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that is, it is assumed that data are missing completely at random or, when covariates are observed,missing at random, as de�ned in Rubin (1976).In this paper, we set up a framework for including di�erential nonresponse rates for the case ofa binary outcome variable y, where the parameter of interest is the population mean � = Pr(y = 1).We do not assume that the response mechanism is known, and so an identi�able parameterizationof the likelihood which includes the population mean of Y does not exist. However, we derivecon�dence bounds for the population mean based on the sample mean and response rate.From a Bayesian perspective, one can average over the prior distribution of the nonidenti�edparameters in the model. Important issues that arise in this context include: (1) parameterizing themodel so that one can set up a reasonable class of prior distributions; (2) understanding the behaviorof posterior inferences in the limit of large sample size; (3) methods of constructing informativeprior distributions using external sources of data; and (4) understanding the sensitivity to the priordistribution of inferences for parameters of interest. To illustrate the methodology, we apply themodel to the state-level analysis of a series of national pre-election opinion polls. We �nd that theuse of a reasonable hierarchical model for the relative response probabilities can lead to substantialimprovements in coverage of posterior intervals and prediction error of point estimates.Rubin (1977) describes a similar Bayesian method to account for nonresponse in the normalcase when covariates are available. However, in his paper, a prior distribution is speci�ed for theparameters in the likelihood of the response variable Y conditional on whether an individual isa respondent or a nonrespondent. In contrast, here we specify a prior distribution for the relativeresponse probabilities in the two groups characterized by Y = 0 and Y = 1 (see also the related workof Kaufman and King, 1973). Nordheim (1984) also allows for di�erent classi�cation probabilitiesfor a binary variable, but does not use a prior distribution for these parameters. Section 2 ofthis paper reviews the basic results for bounding inferences given nonresponse rates, and Section 3presents the Bayesian extension, revealing some poor behavior with a seemingly noninformative priordistribution. In Section 4, we relate the nonresponse models to the practial world of sample surveyanalysis by including in the model a design-based treatment of the nonresponse already accountedfor by survey weights. Finally, in Section 5 we apply a hierarchical form of the Bayesian modelto estimate state-by-state preferences in pre-election polls. Our work goes beyond the previousliterature in this area in its criticism of the noninformative prior distribution, with its handling ofunequal sampling weights, and with the hierarchical model for di�erential nonresponse.
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1.2 Notation and modelFor simplicity, we �rst set up the model in the context of simple random sampling; we generalizeto unequal sampling probabilities in Section 4. Suppose that y1; : : : ; yn are 0/1 responses, with� = Pr(yi = 1) for each i. Consider the corresponding missing data indicator variables, I1; : : : ; In,where unit i responds if Ii = 1 and does not respond if Ii = 0. In general, the probability of responsecan depend on the value of yi. Label the conditional response probabilities as �0 = Pr(Ii = 1jyi = 0)and �1 = Pr(Ii = 1jyi = 1), and assume Iijyi ind� Bernoulli(�yi). Let m =Pni=1 Ii denote the numberof units for which y is observed, and let m0 =Pni=1 Ii(1�yi) andm1 =Pni=1 Iiyi denote the numberof observed units for which y = 0 and y = 1, respectively. Then the distribution of (m0;m1; n�m)is multinomial with density function,p(m0;m1; n�mjn; �; �0; �1) = �nm��mm1�[(1��)�0]m0 [��1]m1 [(1��)(1��0)+�(1��1)]n�m: (1)The sample mean for the observed data is �y = m1=m, and the population probability � is theestimand of primary interest. It can be seen from (1) that, conditional on n, the parameterizationof the likelihood in terms of (�; �0; �1) is unidenti�able, although the parameterization in terms of((1� �)�0; ��1) = (Pr(I = 1; y = 0); Pr(I = 1; y = 1)) is identi�able.We will work with a parameterization of the model that separates identi�ed and nonidenti�edparameters. Let R = �1=(�0 + �1); this is a measure of the relative response rates in the two groupscharacterized by y = 0 and y = 1. The missing-completely-at-random assumption corresponds to�0 = �1, or R = 0:5. We also de�ne � = (�0 + �1)=2, so that the model can be parameterized interms of (�;R; �), with the parameters R and � depending only on the nonresponse rates and noton the responses themselves.We also will �nd it useful to work with an alternative parameterization in terms of the expec-tations of the proportion of respondents and the mean response. Let p = m=n be the observedproportion of respondents; its expectation under the model is�p = (1� �)�0 + ��1:We also de�ne ��y = ��1(1� �)�0 + ��1 ;so that E(�yjn) = ��y +Op(1=n).Finally, we work at �rst under the assumption that the size of the original sample, n, is known,so that it is possible to construct conservative con�dence bounds for �. We consider the case ofunknown n in Section 3.4 and in the application in Section 5.3



