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Abstract

The standard analysis of unit nonresponse in sample surveys is to assume missing at random
that is, that the probability a person responds is independent of their response to the question
of interest, y, conditional on fully-observed covariates z or on sampling weights w. In this paper,
we discuss weakening these assumptions without the use of additional covariates in the special
case of a binary outcome variable, y = 0 or 1. We note frequentist confidence bounds that do
not rely on strong assumptions about the response mechanism. From a Bayesian perspective,
we discuss using prior distributions to average over uncertainty in the missing data mechanism.
Surprisingly, a natural-looking “noninformative” prior distribution yields unappealing posterior
inferences. We discuss methods of constructing informative prior distributions using hierarchical
data structures.

We also show how to incorporate unequal sampling weights into the model using design-based
sampling theory. This is important so that the nonresponse modeling can be an improvement
upon rather than merely a replacement for standard weighted analysis of sample surveys.

We illustrate the hierarchical model by applying it to the state-level analysis of a series of
national pre-election opinion polls. The use of a reasonable prior distribution for the relative
response probabilities leads to substantial improvements in coverage of posterior intervals and
prediction error of point estimates. We also consider the sensitivity to the prior distribution
and the effect of including sampling weights in the analysis.

Keywords: Bayesian inference, hierarchical models, opinion polls, sampling weights

1 Introduction

1.1 Background

Response rates in the most carefully conducted academic and government surveys rarely exceed 70%,
and response rates for surveys conducted by the large commercial polling organizations are generally
much lower, in the 30% to 50% range (Brady and Orren, 1992). These high nonresponse rates leave
the possibility of large biases in the estimates, so that sampling error accounts for only a small
fraction of the total uncertainty. Weighting based on poststratification or sampling probabilities
is often used as a corrective (see Little, 1991, 1993; Kish, 1992), but large potential biases remain

(see Kish, 1965). Since these biases cannot be estimated from the data, they are generally ignored:
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that is, it is assumed that data are missing completely at random or, when covariates are observed,
missing at random, as defined in Rubin (1976).

In this paper, we set up a framework for including differential nonresponse rates for the case of
a binary outcome variable y, where the parameter of interest is the population mean = = Pr(y = 1).
We do not assume that the response mechanism is known, and so an identifiable parameterization
of the likelihood which includes the population mean of Y does not exist. However, we derive
confidence bounds for the population mean based on the sample mean and response rate.

From a Bayesian perspective, one can average over the prior distribution of the nonidentified
parameters in the model. Important issues that arise in this context include: (1) parameterizing the
model so that one can set up a reasonable class of prior distributions; (2) understanding the behavior
of posterior inferences in the limit of large sample size; (3) methods of constructing informative
prior distributions using external sources of data; and (4) understanding the sensitivity to the prior
distribution of inferences for parameters of interest. To illustrate the methodology, we apply the
model to the state-level analysis of a series of national pre-election opinion polls. We find that the
use of a reasonable hierarchical model for the relative response probabilities can lead to substantial
improvements in coverage of posterior intervals and prediction error of point estimates.

Rubin (1977) describes a similar Bayesian method to account for nonresponse in the normal
case when covariates are available. However, in his paper, a prior distribution is specified for the
parameters in the likelihood of the response variable Y conditional on whether an individual is
a respondent or a nonrespondent. In contrast, here we specify a prior distribution for the relative
response probabilities in the two groups characterized by Y = 0 and Y = 1 (see also the related work
of Kaufman and King, 1973). Nordheim (1984) also allows for different classification probabilities
for a binary variable, but does not use a prior distribution for these parameters. Section 2 of
this paper reviews the basic results for bounding inferences given nonresponse rates, and Section 3
presents the Bayesian extension, revealing some poor behavior with a seemingly noninformative prior
distribution. In Section 4, we relate the nonresponse models to the practial world of sample survey
analysis by including in the model a design-based treatment of the nonresponse already accounted
for by survey weights. Finally, in Section 5 we apply a hierarchical form of the Bayesian model
to estimate state-by-state preferences in pre-election polls. Our work goes beyond the previous
literature in this area in its criticism of the noninformative prior distribution, with its handling of

unequal sampling weights, and with the hierarchical model for differential nonresponse.



1.2 Notation and model

For simplicity, we first set up the model in the context of simple random sampling; we generalize
to unequal sampling probabilities in Section 4. Suppose that y1,...,y, are 0/1 responses, with
m = Pr(y; = 1) for each i. Consider the corresponding missing data indicator variables, I3, ..., I,,
where unit ¢ responds if I; = 1 and does not respond if I; = 0. In general, the probability of response
can depend on the value of y;. Label the conditional response probabilities as 6y = Pr(I; = 1|y; = 0)
and 0; = Pr(I; = 1]y; = 1), and assume I;]y; b Bernoulli(d,,). Let m = Y, I; denote the number
of units for which y is observed, and let mg = >_1" | I;(1—y;) and my; = Y_"_, I,y; denote the number
of observed units for which y = 0 and y = 1, respectively. Then the distribution of (mg,m1,n —m)
is multinomial with density function,

p(mo, m1,n—mln,w,00,6,) = (") <m)[(1—7r)90]m°[7r91]m1[(1—7r)(1—90)+7r(1—91)]”m. (1)

m mq

The sample mean for the observed data is § = m;/m, and the population probability 7 is the
estimand of primary interest. It can be seen from (1) that, conditional on n, the parameterization
of the likelihood in terms of (m,6q,6;) is unidentifiable, although the parameterization in terms of
((1 = m)bg,mb) = (Pr(I =1,y =0), Pr(I =1,y = 1)) is identifiable.

We will work with a parameterization of the model that separates identified and nonidentified
parameters. Let R = 61 /(6 + 61); this is a measure of the relative response rates in the two groups
characterized by y = 0 and y = 1. The missing-completely-at-random assumption corresponds to
6o = 61, or R = 0.5. We also define 6 = (6y + 61)/2, so that the model can be parameterized in
terms of (w, R,#), with the parameters R and # depending only on the nonresponse rates and not
on the responses themselves.

We also will find it useful to work with an alternative parameterization in terms of the expec-
tations of the proportion of respondents and the mean response. Let p = m/n be the observed

proportion of respondents; its expectation under the model is
Gp=0—-mby+ 7b;.

We also define

¢ = _oomh
Y (1 - )by + by’
so that E(gln) = (5 + O,(1/n).

Finally, we work at first under the assumption that the size of the original sample, n, is known,
so that it is possible to construct conservative confidence bounds for . We consider the case of

unknown n in Section 3.4 and in the application in Section 5.



2 Frequentist analysis

We begin with a formal analysis of standard conservative bounds for the inferential errors caused by
nonresponse; see Manski (1995) for a general discussion of inference for nonidentified parameters,
for which this is a special case. We obtain conservative confidence bounds for m by considering
separately the identified and nonidentified parts of the model. Let ny, 7y be functions of the
identifiable parameter vector ((1 — 7)0y,761) defined by 7, = 761 and 7y = 1 — (1 — 7)fy. Since
0<6y,0 <1and 0 < 7 < 1, it follows that 7, < 7 < 7y for all 7, 60y,0,. In fact, there do not
exist upper and lower boundaries on the parameter space of 7 which are functions of an identifiable
parameter and uniformly closer to w. To see this, in the case of the lower boundary, let f be any
function of the identifiable parameter ((1 — 7)fg, w61) such that wp, < f((1 =)0y, w6:1) < 7 for some
7. This implies a contradiction for #; = 1 since 7, = .

