to more carefully document our

choice of prior, thus doubling down on the principle of transparency (V1) and to compare to other

possible prior distributions supported by other information, thus supporting impartiality (V3) and

awareness of multiple perspectives (V5).

The point is not that our particular choices of prior distributions are “correct” (whatever that

means), or optimal, or even good, but rather that they are transparent, and in a transparent way

connected to knowledge. Subsequent researchers—whether supportive, critical, or neutral regarding

our methods and substantive findings—should be able to interpret our priors (and, by implication,

our posterior inferences) as the result of some systematic process, a process open enough that it

can be criticized and improved as appropriate.

4.2. Adjustments for pre-election polls

Wang et al. (2014) describe another of our recent applied Bayesian research projects, in this case a

statistical analysis that allows highly stable estimates of public opinion by adjustment of data from

non-random samples. The particular example used was an analysis of data from an opt-in survey

conducted on the Microsoft Xbox video game platform, a technique that allowed the research team

to, effectively, interview respondents in their living rooms, without ever needing to call or enter

their houses.

The Xbox survey was performed during the two months before the 2012 U.S. presidential

election. In addition to offering the potential practical benefits of performing a national survey

using inexpensive data, this particular project made use of its large sample size and panel structure

(repeated responses on many thousands of Americans) to learn something new about U.S. politics:

we found that certain swings in the polls, which had been generally interpreted as representing large

swings in public opinion, actually could be attributed to differential nonresponse, with Democrats

and Republicans in turn being more or less likely to respond during periods where there was good

or bad news about their candidate. This finding was consistent with some of the literature in

political science (see Erikson, Panagopoulos, and Wlezien, 2004), but the Xbox study represented

an important empirical confirmation (Gelman, Goel, et al., 2016).

Having established the potential importance of the work, we next consider its controversial

aspects. For many decades, the gold standard in public opinion research has been probability

sampling, in which the people being surveyed are selected at random from a list or lists (for

example, selecting households at random from a list of addresses or telephone numbers and then

selecting a person within each sampled household from a list of the adults who live there). From this

standpoint, opt-in sampling of the sort employed in the Xbox survey lacks a theoretical foundation,

and the estimates and standard errors thus obtained (and which we reported in our research papers)

do not have a clear statistical interpretation.

This criticism—that inferences from opt-in surveys lack a theoretical foundation—is interesting

to us here because it is not framed in terms of objectivity or subjectivity. We do use Bayesian

methods for our survey adjustment but the criticism from certain survey practitioners is not about

adjustment but rather about the data collection: they take the position that no good adjustment

is possible for data collected from a non-probability sample.

As a practical matter, our response to this criticism is that nonresponse rates in national
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random-digit-dialed telephone polls are currently in the range of 90%, which implies that real-

world surveys of this sort are essentially opt-in samples in any case: If there is no theoretical

justification for non-random samples then we are all dead, which leaves us all with the choice to

either abandon statistical inference entirely when dealing with survey data, or to accept that our

inferences are model-based and do our best (Gelman, 2014c).

Our Bayesian adjustment model (Wang et al., 2014) used prior information in two ways. First,

population distributions of demographics, state of residence, and party identification were imputed

using exit poll data from the previous election; from the survey sampling perspective this was a

poststratification step, and from the political science perspective this represents an assumption of

stability in the electorate from 2008 to 2012. The second aspect of prior information was encoded

in our hierarchical logistic regression model, in which varying intercepts for states and for different

demographic factors were modeled as exchangeable batches of parameters drawn from normal

distributions. These assumptions are necessarily approximate and are thus ultimately justified on

pragmatic grounds.

We shall now express this discussion using the criteria from Section 3.4. Probability sampling

has the clear advantage of transparency (V1) in that the population and sampling mechanism can

be clearly defined and accessible to outsiders, in a way that an opt-in survey such as the Xbox

is not. In addition, the probability sampling has the benefits of consensus (V2), at least in the

United States, where such surveys have a long history and are accepted in marketing and opinion

research. Impartiality (V3) and correspondence to observable reality (V4) are less clearly present

because of the concern with nonresponse, just noted. We would argue that the large sample size

and repeated measurements of the Xbox data, coupled with our sophisticated hierarchical Bayesian

adjustment scheme, put us well on the road to impartiality (through the use of multiple sources

of information, including past election outcomes, used to correct for biases in the form of known

differences between sample and observation) and correspondence to observable reality (in that the

method can be used to estimate population quantities that could be validated from other sources).

Regarding the virtues associated with subjectivity, the various adjustment schemes represent

awareness of context dependence (V6) in that the choice of variables to match in the population

depend on the context of political polling, both in the sense of which aspects of the population are

particularly relevant for this purpose, and in respecting the awareness of survey practitioners of

what variables are predictive of nonresponse. The researcher’s subjective point of view is involved

in the choice of exactly what information to include in weighting adjustments and exactly what

statistical model to fit in regression-based adjustment. Users of probability sampling on grounds of

“objectivity” may shrink from using such judgments, and may therefore ignore valuable information

from the context.

4.3. Transformation of variables in cluster analysis for socioeconomic stratification

Cluster analysis aims at grouping together similar objects and separating dissimilar ones, and as

such is based, explicitly or implicitly, on some measure of dissimilarity. Defining such a measure,

for example using some set of variables characterizing the objects to be clustered, can involve

many decisions. Here we consider an example of Hennig and Liao (2013), where we clustered data

from the 2007 U.S. Consumer Finances Survey, comprising variables on income, savings, housing,

education, occupation, number of checking and savings accounts, and life insurance with the aim

of data-based exploration of socioeconomic stratification. The choice of variables and the decisions

of how they are selected, transformed, standardized, and weighted has a strong impact on the

results of the cluster analysis. This impact depends to some extent on the clustering technique that
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is afterwards applied to the resulting dissimilarities, but will typically be considerable, even for

cluster analysis techniques that are not directly based on dissimilarities. One of the various issues

discussed by Hennig and Liao (2013) was the transformation of the variables treated as continuous

(namely income and savings amount), with the view of basing a cluster analysis on a Euclidean

distance after transformation, standardization, and weighting of variables.