2 Frequentist analysisWe begin with a formal analysis of standard conservative bounds for the inferential errors caused bynonresponse; see Manski (1995) for a general discussion of inference for nonidenti�ed parameters,for which this is a special case. We obtain conservative con�dence bounds for � by consideringseparately the identi�ed and nonidenti�ed parts of the model. Let �L; �U be functions of theidenti�able parameter vector ((1 � �)�0; ��1) de�ned by �L = ��1 and �U = 1 � (1 � �)�0. Since0 � �0; �1 � 1 and 0 < � < 1, it follows that �L � � � �U for all �; �0; �1. In fact, there do notexist upper and lower boundaries on the parameter space of � which are functions of an identi�ableparameter and uniformly closer to �. To see this, in the case of the lower boundary, let f be anyfunction of the identi�able parameter ((1��)�0; ��1) such that �L < f((1��)�0; ��1) � � for some�. This implies a contradiction for �1 = 1 since �L = �.Lower con�dence bounds for �L and upper con�dence bounds for �U can be used to assign upperand lower con�dence bounds for �. The distribution of m1 under the model is Bin(n; �L). Whenm1 � 1, a level � lower con�dence bound �L for �L, and therefore a conservative level � lowercon�dence bound for �, is the unique solution to the equationm1Xr=0�nk��kL(1� �L)n�k = 1� �:If m1 = 0 then �L = 0. Similarly, the distribution of n�m0 is Bin(n; �U ). When m0 � 1, a level �upper con�dence bound �U for �U , and therefore a conservative level � upper con�dence bound for�, is the unique solution to the equationnXk=n�m0 �nk��kU (1� �U )n�k = 1� �:If m0 = 0 then �U = 1.If m0 and m1 are not too small, one can easily approximate the above bounds using the normaldistribution, with the lower bound based on the assumption that �1 = 1 (so that we could infer thaty = 0 for all n�m nonrespondents) and the upper bound based on the assumption that �1 = 0 (sothat y = 1 for all n � m nonrespondents). Each bound is now based on binomial inference for apopulation of size n, and the normal approximation yields �L = m1=n�z1��p(m1=n)(1�m1=n)=nand �U = (1�m0=n)+z1��p(m0=n)(1�m0=n)=n, where z1�� is the appropriate standard normalquantile.For example, Table 1 illustrates exact and approximate upper and lower conservative con�dencebounds at level � = 0:05 for � for data with observed mean �y = 0:2, response rate p = 0:7, and arange of sample sizes m. Although a response rate of 70% is relatively high for most types of samplesurveys, con�dence bounds for � remain fairly distant from 0:2 even for large n.4



This example illustrates the well-known fact (see, e.g., Cochran, 1977) that model-free conser-vative con�dence bounds for � tend to be so wide as to be often useless, and so it is important tounderstand how the inference for � depends on the relative response probability R = �1=(�0 + �1).Algebraic manipulation gives the following restrictions on the parameter space of (�;R; �p; ��y) for(�p; ��y) 2 (0; 1]� [0; 1]: �p��y1� �p(1� 2��y) � R � 1� �p��y1 + �p(1� 2��y) ; (2)��y � (1� �p)��y � � � ��y + (1� �p)(1� ��y): (3)Also, we can express � in terms of these parameters:� = ��y(1�R)��y(1�R) + (1� ��y)(R) : (4)To understand the purpose of these transformations, �rst consider the limit n ! 1, in whichcase there is no sampling variability, and all of the uncertainty about � comes from uncertaintyabout R. In this limit, �p (the expected proportion of respondents) and ��y (the expected value ofy among all respondents) are known. The parameter ��y determines the relation between � and R(equation (4)), and then �p, in combination with ��y gives us bounds on R (equation (2)) and thus �(equation (3)). These relations are illustrated in Figure 1; the curve segment shown in bold on the�gure corresponds to the special case of �p = 0:7 and ��y = 0:2, the example considered Table 1.If n is �nite, �p and ��y are now estimated with binomial error, so that the relation between �and R becomes uncertain.3 Bayesian analysisWhen the proportion of respondents p is not close to 1, con�dence bounds remain distant from� even for large n, as in the example summarized in Table 1. Closer bounds can be achievedby introducing assumptions about the relative response rate R. For example, under the missing-completely-at-random assumption R = 0:5 it follows that E(�y) = �. This assumption is commonlymade in practice, either implicitly or explicitly. Another possibility is to assume that R lies withinsome range; for example, Figure 1 illustrates that if we know that R 2 [0:4; 0:6], our inferences about� become relatively precise for any value of p. From a Bayesian viewpoint, uncertainty in (�;R) canbe characterized by a probability distribution. A di�use prior distribution for the relative responserate R results in increased posterior uncertainty for the parameter of interest �. For example, in thelimit of n!1, with p = 0:7 and �y = 0:2, the bold curve segment in Figure 1 is the support of thelikelihood, which is overlain on the prior distribution for (�;R). If n is �nite, the likelihood spreadsabove and below the bold segment and blurs at the endpoints.5



A Bayesian analysis requires a prior distribution for all of the parameters in the likelihood. The�rst step, then, is to choose an appropriate parameterization of the likelihood. The probability �is the parameter of primary interest. If the parameter R is also included in the model, then theparameter � = (�0 + �1)=2 will complete the speci�cation. From (1), the likelihood in this newparameterization isp(m0;m1; n�mjn; �;R; �) = �nm��mm1�[2(1��)(1�R)�]m0 [2�R�]m1 [2(1��)R�+�(1�2R�)]n�m:This parameterization was chosen instead of (�; �0; �1) because it may be more natural for specifyinga prior distribution. The parameters �0 and �1 would probably be correlated; knowledge of theresponse probability in one group would a�ect the subjective estimation of the response probabilityin the other group. On the other hand, it may be reasonable to assume prior independence of �,R, and �. For a particular speci�cation of the prior p(�;R; �), inference about � is based on theposterior distribution p(�jn;m; y) = Z Z p(�;R; �jn;m; y)d�dR (5)/ Z Z p(m; yjn; �;R; �)p(�;R; �)d�dR: (6)3.1 Large-sample inferenceIn most Bayesian models encountered in practice, the likelihood dominates the prior for large n. Thisis not the case for unidenti�able models, however. Unless the fraction of missing data is small, theposterior distribution is sensitive to the speci�cation of the prior, even for large n. We can see thisby separating the posterior distribution into identi�ed and unidenti�ed parts. A prior distributionspeci�ed in terms of (�;R; �) corresponds to a prior distribution for (�; 2(1��)(1�R)�; 2�R�), wherethe observed statistics follow the limits m0=n! 2(1� �)(1�R)� and m1=n! 2�R� in probabilityas n!1. Since the observed data is independent of � given ((1� �)(1�R)�; �R�), the posteriordistribution p(�jn;m; y) tends to the conditional prior distribution evaluated at the observed valuesp(�j2(1� �)(1 � R)� = m0=n; 2�R� = m1=n). Then, in the limit as n ! 1, the posterior densityfor � has the form of the prior density evaluated at particular values of the identi�ed parameters.Formally, let h = (h1; h2; h3) be the transformation de�ned on (0; 1)3 by h(x1; x2; x3) = (x1; 2(1�x1)(1� x2)x3; 2x1x2x3), and let J = x1(1� x1)x3 be the Jacobian of h. Thenlimn!1 ����p(�jn;m; y)� J�1p(�;R = h�12 (�;m0=n;m1=n); � = h�13 (�;m0=n;m1=n))R J�1p(�;R = h�12 (�;m0=n;m1=n); � = h�13 (�;m0=n;m1=n))d� ���� = 0in probability. Note that J = �(1� �)� = �p((1� ��y)� + ��y(1� �)).For example, if independent beta distributions are used in the prior so thatp(�;R; �) = Beta(�ja1; b1)Beta(Rja2; b2)Beta(�ja3; b3);6