Lower confidence bounds for 77, and upper confidence bounds for 7y can be used to assign upper
and lower confidence bounds for 7. The distribution of m; under the model is Bin(n, 7). When
my > 1, a level a lower confidence bound =z for 7j, and therefore a conservative level a lower
confidence bound for 7, is the unique solution to the equation
ma
Z <Z> Al —m)" F=1-a.
r=0
If rny = 0 then 7r; = 0. Similarly, the distribution of n — myg is Bin(n, 77). When mgo > 1, a level «
upper confidence bound 7y for 7y, and therefore a conservative level a upper confidence bound for
m, is the unique solution to the equation
Z <Z> (1 —7m)" F =1—a.
k=n—mgq
If mg =0 then 7y = 1.

If mg and m; are not too small, one can easily approximate the above bounds using the normal
distribution, with the lower bound based on the assumption that §; = 1 (so that we could infer that
y = 0 for all n — m nonrespondents) and the upper bound based on the assumption that §; = 0 (so

that y = 1 for all n — m nonrespondents). Each bound is now based on binomial inference for a

population of size n, and the normal approximation yields =, = m1/n—z1_+/(m1/n)(1 —mi/n)/n

and Ty = (1—mo/n) +21—a+/(mo/n)(1 — mg/n)/n, where z1_, is the appropriate standard normal
quantile.

For example, Table 1 illustrates exact and approximate upper and lower conservative confidence
bounds at level @ = 0.05 for 7 for data with observed mean y = 0.2, response rate p = 0.7, and a
range of sample sizes m. Although a response rate of 70% is relatively high for most types of sample

surveys, confidence bounds for 7 remain fairly distant from 0.2 even for large n.



This example illustrates the well-known fact (see, e.g., Cochran, 1977) that model-free conser-
vative confidence bounds for 7 tend to be so wide as to be often useless, and so it is important to
understand how the inference for = depends on the relative response probability R = 6, /(60 + 61).

Algebraic manipulation gives the following restrictions on the parameter space of (w, R, (,, ;) for

(Cpac.ﬂ) € (0/ 1] X [0/ 1]:

GGy 1 — GGy
TG0 %) S TEGA %) (2)
G- 1=G)G <m<G+(L-G)(1—(). (3)
Also, we can express 7 in terms of these parameters:
= C@(l B R) (4)

GML=R)+(1-G)(R)

To understand the purpose of these transformations, first consider the limit n — oo, in which
case there is no sampling variability, and all of the uncertainty about 7 comes from uncertainty
about R. In this limit, ¢, (the expected proportion of respondents) and (; (the expected value of
y among all respondents) are known. The parameter (; determines the relation between 7 and R
(equation (4)), and then (,, in combination with (; gives us bounds on R (equation (2)) and thus =
(equation (3)). These relations are illustrated in Figure 1; the curve segment shown in bold on the
figure corresponds to the special case of (;, = 0.7 and (3 = 0.2, the example considered Table 1.

If n is finite, (, and (3 are now estimated with binomial error, so that the relation between =

and R becomes uncertain.

3 Bayesian analysis

When the proportion of respondents p is not close to 1, confidence bounds remain distant from
m even for large n, as in the example summarized in Table 1. Closer bounds can be achieved
by introducing assumptions about the relative response rate R. For example, under the missing-
completely-at-random assumption R = 0.5 it follows that E(y) = w. This assumption is commonly
made in practice, either implicitly or explicitly. Another possibility is to assume that R lies within
some range; for example, Figure 1 illustrates that if we know that R € [0.4,0.6], our inferences about
7 become relatively precise for any value of p. From a Bayesian viewpoint, uncertainty in (7, R) can
be characterized by a probability distribution. A diffuse prior distribution for the relative response
rate R results in increased posterior uncertainty for the parameter of interest 7. For example, in the
limit of n — oo, with p = 0.7 and y = 0.2, the bold curve segment in Figure 1 is the support of the
likelihood, which is overlain on the prior distribution for (m, R). If n is finite, the likelihood spreads

above and below the bold segment and blurs at the endpoints.



A Bayesian analysis requires a prior distribution for all of the parameters in the likelihood. The
first step, then, is to choose an appropriate parameterization of the likelihood. The probability =
is the parameter of primary interest. If the parameter R is also included in the model, then the
parameter § = (6y + 61)/2 will complete the specification. From (1), the likelihood in this new

parameterization is

p(mo, my,n—mln,r, R,0) = (") <m ) [2(1—7)(1— R)]™ [27 RO)™ [2(1 — 1) RO+ m(1— 2RO)|™ ™.

m) \my
This parameterization was chosen instead of (7, 6y, 61) because it may be more natural for specifying
a prior distribution. The parameters 6 and #; would probably be correlated; knowledge of the
response probability in one group would affect the subjective estimation of the response probability
in the other group. On the other hand, it may be reasonable to assume prior independence of m,
R, and 6. For a particular specification of the prior p(w, R, #), inference about 7 is based on the

posterior distribution
palnmy) = [ [ RO m.y)asar (5)

x //p(m7y\n77r,R70)p(7r,R,9)d9dR. (6)

3.1 Large-sample inference

In most Bayesian models encountered in practice, the likelihood dominates the prior for large n. This
is not the case for unidentifiable models, however. Unless the fraction of missing data is small, the
posterior distribution is sensitive to the specification of the prior, even for large n. We can see this
by separating the posterior distribution into identified and unidentified parts. A prior distribution
specified in terms of (7, R, #) corresponds to a prior distribution for (, 2(1—x)(1—R)#, 2w Rf), where
the observed statistics follow the limits mg/n — 2(1 — 7)(1 — R)# and m; /n — 27 R in probability
as n — 00. Since the observed data is independent of 7 given ((1 — 7)(1 — R)#, wR#), the posterior
distribution p(w|n, m,y) tends to the conditional prior distribution evaluated at the observed values
p(m]2(1 — 7)(1 — R)# = mgo/n,2rRE = my /n). Then, in the limit as n — oo, the posterior density
for m has the form of the prior density evaluated at particular values of the identified parameters.

Formally, let b = (hy, ha, hs) be the transformation defined on (0, 1) by h(z1, 22, 23) = (21, 2(1—
21)(1 — @2)x3, 2T 2923), and let J = x1(1 — x1)x3 be the Jacobian of h. Then

. Jp(m, R = hy ' (w,mg/n,mq1/n),0 = hy' (7, mg/n,my/n
lim p(m|n,m,y) — e ( —hil( o/n, /) — 31( o/n, /1))
n—o0 p(m, R =hy (m,mq/n,my/n),8 = hy " (7m,mg/n, my/n))dr

in probability. Note that J = 7(1 — m)8 = (,((1 — {z)7 + GG(1 — m)).

=0

For example, if independent beta distributions are used in the prior so that

p(m, R,6) = Beta(n|a1, by)Beta(R|as, ba)Beta(#|as, bs),



then the conditional prior distribution of 7 in terms of the other parameters is

PG Gg) o (1= Cm+ (gl —m) ™ 7™ 1<1 m)hr !

X <(1_<y) G ) < 1—1<y)(cy)(1):)<yw>b21

<<1<y>7r+cy w) ( cy>w+cy<1>>”“

1—m) (1—m)
for m € [(, (5,1 — ((1 — (5)], (7

X

and for all 7,
p(r|n,m,y) — p(r|¢g = 9,¢ =p)| = 0

in probability as n — oc.