There is some literature on choosing transformations, but the usual aims of transformation,

namely achieving approximate additivity, linearity, equal variances, or normality, are often not

relevant for cluster analysis, where such assumptions only apply to model-based clustering, and

only within the clusters, which are not known before transformation.

The rationale for transformation when setting up a dissimilarity measure for clustering is of

a different kind. The measure needs to formalize appropriately which objects are to be treated

as “similar” or “dissimilar” by the clustering methods, and should therefore be put into the same

or different clusters, respectively. In other words, the formal dissimilarity between objects should

match what could be called the “interpretative dissimilarity” between objects. This is an issue

involving subject-matter knowledge that cannot be decided by the data alone.

Hennig and Liao (2013) argue that the interpretative dissimilarity between different savings

amounts is governed rather by ratios than by differences, so that $2 million of savings is seen as

about as dissimilar from $1 million, as $2,000 is dissimilar from $1,000. This implies a logarithmic

transformation. We do not argue that there is a precise argument that privileges the log trans-

formation over other transformations that achieve something similar, and one might argue from

intuition that even taking logs may not be strong enough. We therefore recognize that any choice

of transformation is a provisional device and only an approximation to an ideal “interpretative

dissimilarity,” even if such an ideal exists.

In the dataset, there are no negative savings values as there is no information on debts, but

there are many people who report zero savings, and it is conventional to kludge the logarithmic

transformation to become x 7→ log(x + c) with some c > 0. Hennig and Liao then point out that,

in this example, the choice of c has a considerable impact on clustering. The number of people

with very low but nonzero savings in the dataset is rather small. Setting c = 1, for example, the

transformation creates a substantial gap between the zero savings group and people with fairly

low (but nonzero) amounts of savings, and of course this choice is also sensitive to scaling (for

example, savings might be coded in dollars, or in thousands of dollars). The subsequent cluster

analysis (done by “partitioning around medoids”; Kaufman and Rousseeuw, 1990) would therefore

separate the zero savings group strictly; no person with zero savings would appear together in a

cluster with a person with nonzero savings. For larger values for c, the dissimilarity between the

zero savings group and people with a low savings amount becomes effectively small enough that

people with zero savings could appear in clusters together with other people, as long as values on

other variables are similar enough.

We do not believe that there is a true value of c. Rather, clusterings arising from different

choices of c are legitimate but imply different interpretations. The clustering for c = 1 is based on

treating the zero savings group as special, whereas the clustering for c = 200, say, implies that a

difference in savings between 0 and $100 is taken as not such a big deal (although it is a bigger

deal in any case than the difference between $100 and $200). Similar considerations hold for issues

such as selecting and weighting variables and coding ordinal variables.

It can be frustrating to the novice in cluster analysis that such decisions for which there do not

seem to be an objective basis can make such a difference, and there is apparently a strong temptation

to ignore the issue and to just choose c = 1, which may look natural in the sense that it maps zero

onto zero, or even to avoid transformation at all in order to avoid the discussion, so that no obvious
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lack of objectivity strikes the reader. Having the aim of socioeconomic stratification in mind,

though, it is easy to argue that clusterings that result from ignoring the issue are less desirable and

useful than a clustering obtained from making a however imprecisely grounded decision choosing

c > 1, therefore avoiding either separation of the zero savings group as a clustering artifact or

an undue domination of the clustering by people with large savings in case of not applying any

transformation at all.

We believe that this kind of tuning problem that cannot be interpreted as estimating an unknown

true constant (and does therefore not lend itself naturally to an approach through a Bayesian prior)

is not exclusive to cluster analysis, and is often hidden in presentations of data analyses.

Hennig and Liao (2013) pointed out the issue and did some sensitivity analysis about the

strength of the impact of the choice of c (V7a). The way we picked c in that paper made clear

reference to the context dependence, while being honest that the subject-matter knowledge in this

case provided only weak guidelines for making this decision (V6). We were also clear that alternative

choices would amount to alternative perspectives rather than being just wrong (V5, V3).

The issue how to foster consensus and to make a connection to observable reality (V2, V4) is

of interest, but not treated here.

But it is problematic to establish rationales for consensus that are based on ignoring context

and potentially multiple perspectives. There is a tendency in the cluster analysis literature to seek

formal arguments for making such decisions automatically (see, for example, Everitt et al., 2011,

Section 3.7, on variable weighting; it is hard to find anything systematic in the clustering literature

on transformations), trying to optimize “clusterability” of the dataset, or preferring methods that

are less sensitive to such decisions, because this amounts to making the decisions implicitly without

giving the researchers access to them. In other words, the data are given the authority to determine

not only which objects are similar (which is what we want them to do), but also what similarity

should mean. The latter should be left to the researcher, although we acknowledge that the data

can have a certain impact: for example the idea that dissimilarity of savings amounts is governed by

ratios rather than differences is connected to (but not determined by) the fact that the distribution

of savings amounts is skewed, with large savings amounts sparsely distributed.

4.4. Testing for homogeneity against clustering

An issue in Hennig and Liao (2013) was whether there is actually any meaningful clustering to be

found in the data. Some sociologists suspect that, in many modern democratic societies, strati-

fication may represent no more than a drawing of arbitrary borders through a continuum of so-

cioeconomic conditions. We were interested in what the data have to say on this issue, and chose

to address this by running a test of a homogeneity null hypothesis against a clustering alternative

(knowing that there is some distance to go between the result of such an analysis and the “desired”

sociological interpretation).