then the conditional prior distribution of � in terms of the other parameters isp(�j�p; ��y) / ((1� ��y)� + ��y(1� �))�1 �a1�1(1� �)b1�1�� ��y�(1� ��y)(1� �) + ��y��a2�1� (1� ��y)(1� �)(1� ��y)(1� �) + ��y��b2�1��(1� ��y)� + ��y(1� �)�(1� �) �a3�1�1� (1� ��y)� + ��y(1� �)�(1� �) �b3�1for � 2 [�p��y; 1� �p(1� ��y)]; (7)and for all �, jp(�jn;m; y)� p(�j��y = �y; �p = p)j ! 0in probability as n!1.3.2 Di�culties with a natural \noninformative" prior distributionConsider the special case of independent uniform (i.e., Beta(1; 1)) prior distributions on �, R, �. Inthe limit, from (7), the posterior distribution for � is justp(�jp; �y) / ((1� �y)� + �y(1� �))�1 ; for � 2 [p�y; 1� p(1� �y)]:For example, if p = 0:7 and �y = 0:2, and n ! 1, then � must lie within the range [0:14; 0:44] andhas density proportional to 1=(0:2 + 0:6�). The posterior mean of � is 0.278. The uniform priordistribution is thus not so \noninformative" as one might like, in that it shrinks � quite a waysfrom the raw estimate �y toward 0.5. However, the uniform prior distribution is more reasonable ifrestricted to lie near R = 0:5; for instance, with a uniform prior distribution on (�;R; �) but withR restricted to the range [0:4; 0:6], the posterior mean for � becomes 0.205 in this example.3.3 Constructing an informative prior distributionIn practice, our model for di�erential nonresponse rates is not particularly useful unless we havean informative prior distribution for the parameters in the model. As discussed above, it seemsreasonable to set up prior distributions for �, R, and � independently: (1) the distribution for� reects substantive modeling of the responses in the population without any reference to thesampling mechanism; (2) R = �1=(�1 + �2) is the relative rates of response in the two groups; and(3) � = (�1 + �2)=2 reects the level of response, averaging over the two groups. Models for � arewidespread in the survey sampling literature, and we do not add anything to this topic here (see, e.g.,Ericson, 1969, Scott and Smith, 1969, Rubin, 1987, Skinner, Holt, and Smith, 1989, Little, 1993, andNadaram and Sedransk, 1993, for theoretical treatments, and Belin et al., 1993, Lazzeroni and Little,1997, and Gelman and Little, 1997, for some recent examples). Models for � are close to irrelevant7



for the problem of estimating �: what is relevant is the di�erential rates of nonresponse between thetwo groups corresponding to y = 0 and y = 1. Thus, the key part of our nonignorable nonresponsemodel is the prior distribution for R. The importance of the prior distribution is illustrated byKadane (1993), who examines the sensitivity of inferences about � to di�erent speci�ed values of Rin the context of a sample survey of jurors.As with other Bayesian models, it is best to construct a prior distribution using some relateddata|in this case, this would mean other surveys in which the population proportions � wereknown, so that R could be estimated directly. We can generalize this idea by modeling our surveyhierarchically. Suppose the population is divided into J groups, j = 1; : : : ; J , with known populationsNj , and it is known which respondents fall into which group. Then our data and model can be givena hierarchical structure: in each group j, we observe responses yj 1; : : : yj mj , with parameters �j ,Rj ; and �j . The mean response in the population is � = Pj Nj�j=Pj Nj . We can set up ahierarchical model for the J sets of parameters (�j ; Rj ; �j). Using a hierarchical model, we will beable to estimate some aspects of the prior distribution for these parameters. But, because we do notobserve y for the nonrespondents, inferences for � will still depend on the prior distribution for theensemble of Rj parameters, even in the limit of in�nite sample size. The advantage of setting thisup as a hierarchical model is that we can take advantage of any knowledge of the distribution of theRj 's, without having to accurately estimate any individual Rj ahead of time. We illustrate with anexample in Section 5 of a U.S. opinion poll in which the groups j are individual states.3.4 Proportion of missing data unknownSometimes the number of individuals in the original sample, n, and therefore the proportion ofrespondents p = m=n, are not known. This occurs, for instance, in a telephone poll: if no oneanswers the phone, the survey organization does not know whether no one is at home, or theyare not answering the phone, or the phone is a non-residence (Brady and Orren, 1992, discuss thedi�culty of estimating nonresponse rates in commercial telephone polls). If n is unknown, thelikelihood (1) no longer applies. Instead inference is based on the conditional distributionm1jm � Bin(m; ��y): (8)Although con�dence bounds can be found for ��, it is easily seen that, for any n, any frequentist�-level upper and lower con�dence bounds for �, the parameter of interest, are simply 0 and 1.For a Bayesian analysis, we express the marginal posterior density for � as p(�jm;m1) /R p(m1jm;�;R)p(�;R)dR, ignoring � because it does not appear in the likelihood (8). Let g =8