3.2 Difficulties with a natural “noninformative” prior distribution

Consider the special case of independent uniform (i.e., Beta(1,1)) prior distributions on 7, R, 6. In

the limit, from (7), the posterior distribution for 7 is just

p(rlp,y) < (1 —g)m +y(1—m))~", for w € [py, 1 —p(1 —y)].

For example, if p = 0.7 and y = 0.2, and n — oo, then 7 must lie within the range [0.14,0.44] and
has density proportional to 1/(0.2 + 0.67). The posterior mean of 7 is 0.278. The uniform prior
distribution is thus not so “noninformative” as one might like, in that it shrinks 7 quite a ways
from the raw estimate y toward 0.5. However, the uniform prior distribution is more reasonable if
restricted to lie near R = 0.5; for instance, with a uniform prior distribution on (m, R, ) but with

R restricted to the range [0.4,0.6], the posterior mean for = becomes 0.205 in this example.

3.3 Constructing an informative prior distribution

In practice, our model for differential nonresponse rates is not particularly useful unless we have
an informative prior distribution for the parameters in the model. As discussed above, it seems
reasonable to set up prior distributions for 7, R, and 6 independently: (1) the distribution for
7 reflects substantive modeling of the responses in the population without any reference to the
sampling mechanism; (2) R = 61/(0; + 6») is the relative rates of response in the two groups; and
(3) 8 = (61 + 02)/2 reflects the level of response, averaging over the two groups. Models for 7 are
widespread in the survey sampling literature, and we do not add anything to this topic here (see, e.g.,
Ericson, 1969, Scott and Smith, 1969, Rubin, 1987, Skinner, Holt, and Smith, 1989, Little, 1993, and
Nadaram and Sedransk, 1993, for theoretical treatments, and Belin et al., 1993, Lazzeroni and Little,

1997, and Gelman and Little, 1997, for some recent examples). Models for 8 are close to irrelevant



for the problem of estimating 7: what is relevant is the differential rates of nonresponse between the
two groups corresponding to y = 0 and y = 1. Thus, the key part of our nonignorable nonresponse
model is the prior distribution for R. The importance of the prior distribution is illustrated by
Kadane (1993), who examines the sensitivity of inferences about 7 to different specified values of R
in the context of a sample survey of jurors.

As with other Bayesian models, it is best to construct a prior distribution using some related
data—in this case, this would mean other surveys in which the population proportions m were
known, so that R could be estimated directly. We can generalize this idea by modeling our survey
hierarchically. Suppose the population is divided into J groups, j = 1,...,J, with known populations
Nj;, and it is known which respondents fall into which group. Then our data and model can be given
a hierarchical structure: in each group j, we observe responses y;1,...Y;m,, with parameters =;,
Rj, and 6;. The mean response in the population is 7 = 37, N;m;/> . N;. We can set up a
hierarchical model for the J sets of parameters (;, R;,6;). Using a hierarchical model, we will be
able to estimate some aspects of the prior distribution for these parameters. But, because we do not
observe y for the nonrespondents, inferences for 7 will still depend on the prior distribution for the
ensemble of R; parameters, even in the limit of infinite sample size. The advantage of setting this
up as a hierarchical model is that we can take advantage of any knowledge of the distribution of the
R;’s, without having to accurately estimate any individual R; ahead of time. We illustrate with an

example in Section 5 of a U.S. opinion poll in which the groups j are individual states.

3.4 Proportion of missing data unknown

Sometimes the number of individuals in the original sample, n, and therefore the proportion of
respondents p = m/n, are not known. This occurs, for instance, in a telephone poll: if no one
answers the phone, the survey organization does not know whether no one is at home, or they
are not answering the phone, or the phone is a non-residence (Brady and Orren, 1992, discuss the
difficulty of estimating nonresponse rates in commercial telephone polls). If n is unknown, the

likelihood (1) no longer applies. Instead inference is based on the conditional distribution
ma|m ~ Bin(m, ¢;). (8)

Although confidence bounds can be found for (., it is easily seen that, for any n, any frequentist
a-level upper and lower confidence bounds for 7, the parameter of interest, are simply 0 and 1.
For a Bayesian analysis, we express the marginal posterior density for 7 as p(w|m,m;)

[ p(my|m,m, R)p(w, R)dR, ignoring # because it does not appear in the likelihood (8). Let g =



(g91,92) be the transformation defined by

9(m, B) = (”’ 1- w)(lﬁfR) + 7TR> ’

and let
(m+ (5 — 2m(y)?
m(l—m)

Jy =

be the corresponding Jacobian. Then the conditional distribution of 7 is
p(nlCg) o< Jytp(m, R = g5y ' (7, ¢5)), (9)
where g, ' (7, () = (g(1 — ) /(¢ + 7 — 2(ym). As before, it follows that for all 7,
p(mlm, m1) — p(r|Cg = y)| = 0

in probability.

4 Accounting for sampling weights

It is standard for sample surveys to include some correction for nonresponse in the form of a
weight w; attached to each respondent i. Loosely speaking, w; is proportional to the number of
units in the population “represented” by this respondent. In the context of binary responses, the
weights are set so that, assuming ignorable nonresponse, the weighted average ), w;y;/ >, w; is
intended to be a consistent estimate of the population proportion . Weights are assigned as a
function of measured covariates can be derived based on stratification, poststratification, sampling
theory, or more elaborate modeling (see Kish, 1992, Little, 1991, and Pfeffermann, 1993, for re-
cent reviews of these issues); here, we shall treat weights as inverse sampling probabilities, so that
Pr(a unit with weight w is included in the set of respondents) & 1/w. We use this “design-based”
perspective because it is standard in the practical analysis of sample surveys, and we want our
nonresponse modeling to be an improvement upon rather than merely a replacement for standard
weighted analysis of sample surveys.

Sampling weights affect our model of nonresponse because it is possible, and in fact generally
occurs, that units with y; = 1 have different weights, on average, than units with y; = 0. That
is, one often has direct evidence, from the survey weights themselves, that the response rates in
the two groups differ. Obviously, we do not want to go to the trouble of setting up a nonignorable
nonresponse model just for the purpose of finding out what we already know. Instead, we want to
set up our model conditional on the weights, so that our parameter R represents differential response

rates after weighting.



We develop a procedure to do this by formally defining, for each unit ¢ in the population, its
response Y; and the weight W; that would be assigned for that unit, based on the value of its

covariates. We combine weighting and our differential nonresponse model as follows:

(1-R)/W; if ¥;=0

Pr(unit ¢ is included in the set of respondents|Y;, W;) { R/W; Y= 1.

This reduces to the usual probability weights if R = 0.5 and to our earlier model if all weights are

equal. Then the probability that a response is y =1 is
Pryi=1) ZYiR/Wi
Zi Yi/Wi
x Rzi: Y; NG
x RN7E(1/W;|Y; =1).

Similarly,
Pr(y; = 0) « (1 — R)N(1 — m)E(1/W;|Y; = 0).
We now define

RW — E(1/W;|Y; =1)
E(1/WiY; = 0) + E(1/W;|Y; = 1)’

so that
B Pr(y; =1) . TRRY (10)
- Pr(yi=0)+Pr(y; =1) (1—-7)(1—-R)(1-RWY)+7RRW’

The parameter R represents the differential nonresponse of the two groups as explained by the

(g

weights. Like R, the parameter R must lie in the range [0, 1], and R" = 0.5 corresponds to equal
average weights among the two groups.