Had we been concerned primarily with appearing objective and the ease to achieve a significant

result, probably we’d have chosen a likelihood ratio test of the null hypothesis of a standard

homogeneity model (in the specific situation this could have been a Gaussian distribution for the

continuous variables, an uncorrelated adjacent category ordinal logit model for ordinal variables and

a locally independent multinomial model for categorical data) for a single mixture component in

the framework of mixture models as provided, e.g., in the LatentGOLD software package (Vermunt

and Magidson, 2016).

But even in the absence of meaningful clusters, real data don’t follow such clean distributional

shapes and therefore large enough datasets (including ours, with n > 17, 000) will almost always
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reject a simple homogeneity model. We therefore set out to build a null model that captured the

features of the dataset such as the dependence between variables and marginal distributions of

the categorical variables as well as possible, without involving anything that could be interpreted

as clustering structure. As opposed to the categorical variables, the marginal distributions of

the “continuous” variables such as the transformed savings amount were treated as potentially

indicating clustering, and therefore the null model used nonparametric unimodal distributions for

them. Data from this null model involving several characteristics estimated from the data could be

simulated using parametric bootstrap.

As test statistic we used a cluster validity statistic of the clustering computed on the data,

which was not model-based but dissimilarity-based. The idea behind this was that we wanted a

test statistic which would measure the degree of clustering, so that we could find out how much

“clustering” one could expect to see even if no meaningful clustering was present (under the null

model). Actually we computed clusterings for various numbers of clusters. Rather than to somehow

define a single p-value from aggregating all these clusterings (or selecting the “best” one), we decided

to show a plot of the values of the validity statistic for the different numbers of clusters for the real

dataset together with the corresponding results for many datasets simulated from the null model.

The result of this showed clearly that a higher level of clustering was found in the real dataset.

In doing this, we deviated from classical significance test logic in several ways, by not using a

test statistic that was optimal test against any specific alternative, by not arguing from a single

p-value, and by using a null model that relied heavily on the data in order to try as hard as we

can to model the data without clustering. Still, in case that the validity statistic values for the real

data don’t look clearly different from those of the bootstrapped dataset, this can be interpreted

as no evidence in the data for real clustering, whereas the interpretation of a clear (“significant”)

difference depends on whether we can argue convincingly that the null model is as good as it gets

at trying to model the data without clustering structure. Setting up a straw man null model for

homogeneity and rejecting it would have been easy and not informative. The general principle is

discussed in more detail in Hennig and Lin (2015), including real data examples where such a null

model could not be rejected, as opposed to a straw man model.

The essence here is that we made quite a number of decisions that opened our analysis more

clearly to the charge of “not being objective” than following a standard approach, for the sake of

adapting the analysis better to the specific data in hand, and of giving the null hypothesis the best

possible chance (the non-rejection of it would have been a non-discovery here; the role of it wasn’t

to be “accepted” as “true” anyway).

We tried to do good science, though, by checking as impartially and transparently as we could

(V1, V3), whether the data support the idea of a real clustering (V4). This involved context

dependent judgment (V6) and the transparent choice of a specific perspective (the chosen validity

index) among a potential variety (V5), because we were after more qualitative statements than

degrees of belief in certain models.

5. Decomposing subjectivity and objectivity in the foundations of statistics

In this section, we use the above list of virtues to revisit aspects of the discussion on fundamental

approaches to statistics, for which the terms “subjective” and “objective” typically play a dominant

role. We discuss what we perceive to be the major streams of the foundations of statistics, but within

each of these streams there exist several different approaches, which we cannot cover completely in

such a paper; rather we sketch the streams somewhat roughly and refer to only a single or a few

leading authors for details where needed.
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Here, we distinguish between interpretations of probability, and approaches for statistical in-

ference. For example, “frequentism” as an interpretation of probability does not necessarily imply

that Fisherian or Neyman-Pearson tests are preferred to Bayesian methods, despite the fact that

frequentism is more often associated with the former than with the latter.

We shall go through several philosophies of statistical inference, for each laying out the connec-

tions we see to the virtues of objectivity and subjectivity outlined in Section 3.4.

Exercising awareness of multiple perspectives, we emphasize that we do not believe that one

of these philosophies is the correct or best one, nor do we claim that reducing the different ap-

proaches to a single one would be desirable. What is lacking here is not unification, but rather,

often, transparency about which interpretation of probabilistic outcomes is intended when applying

statistical modeling to specific problems. Particularly, we think that, depending on the situation,

both “aleatory” or “epistemic” approaches to modeling uncertainty are legitimate and worthwhile,

referring to data generating processes in observer-independent reality on one hand and rational

degrees of belief on the other.

We focus on approaches that are conventionally labeled as either Bayesian or frequentist, but

we acknowledge that there are important perspectives on statistics that lie outside this traditional

divide. Discussing them in detail would be worthwhile but is beyond our focus, and we hope

that discussants of our paper will pick up these threads. Examples of other perspectives include

machine learning, where the focus is on prediction rather than parameter estimation, thus there is

more emphasis on correspondence to observable reality (V4) compared to other virtues; alternative

models of uncertainty such as belief functions, imprecise probabilities, and fuzzy logic that aim

to get around some of the limitations of probability theory (most notoriously, the difficulty of

distinguishing between “known unknowns” and “unknown unknowns,” or risk and uncertainty in

the terminology of Knight, 1921); and exploratory data analysis (Tukey, 1977), which is sensitive to

multiple perspectives (V5) and context dependence (V6), and tries to be more directly connected

to the data than if it was mediated by probability models (V4a). Whether avoidance of probability

modeling contributes to transparency (V1a) is rather problematic because implicit assumptions

may not be spelled out (V1c) can be controversial.

5.1. Frequentist probabilities

“Frequentism” as an interpretation of probability refers, in a narrow sense, to the identification of

the probability of an event in a certain experiment with a limiting relative frequency of occurrences

if the experiment were to be carried out infinitely often in some kind of independent manner. Fre-

quentist statistics is based on evaluating procedures based on a long-term average over a “reference

set” of hypothetical replicated data sets. Different choices of reference sets are for example used

by Fisher (1955) and Pearson (1955) when discussing permutation or χ2 tests for 2×2 tables.