(g1; g2) be the transformation de�ned byg(�;R) = ��; �R(1� �)(1�R) + �R� ;and let Jg = (� + ��y � 2���y)2�(1� �)be the corresponding Jacobian. Then the conditional distribution of � isp(�j��y) / J�1g p(�;R = g�12 (�; ��y)); (9)where g�12 (�; ��y) = ��y(1� �)=(��y + � � 2��y�). As before, it follows that for all �,jp(�jm;m1)� p(�j��y = �y)j ! 0in probability.4 Accounting for sampling weightsIt is standard for sample surveys to include some correction for nonresponse in the form of aweight wi attached to each respondent i. Loosely speaking, wi is proportional to the number ofunits in the population \represented" by this respondent. In the context of binary responses, theweights are set so that, assuming ignorable nonresponse, the weighted average Pi wiyi=Pi wi isintended to be a consistent estimate of the population proportion �. Weights are assigned as afunction of measured covariates can be derived based on strati�cation, poststrati�cation, samplingtheory, or more elaborate modeling (see Kish, 1992, Little, 1991, and Pfe�ermann, 1993, for re-cent reviews of these issues); here, we shall treat weights as inverse sampling probabilities, so thatPr(a unit with weight w is included in the set of respondents) / 1=w. We use this \design-based"perspective because it is standard in the practical analysis of sample surveys, and we want ournonresponse modeling to be an improvement upon rather than merely a replacement for standardweighted analysis of sample surveys.Sampling weights a�ect our model of nonresponse because it is possible, and in fact generallyoccurs, that units with yi = 1 have di�erent weights, on average, than units with yi = 0. Thatis, one often has direct evidence, from the survey weights themselves, that the response rates inthe two groups di�er. Obviously, we do not want to go to the trouble of setting up a nonignorablenonresponse model just for the purpose of �nding out what we already know. Instead, we want toset up our model conditional on the weights, so that our parameter R represents di�erential responserates after weighting. 9



We develop a procedure to do this by formally de�ning, for each unit i in the population, itsresponse Yi and the weight Wi that would be assigned for that unit, based on the value of itscovariates. We combine weighting and our di�erential nonresponse model as follows:Pr(unit i is included in the set of respondentsjYi;Wi) / � (1�R)=Wi if Yi = 0R=Wi if Yi = 1:This reduces to the usual probability weights if R = 0:5 and to our earlier model if all weights areequal. Then the probability that a response is y = 1 isPr(yi = 1) / Xi YiR=Wi/ RXi YiPi Yi=WiPi Yi/ RN�E(1=WijYi = 1):Similarly, Pr(yi = 0) / (1�R)N(1� �)E(1=WijYi = 0):We now de�ne RW = E(1=WijYi = 1)E(1=WijYi = 0) + E(1=WijYi = 1) ;so that ��y = Pr(yi = 1)Pr(yi = 0) + Pr(yi = 1) = �RRW(1� �)(1�R)(1�RW ) + �RRW : (10)The parameter RW represents the di�erential nonresponse of the two groups as explained by theweights. Like R, the parameter RW must lie in the range [0; 1], and RW = 0:5 corresponds to equalaverage weights among the two groups.In general, we cannot know RW , because it depends on the weightsWi in the population, whereaswe only know the values of wi in the sample. To estimate E(1=WijYi = 1) and E(1=WijYi = 0), andthus RW , we use the fact that a consistent estimate of the population mean of any survey variableX is bE(X) =Pi wixi=Pi wi. Thus, we havebE(1=WijYi = 0) = Pi(1� Yi)wi(1=wi)Pi(1� Yi)wi = 1w0bE(1=WijYi = 1) = Pi Yiwi(1=wi)Pi Yiwi = 1w1 ;where w1 and w0 are the mean observed weights for the y = 1 and y = 0 respondents, respectively.A consistent estimator of RW is then Rw = w0w0 + w1 : (11)10



With a large enough sample size, one can simply use Rw in place of RW ; if the sample size is smaller,more sophisticated estimates can do better, as in the example in Section 5.In either case, one can use expression (10) for ��y in all formulas, so that the parameter R modelsonly the di�erential nonresponse not already coded by the weights. We would expect this to pull Rcloser to 0.5 (since weights are generally explicitly included to make the response pattern closer tomissing at random).5 ApplicationThe modeling described in the previous sections seems highly theoretical, and yet it can a�ect theanalysis of survey data, beyond merely widening con�dence intervals to take account of uncertaintyabout nonrespondents. We illustrate with an analysis of state-level data from nationwide opinionpolls in the United States. In this application, it is possible to improve state-level inferences byusing a hierarchical model for di�erential nonresponse that allows the parameters R to vary betweenstates.5.1 Problem and dataNonresponse rates for high-quality professional political opinion polls can be in the 50{70% range(see Brady and Orren, 1992), and an obvious concern is di�erential nonresponse among supportersof two di�erent candidates or positions. We illustrate with an analysis of data from seven nationalopinion polls conducted by CBS during the two weeks before the 1988 U.S. Presidential election.Figure 2 shows the unweighted and weighted means for Presidential preference at the national level.The weights are based on a combination of probability weighting and raking, performed separatelyfor each survey, based on Census information about the population distribution of sex, race, age,and education. A general discussion of the use of raking to correct for nonresponse can be found inOh and Scheuren (1983). A variation of random-digit dialing was used to select the sample. Detailsof the survey methodology and the adjustment appear in Voss, Gelman, and King (1995).To follow our general notation, we assign yi = 1 to supporters of Bush and yi = 0 to supportersof Dukakis; we discard the respondents who expressed no opinion (about 15% of the total). Figure2 shows that the unweighted means are higher than the weighted, which indicates that, accordingto the weights, supporters of Bush were more likely to respond than supporters of Dukakis. Thatis, Rw > 0:5.To illustrate our methodology, we �t several models of (�;R) to these data, �rst ignoring theweights and then including them. For all models, we allow separate parameters (�j ; Rj) for each ofthe 48 contiguous states j, and for the models that include weights, we allow separate values of RWj .11