In general, we cannot know R", because it depends on the weights W; in the population, whereas
we only know the values of w; in the sample. To estimate E(1/W;|Y; = 1) and E(1/W;]Y; = 0), and
thus R", we use the fact that a consistent estimate of the population mean of any survey variable

~

X is E(X) =Y, wiz;/ >, w;. Thus, we have

E(1/Wi|Y; =0) = Z%_(ly_ﬁ;)(;/w) - Wio
E(1/Wi|Y;=1) = w - mil

where w; and Wy are the mean observed weights for the y = 1 and y = 0 respondents, respectively.

A consistent estimator of RW is then

i — (11)

Wo + Wy

10



With a large enough sample size, one can simply use R® in place of R"; if the sample size is smaller,
more sophisticated estimates can do better, as in the example in Section 5.

In either case, one can use expression (10) for (7 in all formulas, so that the parameter R models
only the differential nonresponse not already coded by the weights. We would expect this to pull R
closer to 0.5 (since weights are generally explicitly included to make the response pattern closer to

missing at random).

5 Application

The modeling described in the previous sections seems highly theoretical, and yet it can affect the
analysis of survey data, beyond merely widening confidence intervals to take account of uncertainty
about nonrespondents. We illustrate with an analysis of state-level data from nationwide opinion
polls in the United States. In this application, it is possible to improve state-level inferences by
using a hierarchical model for differential nonresponse that allows the parameters R to vary between

states.

5.1 Problem and data

Nonresponse rates for high-quality professional political opinion polls can be in the 50 70% range
(see Brady and Orren, 1992), and an obvious concern is differential nonresponse among supporters
of two different candidates or positions. We illustrate with an analysis of data from seven national
opinion polls conducted by CBS during the two weeks before the 1988 U.S. Presidential election.
Figure 2 shows the unweighted and weighted means for Presidential preference at the national level.
The weights are based on a combination of probability weighting and raking, performed separately
for each survey, based on Census information about the population distribution of sex, race, age,
and education. A general discussion of the use of raking to correct for nonresponse can be found in
Oh and Scheuren (1983). A variation of random-digit dialing was used to select the sample. Details
of the survey methodology and the adjustment appear in Voss, Gelman, and King (1995).

To follow our general notation, we assign y; = 1 to supporters of Bush and y; = 0 to supporters
of Dukakis; we discard the respondents who expressed no opinion (about 15% of the total). Figure
2 shows that the unweighted means are higher than the weighted, which indicates that, according
to the weights, supporters of Bush were more likely to respond than supporters of Dukakis. That
is, R > 0.5.

To illustrate our methodology, we fit several models of (7, R) to these data, first ignoring the
weights and then including them. For all models, we allow separate parameters (7;, R;) for each of

the 48 contiguous states j, and for the models that include weights, we allow separate values of R}}V.

11



(Alaska and Hawaii were not included in the surveys. The District of Columbia, although included
in the surveys, was excluded from analysis because its voting preferences are so different from the
other states that it would be unduly influential in our model.) The number of nonrespondents is not
known, so that inference is based on the likelihood (8). The target population is taken to be the set
of registered voters. We validate the analysis by comparing our results with the November 4 election
results, assuming that for each state the election result equals the true proportion of support for the
candidate among registered voters.

Since there are few observations for the smaller states, and the between-poll variation displayed
in Figure 2 is within binomial sampling variability, we combine the data from all seven polls. The
first column in Table 2 gives the actual election results for the 48 contiguous states. Altering the
notation for this example, let m; denote the number of respondents in state j, and let y; denote
the number of those who say they will vote for Bush. The second and third columns in Table 2
give m; and y; = y;/m;, respectively, for the 48 continental states. In the following discussion, let

Yy = (yj),m = (mj)77r = (ﬂ'j),R = (RJ) ] = 1,...,48.
5.2 Models and estimation

To illustrate the methodology, we consider several models of varying complexity. In all of the models

considered, the likelihood is given by
ind .
yilm;, Gy ~ Bin(m;, (g ;).

where
WjRjR}/V
Q-m)(1 - R)(A - RY) +mR;RY

We consider prior distributions that are independent in (7, R) with the following form:

Cgj =

T ind Beta(a, b1)

R; ind Beta(az, ba).

The parameters R}’V, which depend on the distribution of weights among the two groups of respon-
dents, are assumed fixed in all the analyses.

The likelihood only tells us about the parameters (; j, which depend on both 7; and R; so we
can estimate the distribution of the m;’s (given a model for the R;’s) or the R;’s (given a model for
the 7;’s), but not both. The standard approach is to fix R; = 0.5 and estimate the 7;’s. We do
not do this, but we recognize that, in most surveys, the R;’s should vary less than the 7;’s—it is
hard to imagine the relative nonresponse probabilities for a question to vary more than the average
response itself. In all the models we set up, (a2, b2) will be fixed (either set a priori or by using other

data), so that only (ai,b1) will be estimated from the survey data.

12



5.2.1 Models for ©

We consider two different models:

1. Independent uniform prior distributions; that is, (a1,b1) = (1,1). This is essentially equivalent

to estimating each 7; using only the data from state j with no hierarchical model.

2. Hierarchical: (ay,b;) estimated from the survey data and the assumed distribution for R. The

hyperparameters (a1, b;) can be estimated by maximum likelihood:

(a) For the models with R fixed at 0.5, the marginal likelihood of the data given aj,b; is
p(y|m,ai,b1) = fp(y\m,ﬂ)p(ﬂal, by)dm = H]‘ p(yjlm;,ar,br), where

[(m; +1) C(ar +y;)L(mj + b1 —y;) T(ar +by)
F(yj + I)F(m] —Yj + 1) F(al + bl + m]’) F(al)F(bl)

p(yj|mj=a1= bl) =

is beta-binomial. The marginal likelihood can easily be maximized over (a1, by) numeri-

cally.

(b) For the models in which R has a Beta(as, b2) distribution, the marginal density of the

data given all the hyperparameters is

p(ylm, ar,b1,a2,b)) = //p(y,w,R|m7a1,bl,ag,bg)dﬂdR

/ / p(ylm, 7, R)p(x|as, b )p(Rlas, bs)drdR

H//p(yj|ma’77fj7Rj)p(7Tj\a1=bl)p(Rj|az7b2)d7Tdej (12)
i

The parameters (as, b2) are assumed known (more on this in Section 5.2.2). For any
(a1,b1), (12) can be evaluated by numerical integration. One can then use an optimization

routine to find the (ai,b1) that maximizes the likelihood (12).

Given the estimated hyperparameters, the posterior distributions for the m;’s are independent;
we sample posterior draws using rejection sampling applied to the product of the beta prior density

and the likelihood.

5.2.2 Models for R

We consider several different prior distributions for the R;’s:
1. R; = 0.5 for all j: this is the missing-at-random model and corresponds to (az,b2) = (00, 00).

2. Hyperparameters (aq, bs) estimated from polls and election results. Although the election

results were not available at the time of the surveys, for the purposes of illustration we use the
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election results to estimate a prior distribution for R. This model can be expected to perform
better than any estimated prior distribution specified at the time of the surveys. The marginal

distribution of the data conditional on the election results 7 is

p(y‘n7ﬂ-7a27b2) = /p(yaR‘n77T7a27bQ)dR

/ plyln, 7, R)p(R|az, by)dR

II /p(yj|nj77fj=Rj)P(Rj|az7b2)de- (13)
i

For any (as,bs), we evaluate (13) by numerical integration. We use an optimization routine to
find the (aq, b2) that maximizes the likelihood (13). At this point, we use these estimates as if
they are the known values of the hyperparameters, and we make no more use of the election

results ;.