In the wider sense, we call probabilities “frequentist” when they formalize observer-independent

tendencies or propensities of experiments to yield certain outcomes (see, for example, Gillies, 2000),

which are thought of as replicable and yielding a behavior under infinite replication as suggested

by what is assumed to be the “true” probability model.

The frequentist mindset locates probabilities in the observer-independent world, so they are

in this sense objective (and often called “objective” in the literature, e.g., Kendall, 1949). This,

however, doesn’t guarantee that frequentist probabilities really exist; an infinite number of replicates

cannot exist, and even a finite amount of real replicates will neither be perfectly identical nor

perfectly independent. Ultimately the ideally infinite populations of replicates are constructed by

the “statistician’s imagination” (Fisher, 1955).
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The decision to adopt the frequentist interpretation of probability regarding a certain phe-

nomenon therefore requires idealization. It cannot be enforced by observation, and neither is there

general enough consensus that this interpretation applies to any specific setup, although it is well

discussed and supported in some physical settings such as radioactive decay (V2, V4). Once a fre-

quentist model is adopted, however, it makes predictions about observations that can be checked,

so the reference to the observable reality (V4) is clear.

There is some disagreement about whether the frequentist definition of probability is clear and

unambiguous (V1a). On one hand, the idea of a tendency of an experiment to produce certain

outcomes as manifested in observed and expected relative frequencies seems clear enough. On the

other hand, it is difficult to avoid the circularity that would result from referring to independent

and identical replicates when defining frequentist probabilities, because the standard definition of

the terms “independent” and “identical” assumes a definition of probability already in place (see

von Mises, 1957, for a prominent attempt to solve this, and Fine, 1973, for a criticism).

Frequentism implies that, in the observer-independent reality, true probabilities are unique,

but there is considerable room for multiple perspectives (V5) regarding the definition of replicable

experiments, collectives, or reference sets. The idea of replication is often constructed in a rather

creative way. For example, in time series modeling the frequentist interpretation implies an un-

derlying true distribution for every single time point, but there is no way to repeat observations

independently at the same time point. This actually means that the effective sample size for time

series data would be 1, if replication were not implicitly constructed in the statistical model, for

example by assuming independent innovations in ARMA-type models. Such models, or, more pre-

cisely, certain aspects of such models, can be checked against the data, but even if such a check

does not fail, it is still clear that there is no such thing in observable reality, even approximately,

as a marginal “true” frequentist distribution of the value of the time series xt at fixed t, as implied

by the model, because xt is strictly not replicable.

The issue that useful statistical models require a construction of replication (or exchangeability)

on some level by the statistician, is, as we discuss below, not confined to frequentist models. In

order to provide a rationale for the essential statistical task of pooling information from many

observations to make inference relevant for future observations, all these observations need to be

assumed to somehow represent the same process.

The appropriateness of such assumptions in a specific situation can often only be tested in a

quite limited way by observations. All kinds of informal arguments can apply about why it is a

good or bad idea to consider a certain set of observations (or unobservable implied entities such as

error terms and latent variables) as independent and identically distributed frequentist replicates.

Unfortunately, although such an openness to multiple perspectives and potential context-de-

pendence (V6a) can be seen as positive from our perspective, these issues involved in the choices

of a frequentist reference set are often not clearly communicated and discussed. The existence of

a true model with implied reference set is typically taken for granted by frequentists, motivated at

least in part by the desire for objectivity.

5.2. Frequentist inference

This section is about inference from data about characteristics of an assumed true frequentist prob-

ability model. Traditionally, this comprises hypothesis tests, confidence intervals and parameter

estimators, but is not limited to them, see below.

According to Mayo and Spanos (2010) and Cox and Mayo (2010), a fundamental feature of

frequentist inference is the evaluation of error probabilities, i.e., probabilities of wrong decisions.
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Traditionally these would be the Type I and Type II errors of Neyman-Pearson hypothesis testing,

but the the error-statistical perspective could also apply to other constructs such as errors of sign

and magnitude (“Type S” and “Type M” errors; Gelman and Carlin, 2014).

Mayo and co-authors see the ability to learn from error and to test models severely (in such a

way that it would be hard for a model to pass a test if it was wrong regarding the specific aspect

assessed by a test) against data as a major feature of objectivity, which is made possible by the

frequentist interpretation of probability measures as “data generators.” In our list of virtues, this

feature is captured in V4b (reference to observations: reproduction, testing, falsification). The

underlying idea, with which we agree, is that learning from error is a main driving force in science,

a lifetime contract between the mode of statistical investigation and its object. This corresponds

to Chang’s active scientific realism mentioned above.

The error probability characteristics of methods for frequentist inference rely, in general, on

model assumptions. In principle, these assumptions can be tested, too, and are therefore, according

to Mayo and co-authors, no threat to the objectivity of the account. But this comes with two

problems. Firstly, derivations of statistical inference based on error probabilities typically assume

the model as fixed and do not account for prior model selection based on the data. This issue has

recently attracted some research (for example, Berk et al., 2013), but this still requires a transparent

listing of all the possible modeling decisions that could be made (V1b), which often is missing, and

which may not even be desirable as long as the methods are used in an exploratory fashion (Gelman

and Loken, 2014). Secondly, any dataset can be consistent with many models, which can lead to

divergent inferences. Davies (2014) illustrates this with the analysis of a dataset on amounts of

copper in drinking water, which can be fitted well by a Gaussian, a double exponential, and a comb

distribution, but yields vastly different confidence intervals for the center of symmetry (which is

assumed to be the target of inference) under these three models.