(Alaska and Hawaii were not included in the surveys. The District of Columbia, although includedin the surveys, was excluded from analysis because its voting preferences are so di�erent from theother states that it would be unduly inuential in our model.) The number of nonrespondents is notknown, so that inference is based on the likelihood (8). The target population is taken to be the setof registered voters. We validate the analysis by comparing our results with the November 4 electionresults, assuming that for each state the election result equals the true proportion of support for thecandidate among registered voters.Since there are few observations for the smaller states, and the between-poll variation displayedin Figure 2 is within binomial sampling variability, we combine the data from all seven polls. The�rst column in Table 2 gives the actual election results for the 48 contiguous states. Altering thenotation for this example, let mj denote the number of respondents in state j, and let yj denotethe number of those who say they will vote for Bush. The second and third columns in Table 2give �j and �yj = yj=mj , respectively, for the 48 continental states. In the following discussion, lety = (yj);m = (mj); � = (�j); R = (Rj); j = 1; : : : ; 48.5.2 Models and estimationTo illustrate the methodology, we consider several models of varying complexity. In all of the modelsconsidered, the likelihood is given byyj jmj ; ��y j ind� Bin(mj ; ��y j);where ��y j = �jRjRWj(1� �j)(1�Rj)(1�RWj ) + �jRjRWj :We consider prior distributions that are independent in (�;R) with the following form:�j ind� Beta(a1; b1)Rj ind� Beta(a2; b2):The parameters RWj , which depend on the distribution of weights among the two groups of respon-dents, are assumed �xed in all the analyses.The likelihood only tells us about the parameters ��y j , which depend on both �j and Rj|so wecan estimate the distribution of the �j 's (given a model for the Rj 's) or the Rj 's (given a model forthe �j 's), but not both. The standard approach is to �x Rj � 0:5 and estimate the �j 's. We donot do this, but we recognize that, in most surveys, the Rj 's should vary less than the �j 's|it ishard to imagine the relative nonresponse probabilities for a question to vary more than the averageresponse itself. In all the models we set up, (a2; b2) will be �xed (either set a priori or by using otherdata), so that only (a1; b1) will be estimated from the survey data.12



5.2.1 Models for �We consider two di�erent models:1. Independent uniform prior distributions; that is, (a1; b1) = (1; 1). This is essentially equivalentto estimating each �j using only the data from state j with no hierarchical model.2. Hierarchical: (a1; b1) estimated from the survey data and the assumed distribution for R. Thehyperparameters (a1; b1) can be estimated by maximum likelihood:(a) For the models with R �xed at 0.5, the marginal likelihood of the data given a1; b1 isp(yjm; a1; b1) = R p(yjm;�)p(�ja1; b1)d� =Qj p(yj jmj ; a1; b1), wherep(yj jmj ; a1; b1) = �(mj + 1)�(yj + 1)�(mj � yj + 1) �(a1 + yj)�(mj + b1 � yj)�(a1 + b1 +mj) �(a1 + b1)�(a1)�(b1)is beta-binomial. The marginal likelihood can easily be maximized over (a1; b1) numeri-cally.(b) For the models in which R has a Beta(a2; b2) distribution, the marginal density of thedata given all the hyperparameters isp(yjm; a1; b1; a2; b2) = Z Z p(y; �;Rjm; a1; b1; a2; b2)d�dR= Z Z p(yjm;�;R)p(�ja1; b1)p(Rja2; b2)d�dR= Yj Z Z p(yj jmj ; �j ; Rj)p(�j ja1; b1)p(Rj ja2; b2)d�jdRj (12)The parameters (a2; b2) are assumed known (more on this in Section 5.2.2). For any(a1; b1), (12) can be evaluated by numerical integration. One can then use an optimizationroutine to �nd the (a1; b1) that maximizes the likelihood (12).Given the estimated hyperparameters, the posterior distributions for the �j 's are independent;we sample posterior draws using rejection sampling applied to the product of the beta prior densityand the likelihood.5.2.2 Models for RWe consider several di�erent prior distributions for the Rj 's:1. Rj = 0:5 for all j: this is the missing-at-random model and corresponds to (a2; b2) = (1;1).2. Hyperparameters (a2; b2) estimated from polls and election results. Although the electionresults were not available at the time of the surveys, for the purposes of illustration we use the13



election results to estimate a prior distribution for R. This model can be expected to performbetter than any estimated prior distribution speci�ed at the time of the surveys. The marginaldistribution of the data conditional on the election results � isp(yjn; �; a2; b2) = Z p(y;Rjn; �; a2; b2)dR= Z p(yjn; �;R)p(Rja2; b2)dR= Yj Z p(yj jnj ; �j ; Rj)p(Rj ja2; b2)dRj : (13)For any (a2; b2), we evaluate (13) by numerical integration. We use an optimization routine to�nd the (a2; b2) that maximizes the likelihood (13). At this point, we use these estimates as ifthey are the known values of the hyperparameters, and we make no more use of the electionresults �j .This model we have set up is a best possible model in the sense of using actual election results,but we emphasize that we are only using these to estimate the hyperparameters (a2; b2), notthe individual Rj 's.3. Hyperparameters (a2; b2) �xed at other values. We consider (50; 50) (mean 0.5, s.d. 0.07),(20; 20) (mean 0.5, s.d. 0.11), and (1; 1) (uniform on [0,1]). These prior distributions are moreand more di�use, but as we shall see, they do not give more and more di�use inference for ourparameters of interest, �j .5.2.3 Models for RWWe do not complicate our analysis by estimating the parameters RWj simultaneously with � andR; rather, we estimate the RWj 's �rst and then treat them as �xed in the subsequent analysis. Weconsider three di�erent estimates of RWj :1. Setting RWj = 0:5 for all j; that is, ignoring the weights. This has the e�ect of lumping all therelative nonresponse into the parameters Rj . Ignoring the weights would not be recommendedfor a serious analysis if weights are present, but we include this option because of its simplicity.2. For each j, setting RWj to Rwj (see equation (11)). This is the most direct way of includingthe weights in the data and should perform well for large states, for which the surveys havelarge sample sizes (see Table 2). For small states, however, the variation in the raw estimatesRwj may be mostly sampling noise.3. Smoothing the Rwj 's toward their common mean using a hierarchical model. This approachis based on the assumption that the true values of RWj probably do not vary much, at least14