This model we have set up is a best possible model in the sense of using actual election results,
but we emphasize that we are only using these to estimate the hyperparameters (a2, bs), not

the individual R;’s.

3. Hyperparameters (as,bo) fixed at other values. We consider (50,50) (mean 0.5, s.d. 0.07),
(20,20) (mean 0.5, s.d. 0.11), and (1, 1) (uniform on [0,1]). These prior distributions are more
and more diffuse, but as we shall see, they do not give more and more diffuse inference for our

parameters of interest, ;.
5.2.3 Models for RY

We do not complicate our analysis by estimating the parameters R;}V simultaneously with 7 and
R; rather, we estimate the R}’V’s first and then treat them as fixed in the subsequent analysis. We

consider three different estimates of R}’V:

1. Setting R}’V = 0.5 for all j; that is, ignoring the weights. This has the effect of lumping all the
relative nonresponse into the parameters ;. Ignoring the weights would not be recommended

for a serious analysis if weights are present, but we include this option because of its simplicity.

2. For each j, setting R} to RY (see equation (11)). This is the most direct way of including
the weights in the data and should perform well for large states, for which the surveys have
large sample sizes (see Table 2). For small states, however, the variation in the raw estimates

RY may be mostly sampling noise.

3. Smoothing the R}’s toward their common mean using a hierarchical model. This approach

is based on the assumption that the true values of R}’V probably do not vary much, at least
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compared to the sampling variability of the RY’s in the smaller states. For simplicity, we
deal with the boundedness of R by fitting a hierarchical normal model to the parameters

L;= logit(R}’V) based on the data l; = logit(R}’). Our model is

ind

i~ N(L;,V;)
L & N(p,t?)
7)o 1 (14)
We set the sampling variances V; to fixed values as follows. First, for each j, we create a crude

estimate of the sampling variance of [; from elementary sample survey theory, based on the

assumption of independent sampling of the respondents in state j:

l; = logit(R}") = log(w ;) — log(wo ;)
var(l;) = var(log(ws ;)) + var(log(wo ;))
_ L Sury 1 Suoy
@ily) = — iy | Pwoj (15)

Y1; Wi;  Yoj Woj

where y;; and yo; are the number of y = 1 and y = 0 respondents, respectively, and sfulj and

5121;0]' are the sample variances of the weights for the y = 1 and y = 0 respondents, respectively,

in state j. A plot of var(l;) versus the sample size 1/m,; (not shown here) shows approximate
proportionality, as one would expect from simple theory. For each j, we set V; to V/m;,
where V is the average value of m;var(l;). We use V/m; in the hierarchical analysis because
var(l;) is extremely variable for small states. Given the V;’s, we estimate the parameters of the
hierarchical model (14) Bayesianly, averaging over the hyperparameters u and 7 (see Rubin,
1981, and Gelman et al., 1995, chap. 5). We obtain the posterior medians of the parameters
L; using simulation and use the inverse-logits of these values as the fixed values of R}’V in the
subsequent analysis. The raw values RY and the smoothed estimates ]%fv for the pre-election

polls appear as the last two columns of Table 2.

5.3 Results and assessing model fit

5.3.1 Estimates of hyperparameters

Table 3 gives the estimates of (ai,b1) and (as, b2) corresponding to the various models. To explain
this table, we shall first discuss the distributions of the R;’s (that is, the values of as and b,), then
the estimated distributions of the 7;’s (that is, the values of a; and b).

We consider several possibilities for the distribution of R;’s, ranging from fixed at 0.5 (the
standard missing-at-random model, corresponding to (as,bs) = (o0, 00)) to uniform on [0, 1] (the

“noninformative” prior distribution, corresponding to (a2, bs) = (1, 1) that gives unappealing results,
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as discussed in Section 3.2). When we estimate (as, ba) by comparing to the election data, we estimate
the R;’s to have a mean of 0.534 and standard deviation of 0.044, which suggest that Bush supporters
have a higher response rate than Dukakis supporters, and that differential nonresponse rates vary
little from state to state. The latter observation explains why the Beta (1,1) model will not perform
well. After correcting for the sampling weights (using either the raw or smoothed estimates), we
estimate the R;’s to have a mean near 0.515; thus, the differential nonresponse is partially but not
wholly explained by the sampling weights.

One surprising result is that including the weights in the analysis does not make our estimated
distribution of R;’s less variable, as we might have expected.

For each of the models for R" and R, we estimate the distribution of the 7;’s from the survey data
alone. The most consistent pattern here is that (a1, b;) become larger (that is, the 7;’s are estimated
to be less variable) as the R}’V’s become more variable (going from fixed at 0.5 to hierarchical
estimates to raw estimates) and as the R;’s become more variable (going from fixed at 0.5 to the
Beta (50,50) range to Beta (1,1)). This occurs because, with the hierarchical model, the variance of
the ;s is essentially being estimated from the variance of the 7;’s, after subtracting (1) binomial
sampling variability, (2) variability in the R;’s, and (3) variability in the R}’V’s. When one source of
variability is raised, the others are estimated to be lower. At the most extreme case, when the R;’s
are assigned a uniform prior distribution, there is not enough variance in the g;’s to explain this, and
the 7;’s are estimated to be all equal, that is, (a1, b;) = (o0, 00). The other notable behavior of the
estimated distribution of the 7;’s is that the mean shifts after correcting for differential nonresponse,
from about 0.568 with no correction, to about 0.560 after correcting for the R"’s, to about 0.545

after correcting for the R;’s.
5.3.2 Estimates of state results 7;

The test of the method is how well it estimates the individual state means, which in this case we
can compare to the actual election results W?Ct“al (under the assumption, reasonable in this case,
that there is little opinion change in the last week of the election campaign). We are interested in
prediction error of point estimates and also in coverage probability of posterior intervals.

To avoid an overwhelming display of results, we present inferences for a selection of the models

that illustrate the behavior of the method under various assumptions:

1. Nonbhierarchical model, no nonresponse adjustment: (ay,b;) = (1,1), R; = 0.5 for all j,

R}/V = 0.5 for all j

2. Nonbhierarchical model, nonresponse adjustment with diffuse prior distribution: (aj,b1) =

(1,1), (a2, b2) = (20,20), RY = 0.5 for all j
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3. Nonbhierarchical model, empirical nonresponse adjustment: (a1,b1) = (1,1), (a2, bs) = (68.4,62.2)

(see Table 3), R}’V = 0.5 for all j

4. Hierarchical model, no nonresponse adjustment: (a1, b1) estimated from polls, R; = 0.5 for all

J, R}’V = 0.5 for all j

5. Hierarchical model, nonresponse adjustment with diffuse prior distribution: (ai,b:) estimated

from polls, (a2, b2) = (20, 20), R;}V = 0.5 for all j

6. Hierarchical model, empirical nonresponse adjustment: (a1,b;) estimated from polls, (as,bs) =

(68.4,62.2), R)Y = 0.5 for all j

7. Hierarchical model, empirical nonresponse adjustment, adjustment for raw weights: (a1,bq)

estimated from polls, (a2, b2) = (51.2,48.2) (see Table 3), R;-}V = RY for all j

8. Hierarchical model, empirical nonresponse adjustment, adjustment for smoothed weights:
(a1,b1) estimated from polls, (az,bs) = (65.6,61.9) (see Table 3), R}" = }A%;” for all j (see
Section 5.2.3)

Table 4 presents, for each of the above models and for each of the 48 states j, the posterior median
estimate of 7; and the (one-sided) p-value of the actual election result 73°*“@! (that is, Pr(m; <
ractual|data, model)). A p-value near 0 or 1 means that the actual election result was on the low or
high end, respectively, of the posterior distribution for that state.