Davies suggests that it is misleading to hypothesize models or parameters to be “true.” Accord-

ing to Davies, statistical modeling is about approximating the data in the sense that “adequate”

models are not rejected by tests based on characteristics of the data the statistician is interested

in (allowing for multiple perspectives and context dependence, V5, V6), i.e., they generate data

that “look like” the observed data with respect to the chosen characteristics. Regarding these

characteristics, according to Davies, there is no essential difference between parameter values and

distributional shapes or structural assumptions, and therefore no conceptual separation as in tra-

ditional frequentist inference between checking model assumptions and inference about parameters

assuming a parametric model to be true. Such an approach is tied to the observations in a more

direct way without making metaphysical assumptions about unobservable features of observer-

independent reality (V1a, V4). It is frequentist inference in the sense that the probability models

are interpreted as “data generators.”

Two further streams in frequentist inference are concerned about the restrictivity of parametric

model assumptions. Robust statistics explores the stability (V7) of inferences in case that the “true”

model is not equal to the nominal model but rather in some neighborhood, and strives to develop

methods that are stable in this respect. There are various ways to define such neighborhoods and

to measure robustness, so robustness considerations can bring in multiple perspectives (V5) but

may cause problems with reaching consensus (V2).

Nonparametric statistics allows to remove bias (V3c) by minimizing assumptions regarding,

e.g., distributional shapes (structural assumptions such as independence are still required). In

some cases, particularly with small datasets, this has to be afforded by decreased stability (V7).

Overall, there is no shortage of entry points for multiple perspectives (V5) in frequentist infer-

ence. This could be seen as something positive, but it runs counter to some extent to the way the
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approach is advertised as objective by some of its proponents. Many frequentist analyses could in

our opinion benefit from acknowledging honestly their flexibility and the researcher’s choices made,

many of which cannot be determined by data alone.

5.3. Subjectivist Bayesianism

We call “subjectivist epistemic” the interpretation of probabilities as quantifications of strengths

of belief of an individual, where probabilities can be interpreted as derived from, or implementable

through, bets that are coherent in that no opponent can cause sure losses by setting up some

combinations of bets. From this requirement of coherence, the usual probability axioms follow

(V2c). Allowing conditional bets implies Bayes’s theorem, and therefore, as far as inference concerns

learning from observations about not (yet) observed hypotheses, Bayesian methodology is used for

subjectivist epistemic probabilities, hence the term “subjectivist Bayesianism.”

A major proponent of subjectivist Bayesianism was Bruno de Finetti (1974). De Finetti was not

against objectivity in general. He viewed observed facts as objective, as well as mathematics and

logic and certain formal conditions of random experiments such as the set of possible outcomes. But

he viewed uncertainty as something subjective and he held that objective (frequentist) probabilities

do not exist. He claimed that his subjectivist Bayesianism appropriately takes into account both

the objective (see above) and subjective (opinions about unknown facts based on known evidence)

components for probability evaluation.

In de Finetti’s work the term “prior” refers to all probability assignments using information

external to the data at hand, with no fundamental distinction between the “parameter prior”

assigned to parameters in a model, and the form of the “sampling distribution” given a fixed

parameter, in contrast to common Bayesian practice today, in which the term “prior” is used to

refer only to the parameter prior. In the following discussion we shall use the term “priors” in de

Finetti’s general sense.

Regarding the list of virtues in Section 3.4, de Finetti provides a clear definition of probabil-

ity (V1a) based on principles that he sought to establish as generally acceptable (V2c). Unlike

objectivist Bayesians, subjectivist Bayesians do not attempt to enforce agreement regarding prior

distributions, not even given the same evidence; still, de Finetti (1974) and other subjectivist

Bayesians proposed rational principles for assigning prior probabilities. There is also some work on

(partial) intersubjective agreement on prior specifications, e.g., Dawid (1982a), providing a ratio-

nale for consensus (V2c). The difference between the objectivist and subjectivist Bayesian point

of view is rooted in the general tension in science explained above; the subjectivist approach can

be criticized for not supporting agreement enough—conclusions based on one prior may be seen as

irrelevant for somebody who holds another one (V2c)—but can be defended for honestly acknowl-

edging that prior information often does not come in ways that allow a unique formalization (V6b).

In any case it is vital that subjectivist Bayesians explain transparently how they arrive at their

priors, so that other researchers can decide to what extent they can support the conclusions (V1c).

In de Finetti’s conception, probability assessments, prior and posterior, can ultimately only

concern observable events, because bets can only be evaluated if the experiment on which a bet is

placed has an observable outcome, and so there is a clear connection to observables (V4a).

However, priors in the subjectivist Bayesian conception are not open to falsification (V4b),

because by definition they have to be fixed before observation. Adjusting the prior after having

observed the data to be analyzed violates coherence. The Bayesian system as derived from axioms

such as coherence (as well as those used by objectivist Bayesians; see Section 5.4) is designed to

cover all aspects of learning from data, including model selection and rejection, but this requires
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that all potential later decisions are already incorporated in the prior, which itself is not interpreted

as a testable statement about yet unknown observations. In particular this means that once a co-

herent subjectivist Bayesian has assessed a setup as exchangeable a priori, he or she cannot drop

this assumption later, whatever the data are (think of observing twenty zeroes, then twenty ones,

then ten further zeroes in a binary experiment). This is a major problem, because subjectivist

Bayesians use de Finetti’s theorem to justify working with parameter priors and sampling mod-

els under the assumption of exchangeability, which is commonplace in Bayesian statistics. Dawid

(1982b) discussed calibration (quality of match between predictive probabilities and the frequency

of predicted events to happen) of subjectivist Bayesians inferences, and he suggests that badly cali-

brated Bayesians could do well to adjust their future priors if this is needed to improve calibration,

even at the cost of violating coherence.