compared to the sampling variability of the Rwj 's in the smaller states. For simplicity, wedeal with the boundedness of RW by �tting a hierarchical normal model to the parametersLj = logit(RWj ) based on the data lj = logit(Rwj ). Our model islj ind� N(Lj ; Vj)Lj ind� N(�; �2)p(�; �) / 1 (14)We set the sampling variances Vj to �xed values as follows. First, for each j, we create a crudeestimate of the sampling variance of lj from elementary sample survey theory, based on theassumption of independent sampling of the respondents in state j:lj = logit(Rwj ) = log( �w1 j)� log( �w0 j)var(lj) = var(log( �w1 j)) + var(log( �w0 j))cvar(lj) = 1y1j s2w1 j�w1 j + 1y0j s2w0 j�w0 j ; (15)where y1j and y0j are the number of y = 1 and y = 0 respondents, respectively, and s2w1 j ands2w0 j are the sample variances of the weights for the y = 1 and y = 0 respondents, respectively,in state j. A plot of cvar(lj) versus the sample size 1=mj (not shown here) shows approximateproportionality, as one would expect from simple theory. For each j, we set Vj to V=mj ,where V is the average value of mjcvar(lj). We use V=mj in the hierarchical analysis becausecvar(lj) is extremely variable for small states. Given the Vj 's, we estimate the parameters of thehierarchical model (14) Bayesianly, averaging over the hyperparameters � and � (see Rubin,1981, and Gelman et al., 1995, chap. 5). We obtain the posterior medians of the parametersLj using simulation and use the inverse-logits of these values as the �xed values of RWj in thesubsequent analysis. The raw values Rwj and the smoothed estimates bRWj for the pre-electionpolls appear as the last two columns of Table 2.5.3 Results and assessing model �t5.3.1 Estimates of hyperparametersTable 3 gives the estimates of (a1; b1) and (a2; b2) corresponding to the various models. To explainthis table, we shall �rst discuss the distributions of the Rj 's (that is, the values of a2 and b2), thenthe estimated distributions of the �j 's (that is, the values of a1 and b1).We consider several possibilities for the distribution of Rj 's, ranging from �xed at 0.5 (thestandard missing-at-random model, corresponding to (a2; b2) = (1;1)) to uniform on [0; 1] (the\noninformative" prior distribution, corresponding to (a2; b2) = (1; 1) that gives unappealing results,15



as discussed in Section 3.2). When we estimate (a2; b2) by comparing to the election data, we estimatethe Rj 's to have a mean of 0.534 and standard deviation of 0:044, which suggest that Bush supportershave a higher response rate than Dukakis supporters, and that di�erential nonresponse rates varylittle from state to state. The latter observation explains why the Beta (1,1) model will not performwell. After correcting for the sampling weights (using either the raw or smoothed estimates), weestimate the Rj 's to have a mean near 0.515; thus, the di�erential nonresponse is partially but notwholly explained by the sampling weights.One surprising result is that including the weights in the analysis does not make our estimateddistribution of Rj 's less variable, as we might have expected.For each of the models forRW andR, we estimate the distribution of the �j 's from the survey dataalone. The most consistent pattern here is that (a1; b1) become larger (that is, the �j 's are estimatedto be less variable) as the RWj 's become more variable (going from �xed at 0.5 to hierarchicalestimates to raw estimates) and as the Rj 's become more variable (going from �xed at 0.5 to theBeta (50,50) range to Beta (1,1)). This occurs because, with the hierarchical model, the variance ofthe �j 's is essentially being estimated from the variance of the yj 's, after subtracting (1) binomialsampling variability, (2) variability in the Rj 's, and (3) variability in the RWj 's. When one source ofvariability is raised, the others are estimated to be lower. At the most extreme case, when the Rj 'sare assigned a uniform prior distribution, there is not enough variance in the yj 's to explain this, andthe �j 's are estimated to be all equal, that is, (a1; b1) = (1;1). The other notable behavior of theestimated distribution of the �j 's is that the mean shifts after correcting for di�erential nonresponse,from about 0.568 with no correction, to about 0.560 after correcting for the RW 's, to about 0.545after correcting for the Rj 's.5.3.2 Estimates of state results �jThe test of the method is how well it estimates the individual state means, which in this case wecan compare to the actual election results �actualj (under the assumption, reasonable in this case,that there is little opinion change in the last week of the election campaign). We are interested inprediction error of point estimates and also in coverage probability of posterior intervals.To avoid an overwhelming display of results, we present inferences for a selection of the modelsthat illustrate the behavior of the method under various assumptions:1. Nonhierarchical model, no nonresponse adjustment: (a1; b1) = (1; 1), Rj = 0:5 for all j,RWj = 0:5 for all j2. Nonhierarchical model, nonresponse adjustment with di�use prior distribution: (a1; b1) =(1; 1), (a2; b2) = (20; 20), RWj = 0:5 for all j16