The summary statistics at the bottom of the table reveal that a large reduction in error comes
simply from using a hierarchical model for the m;’s: models 1 3 have mean errors of about 0.05,
whereas model 4 (estimating (a1, b;) from the data but making no correction for weights or differ-
ential nonresponse) has a mean error of about 0.4. Using appropriate values for (as,bs) reduces
the mean error to about 0.03, with the corrections for weights having little effect. These are the
best possible results, in the sense that (a2,b2) are estimated using the election results themselves.
However, setting (as,b2) to reasonable approximate values such as (50, 50) gives results of nearly
the same accuracy.

Figure 3 displays the calibration of the error estimates with, for each model, a stem-and-leaf
plot of the 48 p-values for the state forecasts. If the p-values for a model are clustered near 0 or
1, the forecasts are overconfident (that is, the standard errors are too small); if they are clustered
near the middle of the range, the forecasts are underconfident and the standard errors too large.
This behavior is summarized in the bottom rows of Table 4 by the scaled mean z-score and sum
of squares of the normal-transformed p-values. The sum of squares can itself be compared to a

x? distribution, and this reveals that the models with (as,bs) set to (0o,00) (that is, R; = 0.5
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for all j) yield overconfident forecasts, whereas the models with (as,bs) fit from actual election
results yield underconfident forecasts. Both these results make sense: a model that assumes there
is no differential nonresponse is ignoring a source of variability and thus should be expected to have
standard errors that are too small, whereas a model that is fit using the best parameter values should
have lower-than-expected errors.

To reveal what the models are doing, we plot in Figure 4 the actual vs. predicted results, by
state, for each model. Models 1-3, which do not fit a hierarchical model to the 7;’s, perform poorly,
which is to be expected: the estimates are extremely variable, due to sampling variation, and no
attempt is made to correct them. Model 4 achieves a great improvement by shrinking the estimates
of 7; towards the grand mean. However, the model does not seem to shrink enough: for the states
with low estimates, the actual result tends to be higher, and vice-versa.

As discussed earlier, the 7;’s are shrunk more in the hierarchical model if the R;’s are allowed
to vary. Model 5, which sets (a2, b2) to (20, 20), shrinks the 7;’s too much, as is shown by the fifth
graph in Figure 4, because Beta (20,20) is too spread-out a distribution for the R;’s. Model 6,
with a Beta (68.4,62.2) distribution for the R;’s, shrinks the 7;’s about the right amount and thus
improves the estimates for the 48 states. Models 7 and 8, which correct in different ways for the
weights, perform similarly.

Figure 5 plots prediction error vs. sample size, by state, showing the expected inverse relation

for all the models.

6 Discussion

We see the methods described in this article as a tool for survey analysis, to be used in addition
to models for nonresponse based on observed covariates (Little, 1993). Fixing R at 0.5 is in some
sense a default choice, corresponding to the ignorable model. In fact, in our election example, we
find that the R;’s are quite close to 0.5. Allowing uncertainty in R should improve the calibration of
error estimates, but it is important to keep that uncertainty realistic; allowing R to vary too much
from 0.5 can lead to unreasonable inferences for the parameter of interest, m (see Section 3.2 and
the performance of Model 5 in Figure 4).

In a hierarchical context, as achieved in our example by partitioning the population by state,
accounting for variation in R;’s increases the accuracy of estimates of 7;’s by allowing the model to
shrink appropriately. The difficulty here is getting the population distribution for the R;’s for new
problems.

In our example, correcting for sampling weights had little effect. In general, we prefer to correct

for the weights provided with the survey so that our analysis can be viewed as an improvement
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upon, rather than an alternative to, the usual approach of weighted means. When the weighted and

unweighted analysis give similar answers, we prefer the weighted method for its generality.
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n 50 100 200 400 1000 10000 o0

m 35 70 140 280 700 7000 oo

7, (exact) 0.082 0.095 0.106 0.114 0.123 0.134 0.14
x; (approximate) | 0.059 0.083 0.100 0.111 0.122 0.134 0.14
Ty (exact) 0.546 0.517 0.496 0480 0.465 0.448 0.44
7y (approximate) | 0.555 0.522 0.498 0.481 0.466 0.448 0.44

Table 1: A numerical example of conservative upper and lower confidence bounds for 7 at level
a = 0.05. For each n given it is assumed that the observed mean is § = 0.2, and the observed
response rate is p = 0.7. Exact bounds come from inverting the binomial distributions, approximated
from the normal distribution.

Figure 1: 7 as a function of (R, (p,(y) for select values of ((p,(y). (Note that (, is estimated by
p =m/n, and (; is estimated by g.) Each curve that runs from upper-left to lower-right corresponds
to a particular value of (; and gives 7 as a function of R conditional on (;. Corresponding to each
value of (, is a set of two curves that run lower-left to upper-right. The two intersections of these
curves with the curve for (5 give the upper and lower bounds for R and 7 conditional on ¢z and (.
For example, suppose p = 0.7, § = 0.2, and n is large. Then (, = 0.7 and (5 ~ 0.2, and (7, R) must
lie approximately on the curve segment labeled “0.2”, between the two curves labeled “0.7”  this is
shown in bold on the graph.
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State, Election Unweighted Weighted mean, Sample

~

j result mean, ¥; Zl wi;jYij/ Zl wi;  size, m; RY R}’V
AL 0.60 0.72 0.68 134 0.55 0.52
AR 0.57 0.57 0.51 86 0.56 0.52
AZ 0.61 0.62 0.61 141 0.51 0.51
CA 0.52 0.57 0.55 1088 0.52 0.52
CO 0.54 0.59 0.62 127 0.46 0.50
CT 0.53 0.53 0.55 103 0.48 0.50
DE 0.56 0.40 0.39 30 0.51 0.51
FL 0.61 0.63 0.62 565 0.51 0.51
GA 0.60 0.62 0.59 211 0.54 0.52
TIA 0.45 0.38 0.30 102 0.58 0.53
1D 0.63 0.55 0.61 33 0.43 0.50
IL 0.51 0.54 0.52 439 0.53 0.52
IN 0.60 0.75 0.73 215 0.53 0.52
KS 0.57 0.72 0.67 105 0.56  0.52
KY 0.56 0.57 0.62 148 0.45 0.49
LA 0.55 0.62 0.57 153 0.55 0.52
MA 0.46 0.47 0.44 279 0.53 0.52
MD 0.52 0.52 0.50 207 0.52  0.52
ME 0.56 0.52 0.54 44 0.48 0.51
MI 0.54 0.57 0.56 403 0.51 0.51
MN 0.46 0.53 0.49 214 0.54 0.52
MO 0.52 0.46 0.43 235 0.52 0.51
MS 0.60 0.69 0.62 176 0.57 0.53
MT 0.53 0.39 0.45 31 0.44 0.50
NC 0.58 0.59 0.61 239 0.48 0.50
ND 0.57 0.56 0.57 54 0.48 0.51
NE 0.60 0.56 0.59 92 0.48 0.50
NH 0.63 0.70 0.68 20 0.52 0.51
NJ 0.57 0.56 0.55 306 0.50 0.51
NM 0.52 0.54 0.54 89 0.50 0.51
NV 0.61 0.62 0.62 21 0.50 0.51
NY 0.48 0.42 0.42 666 0.50  0.50
OH 0.56 0.62 0.64 459 0.47 0.49
OK 0.58 0.57 0.58 93 0.48 0.50
OR 0.48 0.50 0.46 113 0.55 0.52
PA 0.51 0.54 0.53 437 0.50 0.51
RI 0.44 0.27 0.27 67 0.50 0.51
SC 0.62 0.70 0.69 154 0.51 0.51
SD 0.53 0.54 0.55 52 0.48 0.51
TN 0.58 0.68 0.68 259 0.50 0.50
TX 0.56 0.58 0.57 601 0.52 0.51
UT 0.67 0.80 0.84 61 0.43 0.50
VA 0.60 0.69 0.72 257 0.46 0.49
VT 0.52 0.58 0.71 12 0.37  0.50
WA 0.49 0.47 0.44 274 0.54 0.52
WI 0.48 0.49 0.52 265 0.47 0.49
WV 0.48 0.49 0.50 80 0.48 0.50
WY 0.61 0.54 0.56 13 0.48 0.51