Subjectivist Bayesianism scores well on the virtues V5 and V6b. But it is a limitation that

the prior distribution exclusively formalizes belief; context and aims of the analysis do not enter

unless they have implications about belief. In practice, an exhaustive elicitation of beliefs is rarely

feasible, and mathematical and computational convenience often plays a role in setting up subjective

priors, despite de Finetti’s having famously accused frequentists of “adhockeries for mathematical

convenience.” Furthermore, the assumption of exchangeability will hardly ever precisely match

an individual’s beliefs in any situation—even if there is no specific reason against exchangeability

in a specific setup, the implicit commitment to stick to it whatever will be observed seems too

strong—but some kind of exchangeability assumption is required by Bayesians for the same reason

for which frequentists need to rely on independence assumptions: some internal replication in the

model is needed to allow generalization or extrapolation to future observations; see Section 5.1.

Summarizing, we view much of de Finetti’s criticism of frequentism as legitimate, and subjec-

tivist Bayesianism comes with a commendable honesty about the impact of subjective decisions

and allows for flexibility accommodating multiple perspectives. But checking and falsification of

the prior is not built into the approach, and this can get in the way of agreement between observers.

5.4. Objectivist Bayesianism

Given the way objectivity is often advertised as a key scientific virtue (often without specifying

what exactly it means), it is not surprising that de Finetti’s emphasis on subjectivity is not shared

by all Bayesians, and that there have been many attempts to specify prior distributions in a

more objective way. Currently the approach of E. T. Jaynes (2003) seems to be among the most

popular. As with many of his predecessors such as Jeffreys and Carnap, Jaynes saw probability as a

generalization of binary logic to uncertain propositions. Cox (1961) proved that given a certain list

of supposedly common-sense desiderata for a “plausibility” measurement, all such measurements

are equivalent, after suitable scaling, to probability measures. This theorem is the basis of Jaynes’

objectivist Bayesianism, and the claim to objectivity comes from postulating that, given the same

information, everybody should come to the same conclusions regarding plausibilities: prior and

posterior probabilities (V2c), a statement with which subjectivist Bayesians disagree.

In practice, this objectivist ideal seems to be hard to achieve, and Jaynes (2003) admits that

setting up objective priors including all information is an unsolved problem. One may wonder

whether his ideal is achievable at all. For example, in chapter 21, he gives a full Bayesian “solution”

to the problem of dealing with and identifying outliers, which assumes that prior models have to

be specified for both “good” and “bad” data (between which therefore there has to be a proper

distinction), including parameter priors for both models, as well as a prior probability for any

number of observations to be “bad.” It is hard to see, and no information about this is provided by
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Jaynes himself, how it can be possible to translate the unspecific information of knowing of some

outliers in many kinds of situations, some of which are more or less related, but none identical (say)

to the problem at hand, into precise quantitative specifications as needed for Jaynes’ approach in

an objective way, all before seeing the data.

Setting aside the difficulties of working with informally specified prior information, a key issue

of objectivist Bayesianism is the specification of an objective prior distribution formalizing the

absence of information. Various principles for doing this have been proposed (maximum entropy,

Jaynes, 2003; maximum missing Shannon information, Berger et al., 2009; and a set of desirable

properties, Bayarri et al., 2012). Such principles have their difficulties and disagree in many cases

(Kass and Wasserman, 1996). Objectivity seems to be an ambition rather than a description of

what indeed can be achieved by setting up objectivist Bayesian priors. More modestly, therefore,

Berger et al. (2009) use the term “reference priors,” avoiding the term “objective,” and emphasizing

that it would be desirable to have a convention for such cases (V2b), but admitting that it may

not be possible to prove any general approach for arriving at such a convention uniquely correct

or optimal in any rational sense. However, the proposal and discussion of such principles certainly

served transparency (V1a,c) and provided rationales for consensus (V2c).

Apart from the issue of the objectivity of the specification of the prior, by and large the ob-

jectivist Bayesian approach has similar advantages and disadvantages regarding our list of virtues

as its subjectivist cousin. Particularly it comes with the same difficulties regarding the issue of

falsifiability from observations. Prior probabilities are connected to logical analysis of the situation

rather than to betting rates for future observations as in de Finetti’s subjectivist approach, which

makes the connection of objectivist Bayesian prior probabilities to observations even weaker than in

the subjectivist Bayesian approach (probabilistic logic has applications other than statistical data

analysis, for which this may not be a problem).

The merit of objectivist Bayesianism is that the approach comes with a much stronger drive

to justify prior distributions in a transparent way using principles that are as clear and general as

possible.

5.5. Falsificationist Bayesianism, and frequentist probabilities in Bayesian statistics

For both subjectivist and objectivist Bayesians, probability models including both parameter priors

and sampling models do not model the data generating process, but rather represent plausibility

or belief from a certain point of view. Plausibility and belief models can be modified by data in

ways that are specified a priori, but they cannot be falsified by data.

In much applied Bayesian work, on the other hand, the sampling model is interpreted, explicitly

or implicitly, as representing the data-generating process in a frequentist or similar way, and pa-

rameter priors and posteriors are interpreted as giving information about what is known about the

“true” parameter values. It has been argued that such work does not directly run counter to the

subjectivist or objectivist philosophy, because the “true parameter values” can often be interpreted

as expected large sample functions given the prior model (Bernardo and Smith, 1994), but the way

in which classical subjectivist or objectivist statistical data analysis is determined by the untestable

prior assignments is seen as unsatisfactory by many statisticians.

In any case, the frequentist interpretation of a probability distribution as “data generator” is

regularly used to investigate how Bayesian analyses perform under such assumptions, theoretically,

often by analysis of asymptotic properties or by simulation. Wasserman (2006) called Bayesian

methods with good frequentist properties “objective,” referring to the “representing things in the

observer-independent world”-sense of objectivity, but also providing a connection of Bayesian mod-
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els to observables (V4a). Rubin (1984) discussed frequentist approaches for studying the charac-

teristics of Bayesian methods under misspecified models, i.e., stability (V7).