3. Nonhierarchical model, empirical nonresponse adjustment: (a1; b1) = (1; 1), (a2; b2) = (68:4; 62:2)(see Table 3), RWj = 0:5 for all j4. Hierarchical model, no nonresponse adjustment: (a1; b1) estimated from polls, Rj = 0:5 for allj, RWj = 0:5 for all j5. Hierarchical model, nonresponse adjustment with di�use prior distribution: (a1; b1) estimatedfrom polls, (a2; b2) = (20; 20), RWj = 0:5 for all j6. Hierarchical model, empirical nonresponse adjustment: (a1; b1) estimated from polls, (a2; b2) =(68:4; 62:2), RWj = 0:5 for all j7. Hierarchical model, empirical nonresponse adjustment, adjustment for raw weights: (a1; b1)estimated from polls, (a2; b2) = (51:2; 48:2) (see Table 3), RWj = Rwj for all j8. Hierarchical model, empirical nonresponse adjustment, adjustment for smoothed weights:(a1; b1) estimated from polls, (a2; b2) = (65:6; 61:9) (see Table 3), RWj = bRwj for all j (seeSection 5.2.3)Table 4 presents, for each of the above models and for each of the 48 states j, the posterior medianestimate of �j and the (one-sided) p-value of the actual election result �actualj (that is, Pr(�j ��actualj jdata, model)). A p-value near 0 or 1 means that the actual election result was on the low orhigh end, respectively, of the posterior distribution for that state.The summary statistics at the bottom of the table reveal that a large reduction in error comessimply from using a hierarchical model for the �j 's: models 1{3 have mean errors of about 0.05,whereas model 4 (estimating (a1; b1) from the data but making no correction for weights or di�er-ential nonresponse) has a mean error of about 0.4. Using appropriate values for (a2; b2) reducesthe mean error to about 0.03, with the corrections for weights having little e�ect. These are thebest possible results, in the sense that (a2; b2) are estimated using the election results themselves.However, setting (a2; b2) to reasonable approximate values such as (50; 50) gives results of nearlythe same accuracy.Figure 3 displays the calibration of the error estimates with, for each model, a stem-and-leafplot of the 48 p-values for the state forecasts. If the p-values for a model are clustered near 0 or1, the forecasts are overcon�dent (that is, the standard errors are too small); if they are clusterednear the middle of the range, the forecasts are undercon�dent and the standard errors too large.This behavior is summarized in the bottom rows of Table 4 by the scaled mean z-score and sumof squares of the normal-transformed p-values. The sum of squares can itself be compared to a�2 distribution, and this reveals that the models with (a2; b2) set to (1;1) (that is, Rj � 0:517



for all j) yield overcon�dent forecasts, whereas the models with (a2; b2) �t from actual electionresults yield undercon�dent forecasts. Both these results make sense: a model that assumes thereis no di�erential nonresponse is ignoring a source of variability and thus should be expected to havestandard errors that are too small, whereas a model that is �t using the best parameter values shouldhave lower-than-expected errors.To reveal what the models are doing, we plot in Figure 4 the actual vs. predicted results, bystate, for each model. Models 1{3, which do not �t a hierarchical model to the �j 's, perform poorly,which is to be expected: the estimates are extremely variable, due to sampling variation, and noattempt is made to correct them. Model 4 achieves a great improvement by shrinking the estimatesof �j towards the grand mean. However, the model does not seem to shrink enough: for the stateswith low estimates, the actual result tends to be higher, and vice-versa.As discussed earlier, the �j 's are shrunk more in the hierarchical model if the Rj 's are allowedto vary. Model 5, which sets (a2; b2) to (20; 20), shrinks the �j 's too much, as is shown by the �fthgraph in Figure 4, because Beta (20,20) is too spread-out a distribution for the Rj 's. Model 6,with a Beta (68.4,62.2) distribution for the Rj 's, shrinks the �j 's about the right amount and thusimproves the estimates for the 48 states. Models 7 and 8, which correct in di�erent ways for theweights, perform similarly.Figure 5 plots prediction error vs. sample size, by state, showing the expected inverse relationfor all the models.6 DiscussionWe see the methods described in this article as a tool for survey analysis, to be used in additionto models for nonresponse based on observed covariates (Little, 1993). Fixing R at 0.5 is in somesense a default choice, corresponding to the ignorable model. In fact, in our election example, we�nd that the Rj 's are quite close to 0.5. Allowing uncertainty in R should improve the calibration oferror estimates, but it is important to keep that uncertainty realistic; allowing R to vary too muchfrom 0.5 can lead to unreasonable inferences for the parameter of interest, � (see Section 3.2 andthe performance of Model 5 in Figure 4).In a hierarchical context, as achieved in our example by partitioning the population by state,accounting for variation in Rj 's increases the accuracy of estimates of �j 's by allowing the model toshrink appropriately. The di�culty here is getting the population distribution for the Rj 's for newproblems.In our example, correcting for sampling weights had little e�ect. In general, we prefer to correctfor the weights provided with the survey so that our analysis can be viewed as an improvement18
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n 50 100 200 400 1000 10000 1m 35 70 140 280 700 7000 1�L (exact) 0.082 0.095 0.106 0.114 0.123 0.134 0.14�L (approximate) 0.059 0.083 0.100 0.111 0.122 0.134 0.14�U (exact) 0.546 0.517 0.496 0.480 0.465 0.448 0.44�U (approximate) 0.555 0.522 0.498 0.481 0.466 0.448 0.44Table 1: A numerical example of conservative upper and lower con�dence bounds for � at level� = 0:05. For each n given it is assumed that the observed mean is �y = 0:2, and the observedresponse rate is p = 0:7. Exact bounds come from inverting the binomial distributions, approximatedfrom the normal distribution.
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Figure 1: � as a function of (R; �p; ��y) for select values of (�p; ��y). (Note that �p is estimated byp = m=n, and ��y is estimated by �y.) Each curve that runs from upper-left to lower-right correspondsto a particular value of ��y and gives � as a function of R conditional on ��y. Corresponding to eachvalue of �p is a set of two curves that run lower-left to upper-right. The two intersections of thesecurves with the curve for ��y give the upper and lower bounds for R and � conditional on ��y and �p.For example, suppose p = 0:7, �y = 0:2, and n is large. Then �p � 0:7 and ��y � 0:2, and (�;R) mustlie approximately on the curve segment labeled \0.2", between the two curves labeled \0.7"|this isshown in bold on the graph. 21