Table 2: By state: election results (proportion of the two-party vote in 1988 received by Bush);
survey data (weighted mean, unweighted mean, and sample size) from the combined surveys; and
estimated weighting adjustment (raw estimate and Bayes-shrunk estimate).
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Model Model Distribution of R;’s Distribution of m;’s

for R]W’s for R;’s (a2, b2) mean (s.d.) (ar,b) mean (s.d.)
fixed at 0.5 fixed at 0.5 - - (17.8,13.6) 0.567 (0.087)
fixed at 0.5  Beta (50,50) : : (25.4,19.3)  0.568 (0.073)
fixed at 0.5  Beta (20,20) : : (75.4,57.1)  0.569 (0.043)

fixed at 0.5 Beta (1,1) - - (o0,00) (...
fixed at 0.5 estimated | (68.4,62.2) 0.524 (0.044) | (21.9,18.3) 0.545 (0.078)
raw estimates  fixed at 0.5 - - (15.2,11.9) 0.561 (0.094)
raw estimates Beta (50,50) - - (20.4,15.9) 0.562 (0.081)
raw estimates Beta (20,20) - - (44.3,34.4) 0.563 (0.056)

raw estimates  Beta (1,1) - - (00,00) ... (...
raw estimates  estimated | (51.2,48.2) 0.515 (0.050) | (19.7,16.3) 0.547 (0.082)
hierarchical  fixed at 0.5 - - (17.1,13.5) 0.559 (0.088)
hierarchical ~ Beta (50,50) - - (24.1,19.0)  0.559 (0.075)
hierarchical ~ Beta (20,20) - - (67.4,52.9) 0.560 (0.045)

hierarchical Beta (1,1) - - (00,00) ... (....)
hierarchical estimated (65.6,61.9) 0.514 (0.044) | (21.5,17.9) 0.545 (0.078)

Table 3: Estimated values of hyperparameters under different models. Estimated distributions of
R;’s are based on polls and election results; estimated distributions of 7;’s are based on polls only,