The suggestion of testing aspects of the prior distribution by observations using error statistical

techniques has been around for some time (Box, 1980). Gelman and Shalizi (2013) incorporate this

in an outline of what we refer to here as “falsificationist Bayesianism,” a philosophy that openly

deviates from both objectivist and subjectivist Bayesianism, integrating Bayesian methodology

with an interpretation of probability that can be seen as frequentist in a wide sense and with an

error statistical approach to testing assumptions in a bid to satisfy virtue V4b.

Falsificationist Bayesianism follows the frequentist interpretation of the probabilities formalized

by the sampling model given a true parameter, so that these models can be tested using frequentist

inference (with the limitations that such techniques have, as discussed in Section 5.2). Gelman

and Shalizi argue, as some frequentists do, that such models are idealizations and should not be

believed to be literally true, but that the scientific process proceeds from simplified models through

test and potential falsification by improving the models where they are found to be deficient.

To put it another way: it is desirable for Bayesian intervals to have close to nominal coverage

both conditionally on any observables and unconditionally; the desire for this coverage leads natu-

rally to calibration checks, which in turn motivates the modification or even rejection of models that

are not well calibrated empirically. This process serves the correspondence to observable reality

(V4) while at the same time putting more of a burden on transparency (V1) and stability (V7) in

that the ultimate choice of model can depend on the decision of what aspects of the fitted model

will be checked.

A key issue regarding transparency of falsificationist Bayes is how to interpret the parameter

prior, which does not usually (if occasionally) refer to a real mechanism that produces frequencies.

Major options are firstly to interpret the parameter prior in a frequentist way, as formalizing a

more or less idealized data generating process generating parameter values. A bold idealization

would be to view “all kinds of potential studies with the (statistically) same parameter” as the

relevant population, even if the studies are about different topics with different variables, in which

case more realizations exist, but it is hard to view a specific study of interest as a “random draw”

from such a population.

Alternatively, the parameter prior may be seen as a purely technical device, serving aims such

as regularization, without making any even idealized assumption it corresponds to anything that

“exists” in the real world. In this case the posterior distribution does not have a proper direct

interpretation, but statistics such as the posterior mean or uncertainty intervals could be interpreted

based on their frequentist properties.

Overall, falsificationist Bayesianism combines the virtue of error statistical falsifiability with

the virtues V5 and V6 connected to subjectivity. However, the flexibility of the falsificationist

Bayesian approach—its openly iterative and tentative nature—creates problems regarding clarity

and unification.

6. Discussion

6.1. Implications for statistical theory and practice

At the level of discourse, we would like to move beyond a subjective vs. objective shouting match.

But our goals are larger than this. Gelman and Shalizi (2013) on the philosophy of Bayesian

statistics sought not just to clear the air but also to provide philosophical and rhetorical space

for Bayesians to feel free to check their models and for applied statisticians who were concerned
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about model fit to feel comfortable with a Bayesian approach. In the present paper, our goals

are for scientists and statisticians to achieve more of the specific positive qualities into which we

decompose objectivity and subjectivity in Section 3.4. At the present time, we feel that concerns

about objectivity are getting in the way of researchers trying out different ideas and considering

different sources of inputs to their model, while an ideology of subjectivity is limiting the degree

to which researchers are justifying and understanding their model.

There is a tendency for hardcore believers in objectivity to needlessly avoid the use of valuable

external information in their analyses, and for subjectivists, but also for statisticians who want to

make their results seem strong and uncontroversial, to leave their assumptions unexamined. We

hope that our new framing of transparency, consensus, avoidance of bias, reference to observable

reality, multiple perspectives, dependence on context and aims, investigation of stability, and hon-

esty about the researcher’s position and decisions will give researchers of all stripes the impetus

and, indeed, permission, to integrate different sources of information into their analyses, to state

their assumptions more clearly, and to trace these assumptions backward to past data that justify

them and forward to future data that can be used to validate them.

Also, we believe that the pressure to appear objective has led to confusion and even dishonesty

regarding data coding and analysis decisions which cannot be motivated in supposedly objective

ways; see van Loo and Romeijn (2015) for a discussion of this point in the context of psychiatric

diagnosis. We prefer to encourage a culture in which it is acceptable to be open about the reasons

for which decisions are made, which may at times be mathematical convenience, or the aim of the

study, rather than strong theory or hard data. It should be recognized openly that the aim of

statistical modeling is not always to make the model as close as possible to observer-independent

reality (which always requires idealization anyway), and that some decisions are made, for example,

in order to make outcomes more easily interpretable for specific target audiences.

Our key points: (1) multiple perspectives correspond to multiple lines of reasoning, not merely

to mindless and unjustified guesses; and (2) what is needed is not just a prior distribution or a tuning

parameter, but a statistical approach in which these choices can be grounded, either empirically or

by connecting them in a transparent way to the context and aim of the analysis.

For these reasons, we do not think it at all accurate to limit Bayesian inference to “the analysis

of subjective beliefs.” Yes, Bayesian analysis can be expressed in terms of subjective beliefs, but

it can also be applied to other settings that have nothing to do with beliefs (except to the extent

that all scientific inquiries are ultimately about what is believed about the world).

Similarly, we would not limit classical statistical inference to “the analysis of simple random

samples.” Classical methods of hypothesis testing, estimation, and data reduction can be applied

to all sorts of problems that do not involve random sampling. There is no need to limit the

applications of these methods to a narrow set of sampling or randomization problems; rather, it is

important to clarify the foundation for using the mathematical models for a larger class of problems.

6.2. Beyond “objective” and “subjective”

The list in Section 3.4 is the core of the paper. The list may not be complete, and such a list

may also be systematized in different ways. Particularly, we developed the list having particularly

applied statistics in mind, and we may have missed aspects of objectivity and subjectivity that are

not connected in some sense to statistics. In any case, we believe that the given list can be helpful

in practice for researchers, for justifying and explaining their choices, and for recipients of research

work, for checking to what extent the listed virtues are practiced in scientific work. A key issue

here is transparency, which is required for checking all the other virtues. Another key issue is that
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subjectivity in science is not something to be avoided at any cost, but that multiple perspectives

and context dependence are actually basic conditions of scientific inquiry, which should be explicitly

acknowledged and taken into account by researchers. We think that this is much more constructive

than the simple objective/subjective duality.