State, Election Unweighted Weighted mean, Samplej result mean, �yj Pi wijyij=Pi wij size, mj Rwj bRWjAL 0.60 0.72 0.68 134 0.55 0.52AR 0.57 0.57 0.51 86 0.56 0.52AZ 0.61 0.62 0.61 141 0.51 0.51CA 0.52 0.57 0.55 1088 0.52 0.52CO 0.54 0.59 0.62 127 0.46 0.50CT 0.53 0.53 0.55 103 0.48 0.50DE 0.56 0.40 0.39 30 0.51 0.51FL 0.61 0.63 0.62 565 0.51 0.51GA 0.60 0.62 0.59 211 0.54 0.52IA 0.45 0.38 0.30 102 0.58 0.53ID 0.63 0.55 0.61 33 0.43 0.50IL 0.51 0.54 0.52 439 0.53 0.52IN 0.60 0.75 0.73 215 0.53 0.52KS 0.57 0.72 0.67 105 0.56 0.52KY 0.56 0.57 0.62 148 0.45 0.49LA 0.55 0.62 0.57 153 0.55 0.52MA 0.46 0.47 0.44 279 0.53 0.52MD 0.52 0.52 0.50 207 0.52 0.52ME 0.56 0.52 0.54 44 0.48 0.51MI 0.54 0.57 0.56 403 0.51 0.51MN 0.46 0.53 0.49 214 0.54 0.52MO 0.52 0.46 0.43 235 0.52 0.51MS 0.60 0.69 0.62 176 0.57 0.53MT 0.53 0.39 0.45 31 0.44 0.50NC 0.58 0.59 0.61 239 0.48 0.50ND 0.57 0.56 0.57 54 0.48 0.51NE 0.60 0.56 0.59 92 0.48 0.50NH 0.63 0.70 0.68 20 0.52 0.51NJ 0.57 0.56 0.55 306 0.50 0.51NM 0.52 0.54 0.54 89 0.50 0.51NV 0.61 0.62 0.62 21 0.50 0.51NY 0.48 0.42 0.42 666 0.50 0.50OH 0.56 0.62 0.64 459 0.47 0.49OK 0.58 0.57 0.58 93 0.48 0.50OR 0.48 0.50 0.46 113 0.55 0.52PA 0.51 0.54 0.53 437 0.50 0.51RI 0.44 0.27 0.27 67 0.50 0.51SC 0.62 0.70 0.69 154 0.51 0.51SD 0.53 0.54 0.55 52 0.48 0.51TN 0.58 0.68 0.68 259 0.50 0.50TX 0.56 0.58 0.57 601 0.52 0.51UT 0.67 0.80 0.84 61 0.43 0.50VA 0.60 0.69 0.72 257 0.46 0.49VT 0.52 0.58 0.71 12 0.37 0.50WA 0.49 0.47 0.44 274 0.54 0.52WI 0.48 0.49 0.52 265 0.47 0.49WV 0.48 0.49 0.50 80 0.48 0.50WY 0.61 0.54 0.56 13 0.48 0.51Table 2: By state: election results (proportion of the two-party vote in 1988 received by Bush);survey data (weighted mean, unweighted mean, and sample size) from the combined surveys; andestimated weighting adjustment (raw estimate and Bayes-shrunk estimate).22



Model Model Distribution of Rj 's Distribution of �j 'sfor RWj 's for Rj 's (a2; b2) mean (s.d.) (a1; b1) mean (s.d.)�xed at 0.5 �xed at 0.5 - - (17.8, 13.6) 0.567 (0.087)�xed at 0.5 Beta (50,50) - - (25.4, 19.3) 0.568 (0.073)�xed at 0.5 Beta (20,20) - - (75.4, 57.1) 0.569 (0.043)�xed at 0.5 Beta (1,1) - - (1,1) ..... (.....)�xed at 0.5 estimated (68.4, 62.2) 0.524 (0.044) (21.9, 18.3) 0.545 (0.078)raw estimates �xed at 0.5 - - (15.2, 11.9) 0.561 (0.094)raw estimates Beta (50,50) - - (20.4, 15.9) 0.562 (0.081)raw estimates Beta (20,20) - - (44.3, 34.4) 0.563 (0.056)raw estimates Beta (1,1) - - (1,1) ..... (.....)raw estimates estimated (51.2, 48.2) 0.515 (0.050) (19.7, 16.3) 0.547 (0.082)hierarchical �xed at 0.5 - - (17.1, 13.5) 0.559 (0.088)hierarchical Beta (50,50) - - (24.1, 19.0) 0.559 (0.075)hierarchical Beta (20,20) - - (67.4, 52.9) 0.560 (0.045)hierarchical Beta (1,1) - - (1,1) ..... (.....)hierarchical estimated (65.6, 61.9) 0.514 (0.044) (21.5, 17.9) 0.545 (0.078)Table 3: Estimated values of hyperparameters under di�erent models. Estimated distributions ofRj 's are based on polls and election results; estimated distributions of �j 's are based on polls only,conditional on the distribution of Rj 's.
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Figure 2: Support for Bush for President in 1988 in a series of CBS pre-election polls: raw means(open circles) and weighted means (solid circles). The actual election outcome was 53.9% of the two-party vote for Bush. The unweighted means are higher than the weighted, indicating that, accordingto the weights, supporters of Bush were more likely to respond than supporters of Dukakis.23
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Figure 4: Plots of actual election results by state, �actualj , vs. posterior medians of �j , for each ofeight models. Diagonal lines indicate perfect estimates.
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Figure 5: Prediction error for state j vs. sample size nj , for each of the eight models. Horizontalline at zero indicates perfect estimates. Prediction errors for each model are actual vote minus theposterior median.
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