conditional on the distribution of R;’s.
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Figure 2: Support for Bush for President in 1988 in a series of CBS pre-election polls: raw means
(open circles) and weighted means (solid circles). The actual election outcome was 53.9% of the two-
party vote for Bush. The unweighted means are higher than the weighted, indicating that, according
to the weights, supporters of Bush were more likely to respond than supporters of Dukakis.
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Model: 1 2 3 4 5 6 7 8
(a1,b1): (1,1) (1,1) (1,1) estimated estimated estimated estimated estimated
(az,b2): (00, 00) (20,20) (68.4,62.2) (00, 00) (20,20) (68.4,62.2)  (51.248.2)  (65.6,61.9)
R}’V: 0.5 0.5 0.5 0.5 0.5 0.5 raw smoothed
State T P T P T P T P T P T P T P T P
AL 0.71 0.00 | 0.71 0.09 | 0.69 0.05 | 0.69 0.01 | 0.60 049 | 0.64 0.18 | 0.62 0.34 | 0.64 0.21
AR 0.57 0.52 | 0.56 0.53 | 0.55 0.65 | 0.57 0.52 | 0.57 0.52 | 0.55 0.69 | 0.52 0.84 | 0.54 0.72
AZ 0.62 0.35 | 0.62 0.45 | 0.60 0.56 | 0.61 0.43 | 0.58 0.76 | 0.58 0.71 | 0.58 0.72 | 0.58 0.71
CA 0.57 0.00 | 0.57 0.26 | 0.55 0.27 | 0.57 0.00 | 0.57 0.09 | 0.55 0.24 | 0.54 0.31 | 0.54 0.28
CcO 0.59 0.13 | 0.58 0.30 | 0.56 0.33 | 0.59 0.12 | 0.57 0.19 | 0.56 0.34 | 0.59 0.18 | 0.57 0.29
cT 0.53 0.44 | 0.53 0.48 | 0.51 0.60 | 0.54 0.35 | 0.56 0.17 | 0.52 0.51 | 0.54 0.38 | 0.53 048
DE 040 096 | 041 091 | 0.38 0.97 | 048 0.88 | 0.55 0.61 | 0.48 0.90 | 0.48 0.90 | 0.48 0.90
FL 0.63 0.22 | 0.62 0.45 | 0.60 0.57 | 0.62 0.26 | 0.58 0.78 | 0.59 0.71 | 0.59 0.71 | 0.59 0.71
GA 0.62 0.30 | 0.61 0.44 | 0.60 0.55 | 0.61 0.35 | 0.58 0.71 | 0.58 0.68 | 0.56 0.78 | 0.57 0.72
IA 0.38 091 | 039 0.74 | 0.36 091 | 043 0.70 | 0.54 0.01 | 0.43 0.61 | 0.39 0.85 | 0.42 0.68
1D 0.54 0.8 | 0.54 0.79 | 0.52 0.88 | 0.56 0.89 | 0.57 0.95 | 0.54 095 | 0.57 0.85 | 0.54 0.94
IL 0.54 0.08 | 0.54 0.35 | 0.52 0.42 | 0.55 0.06 | 0.56 0.08 | 0.53 0.34 | 0.52 045 | 0.52 0.40
IN 0.75 0.00 | 0.74 0.03 | 0.73 0.00 | 0.73 0.00 | 0.61 0.41 | 0.68 0.04 | 0.66 0.10 | 0.67 0.06
KS 0.72 0.00 | 0.71 0.04 | 0.70 0.02 | 0.69 0.00 | 0.60 0.21 | 0.64 0.07 | 0.61 0.19 | 0.64 0.09
KY 0.57 0.36 | 0.57 0.45 | 0.55 0.56 | 0.57 0.34 | 0.57 0.38 | 0.55 0.58 | 0.58 0.31 | 0.56 0.49
LA 0.62 0.04 | 0.61 0.23 | 0.60 0.22 | 0.61 0.05 | 0.58 0.24 | 0.58 0.28 | 0.55 0.50 | 0.57 0.34
MA 0.47 0.42 | 047 0.47 | 044 0.62 | 048 0.29 | 0.55 0.01 | 0.47 0.38 | 0.46 049 | 0.47 043
MD 0.52 0.42 | 0.52 0.48 | 0.50 0.62 | 0.53 0.34 | 0.56 0.12 | 0.51 0.51 | 0.50 0.58 | 0.51 0.54
ME 0.52 0.68 | 0.52 0.63 | 0.50 0.75 | 0.54 0.61 | 0.56 0.45 | 0.52 0.71 | 0.54 0.63 | 0.53 0.70
MI 0.57 0.11 | 0.57 0.36 | 0.55 0.45 | 0.57 0.10 | 0.57 0.21 | 0.55 0.44 | 0.54 047 | 0.55 045
MN 0.53 0.03 | 0.53 0.23 | 0.50 0.23 | 0.53 0.02 | 0.56 0.01 [ 0.52 0.12 | 0.50 0.24 | 0.51 0.16
MO 046 098 | 046 0.77 | 043 095 | 047 095 | 0.55 0.25 | 0.47 0.88 | 0.46 0.88 | 0.46 0.89
MS 0.69 0.01 | 0.68 0.18 | 0.66 0.14 | 0.67 0.03 | 0.59 0.61 | 0.62 0.33 | 0.59 0.64 | 0.61 0.44
MT 039 094 | 040 0.88 | 0.37 0.95 | 048 0.79 | 0.55 0.33 | 0.47 0.81 | 0.50 0.66 | 0.48 0.80
NC 0.59 0.40 | 0.58 0.48 | 0.56 0.62 | 0.59 0.42 | 0.57 0.58 | 0.56 0.68 | 0.58 0.50 | 0.57 0.61
ND 0.56 0.57 | 0.55 0.56 | 0.53 0.67 | 0.56 0.54 | 0.57 0.48 | 0.54 0.68 | 0.55 0.60 | 0.54 0.67
NE 0.56 0.79 | 0.56 0.68 | 0.54 0.84 | 0.57 0.81 | 0.57 0.83 | 0.54 0.89 | 0.56 0.78 | 0.55 0.87
NH 0.69 0.30 | 0.68 0.34 | 0.67 0.38 | 0.62 0.57 | 0.58 0.89 [ 0.59 0.76 | 0.59 0.74 | 0.59 0.75
NJ 0.56 0.65 | 0.56 0.57 | 0.53 0.74 | 0.56 0.64 | 0.57 0.52 | 0.54 0.76 | 0.54 0.71 | 0.54 0.74
NM 0.54 0.40 | 0.54 0.45 | 0.52 0.56 | 0.55 0.32 | 0.56 0.16 | 0.53 048 | 0.54 043 | 0.53 047
NV 0.61 0.49 | 0.61 0.50 | 0.59 0.57 | 0.59 0.61 | 0.57 0.79 | 0.56 0.76 | 0.57 0.72 | 0.56 0.75
NY 042 1.00 | 042 0.75 | 040 095 | 043 1.00 | 0.54 0.07 | 0.44 085 | 0.45 0.76 | 0.44 0.83
OH 0.62 0.00 | 0.61 0.24 | 0.59 0.22 | 0.61 0.00 | 0.58 0.25 | 0.58 0.27 | 0.60 0.13 | 0.60 0.16
OK 0.57 0.62 | 0.56 0.58 | 0.55 0.72 | 0.57 0.62 | 0.57 0.64 | 0.55 0.77 | 0.56 0.66 | 0.55 0.75
OR 0.50 0.27 | 0.50 0.38 | 0.48 0.47 | 0.52 0.16 | 0.56 0.02 | 0.51 0.28 | 0.48 045 | 0.50 0.31
PA 0.54 0.16 | 0.53 0.39 | 0.51 0.50 | 0.54 0.13 | 0.56 0.09 | 0.52 0.41 | 0.53 0.37 | 0.52 0.39
RI 0.27 1.00 | 0.28 0.96 | 0.26 1.00 | 0.36 0.94 | 0.52 0.02 | 0.38 085 | 0.39 0.81 | 0.39 0.84
SC 0.70 0.02 | 0.69 0.18 | 0.68 0.15 | 0.68 0.05 | 0.60 0.73 | 0.63 0.39 | 0.63 0.41 | 0.63 0.39
SD 0.54 0.47 | 0.54 0.49 | 0.51 0.58 | 0.55 0.37 | 0.56 0.20 | 0.53 0.51 | 0.54 043 | 0.53 0.50
TN 0.68 0.00 | 0.67 0.13 | 0.66 0.07 | 0.67 0.00 | 0.59 0.38 | 0.62 0.17 | 0.63 0.16 | 0.63 0.15
TX 0.58 0.20 | 0.58 0.44 | 0.56 0.56 | 0.58 0.20 | 0.57 0.41 | 0.55 0.59 | 0.55 0.62 | 0.55 0.61
urT 0.80 0.02 | 0.79 0.08 | 0.78 0.06 | 0.72 0.14 | 0.61 0.96 | 0.67 0.53 | 0.71 0.26 | 0.68 0.48
VA 0.69 0.00 | 0.68 0.16 | 0.66 0.11 [ 0.68 0.01 | 0.60 0.58 | 0.63 0.27 | 0.66 0.13 | 0.64 0.18
vT 0.57 0.34 | 0.57 0.36 | 0.55 0.40 | 0.58 0.23 | 0.57 0.10 | 0.55 0.33 | 0.58 0.18 | 0.55 0.32
WA 048 0.72 | 048 058 | 045 0.77 | 048 0.61 | 0.55 0.07 | 0.48 0.61 | 0.46 0.71 | 0.47 0.67
WI 049 039 | 049 0.46 | 047 0.61 | 0.50 0.28 | 0.55 0.03 | 0.49 042 | 0.52 0.22 | 0.50 0.31
WV 049 042 | 049 0.45 | 046 0.57 | 0.51 0.24 | 0.56 0.02 | 0.50 0.33 | 0.51 0.25 | 0.50 0.31
WY 0.53 0.73 | 0.53 0.71 | 0.51 0.76 | 0.56 0.77 | 0.57 0.87 | 0.54 0.86 | 0.55 0.83 | 0.54 0.86
mean error 0.052 0.049 0.051 0.041 0.037 0.031 0.032 0.031
mean Z -3.839 -1.119 0.450 -4.288 -3.210 0.599 0.347 0.565
X2 138.051 26.326 50.412 112.263 65.494 26.688 22.821 25.663
P-value 0.000 0.995 0.378 0.000 0.047 0.995 0.999 0.997

Table 4: Posterior medians and p-values (Pr(m; < 7*°*"!|data,model)) for each state for each of 8
models. At the bottom of the table are a measure of fit (mean absolute error of state estimates) and
three measures of calibration (scaled mean Z-score of state p-values, sum of squares of the Z-scores,
and p-value of the sum of squares compared to the x4 distribution).
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Figure 3: Stem-and-leaf plots of p-values of actual election outcome by state, compared to posterior
distributions of 7;’s under each of eight models. Each stem-and-leaf plot has 48 digits, one for each
state. Ideally, the plots should follow Uniform(0,1) distributions. Bunching up of p-values near
either or both ends would indicate posterior distributions that are too precise, whereas bunching up
of p-values near the middle would indicate posterior distributions that are too conservative.
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Figure 4: Plots of actual election results by state, ¥ , vs. posterior medians of 7;, for each of

eight models. Diagonal lines indicate perfect estimates.
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Figure 5: Prediction error for state j vs. sample size n;, for each of the eight models. Horizontal
line at zero indicates perfect estimates. Prediction errors for each model are actual vote minus the

posterior median.
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