We do not think this advice represents empty truisms of the “mom and apple pie” variety. In

fact, we repeatedly encounter publications in top scientific journals that fall foul of these virtues,

which indicates to us that the underlying principles are subtle

Instead of pointing at specific bad examples, here is a list of some common problems (discussed,

for example, in Gelman, 2015, and Gelman and Zelizer, 2015), where we believe that exercising one

or more of our listed virtues would improve matters:

• Presenting analyses that are contingent on data without explaining the exploration and se-

lection process and without even acknowledging that it took place,

• Justifying decisions by reference to specific literature without acknowledging that what was

cited may be controversial, not applicable in the given situation, or without proper justifica-

tion in the cited literature as well (or not justifying the decisions at all),

• Failure to reflect on whether model assumptions are reasonable in the given situation, what

impact it would have if they were violated, or whether alternative models and approaches

could be reasonable as well,

• Choosing methods because they do not require tuning or are automatic and therefore seem

“objective” without discussing whether the chosen methods can handle the data more appro-

priately in the given situation than alternative methods with tuning,

• Choosing methods for the main reason that they “do not require assumptions” without re-

alizing that every method is based on implicit assumptions about how to treat the data

appropriately, regardless of whether these are stated in terms of statistical models,

• Choosing Bayesian priors without justification or explanation of what they mean and imply,

• Using nonstandard methodology without justifying the deviation from standard approaches

(where they exist),

• Using standard approaches without discussion of their appropriateness in a specific context.

Most of these have to do with the unwillingness to admit to having made decisions, to justify them,

and to take into account alternative possible views that may be equally reasonable. In some sense

perhaps this can be justified based on a sociological model of the scientific process in which each

paper presents just one view, and then the different perspectives battle it out. But we think that

this idea ignores the importance of communication and facilitating consensus for science. Scientists

normally believe that each analysis aims at the truth, and if different analyses give different results,

this is not because there are different conflicting truths but rather because different analysts have

different aims, perspectives and access to different information. Letting the issue aside of whether

it makes sense to talk of the existence of different truths or not, we see aiming at general agreement

in free exchange as essential to science, and the more perspectives are taken into account, the more

the scientific process is supported.

We see the listed virtues as ideals which in practice cannot generally be fully achieved in any

real project. For example, tracing all assumptions to observations and making them checkable by

observable data is impossible because one can always ask whether and why results from the specific

observations used should generalize to other times and other situations. As mentioned in Section

5.1, ultimately a rationale for treating different situations as “identical and independent” or “ex-

changeable” needs to be constructed by human thought (people may appeal to historical successes
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for justifying such idealizations, but this does not help much regarding specific applications). At

some point—but, we hope, not too early—researchers have to resort to somewhat arbitrary choices

that can be justified only by logic or convention, if that.

And it is likewise unrealistic to suppose that we can capture all the relevant perspectives on any

scientific problem. Nonetheless, we believe it is useful to set these as goals which, in contrast to

the inherently opposed concepts of “objectivity” and “subjectivity,” can be approached together.
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Appendix: Objectivity in the philosophy of science

Megill (1994) lists four basic senses of objectivity: “absolute objectivity” in the sense of “represent-

ing the things as they really are” (independently of an observer), “disciplinary objectivity” referring

to a consensus among experts within a discipline and highlighting the role of communication and

negotiation, “procedural objectivity” in the sense of following rules that are independent of the

individual researcher, and “dialectical objectivity,” referring to active human “objectification” re-

quired to make phenomena communicable and measurable so that they can then be treated in an

objective way so that different subjects can understand them in the same way. These idea appear

under various names in many places in the literature. Porter (1996) lists the ideal of impartiality of

observers as another sense of objectivity. Douglas (2004) distinguishes three modes of objectivity:

human interaction with the world, individual thought processes, and processes to reach an agree-

ment. Daston and Galison (2007) call the ideal of scientific images that attempt to capture reality

in an unmanipulated way “mechanical objectivity” as opposed to “structural objectivity,” which

refers to mathematical and logical structures. The latter emerged from the insight of scientists

and philosophers such as Helmholtz and Poincare that observation of reality cannot exclude the

observer and will never be as reliable and pure as “mechanical objectivists” would hope.

More generally, pretty much all senses of objectivity have been criticized at some point in

history for being unachievable, which often prompted the postulation of new scientific virtues and

new senses of objectivity. For example, the realist ideal of “absolute objectivity” has been branded

as metaphysical, meaningless, and illusory by positivists including Karl Pearson (1911), and more

contemporarily by empiricists such as van Fraassen (1980). The latter takes observability and the

ability of theory to account for observed facts as objective from an anti-realist perspective.

Some authors even criticize the idea that objectivity is a generally desirable virtue in science,

e.g., for its implication of a denial of the specific conditions of an observer’s point of view (Feyer-

abend, 1978, McKinnon, 1987, Maturana, 1988) and its use as a rhetorical device or tool of power

(see Fuchs, 1997, for a critical overview of such ideas).

The core benefit of such controversies around objectivity and subjectivity for statisticians is the

elaboration of aspects of good science, which should inform statistical data analysis and decision

making. Hacking (2015) wrote a paper called “Let’s not talk about objectivity,” and with him we

believe that for discussing the practice of statistics (or more generally science), the objectivity vs.

subjectivity discourse should be replaced by looking at more specific virtues of scientific work, the

awareness of which could have a more direct impact on the work of scientists. The virtues that we

have listed in Section 3 are all connected either to senses of objectivity as summarized above, or to

reasons for criticizing certain concepts of objectivity.
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