Method of Moments Using
Monte Carlo Simulation

Andrew GELMAN*

We present a computational approach to the method of moments using Monte Carlo
simulation. Simple algebraic identities are used so that all computations can be performed
directly using simulation draws and computation of the derivative of the log-likelihood.
We present a simple implementation using the Newton—Raphson algorithm with the un-
derstanding that other optimization methods may be used in more complicated problems.
The method can be applied to families of distributions with unknown normalizing con-
stants and can be extended to least squares fitting in the case that the number of moments
observed exceeds the number of parameters in the model. The method can be further
generalized to allow “moments” that are any function of data and parameters, including
as a special case maximum likelihood for models with unknown normalizing constants or
missing data. In addition to being used for estimation, our method may be useful for set-
ting the parameters of a Bayes prior distribution by specifying moments of a distribution
using prior information. We present two examples—specification of a multivariate prior
distribution in a constrained-parameter family and estimation of parameters in an image
model. The former example, used for an application in pharmacokinetics, motivated this
work. This work is similar to Ruppert’s method in stochastic approximation, combines
Monte Carlo simulation and the Newton—Raphson algorithm as in Penttinen, uses com-
putational ideas and importance sampling identities of Gelfand and Carlin, Geyer, and
Geyer and Thompson developed for Monte Carlo maximum likelihood, and has some
similarities to the maximum likelihood methods of Wei and Tanner.

Key Words: Bayesian computation; Compositional data; Estimation; Importance sam-

pling; Least squares; Maximum likelihood; Missing data; Newton—Raphson; Prior distri-
bution; Stochastic approximation; Unnormalized densities.

1. INTRODUCTION

The method of moments—estimating the parameters of a probability distribution by

matching theoretical moments to specified values—can be useful in statistical estimation
or in constructing a Bayes prior distribution. In problems of estimation, the method
of moments can be preferable to other approaches such as maximum likelihood if the
family of probability models is in doubt and one wishes to make sure the chosen model
accurately fits certain aspects of the data that can be expressed as moments. A different
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application is in Bayesian analysis, in which it is often convenient to set the parameters
of an informative prior distribution by specifying a few moments, such as prior means
and variances.

Unfortunately, in complicated models, moments are generally expressed as intractable
integrals, in which case matching moments requires the solution to an integral equation.
If it is possible to draw Monte Carlo simulations from the distributions in the parametric
family, then one can estimate the theoretical moments using sample moments of the
simulation and then solve for an approximate moments estimate by trial and error or by
using a stochastic approximation method as in Robbins and Monro (1951). Such a search
can be difficult in the case of a vector parameter, however.

In this article we present an iterative approach to matching moments using a nu-
merical equation-solving algorithm (Newton—Raphson) applied to Monte Carlo estimates
of moments and their derivatives, as in Ruppert (1985). Our method can be applied to
parametric families with unknown normalizing constants. We also generalize to a least
squares fit in the case that moments are specified with error, when the number of moments
given exceeds the number of parameters in the distribution. We discuss how our method
of moments computations can be viewed as an extension of the Monte Carlo maximum
likelihood methods of Gelfand and Carlin (in press), Geyer (in press a, b), Geyer and
Thompson (1992), Moyeed and Baddeley (1991), Penttinen (1984), and Wei and Tanner
(1990). We present two examples—a specification of a multivariate prior distribution in
a constrained-parameter family, which motivated this work, and an estimation of the two
parameters of an image model by matching two moments to data. We conclude with a
brief discussion of the practical uses of moments estimation in applied statistics and the
practical difficulties that arise when implementing Newton-Raphson.

The most important contribution of this article is the generalization to the method
of moments of Monte Carlo methods that have been used for maximum likelihood.
Throughout we present the procedures using Newton—Raphson, which is convenient to
implement in this context, with the understanding that the Monte Carlo estimates can
be applied to more complicated optimization (or root-finding) algorithms as well. We
envision the family of methods described in this article as a useful addition to a modeler’s
toolkit, not as a stand-alone general approach to statistical computation.

2. THE BASIC METHOD

2.1 NOTATION AND MATHEMATICAL FORMULATION

Suppose we have a family of distributions, p(z|#), and we wish to estimate the d-
dimensional parameter vector 6 by matching a d-dimensional vector of moments, p(6) =
E(h(z)|0), to a fixed vector pg. In the usual formulation of the method of moments, g
is the vector of sample moments. For the purposes of this article, however, we do not
require pg to be specified with reference to any observed data.

If 11(6) can be expressed analytically in closed form, we can obtain the moments
estimate  using the Newton—-Raphson method, as follows. Start with a guessed value,
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6. Then, for t = 1,2,..., update the guess to

Orr1 =0 + [ (0:)] (1o — 1(6:)), (2.1)

where ' is the matrix of derivatives of u(6) with respect to 6.

Here we are concerned with problems for which y(6) cannot be computed in closed
form; instead, we can estimate it, for any given value of 6, by simulation of N draws of
z from the distribution p(xz|8):

1 N
AO) = 7 D_ hlx:). (22)
i=1

The draws of z may be obtained by direct sampling from p(z|0) if possible, or else
by an iterative algorithm such as the algorithm of Metropolis et al. (1953) or the Gibbs
sampler (e.g., Gelfand and Smith 1990), which is always possible as long as the density
function p(z|f) can be computed. The derivative matrix u'(6) can be computed at any
point 8 by using the following formula:

W) = ZER@I0)
- / h(z) gép(xw)dx 23)
= E(h(z)U(z,0)7), 24)

where MT denotes the transpose of matrix M. Equation (2.4) holds assuming it is
possible to differentiate under the integral sign, and assuming the limits of integration in
(2.3) do not depend on #. We use the notation

d
U(a,0) = — logp(c)
by analogy to the potential function in statistical physics. The practical advantage of (2.4)
is that it does not require knowledge of the distribution of h(z) or the analytic form of
h. The obvious Monte Carlo estimator of 4’ is then

N
#O) = 5 > () ()7, (25)
=1

where all vectors are interpreted as column vectors and thus the expression inside the
sum is an outer product matrix. If one can compute p(z|6), then one should have no
difficulty computing U (z, 6); for standard models, the log-density function can easily be
differentiated analytically.

We can now construct a Monte Carlo algorithm in which, for ¢ = 1,2,..., we
first draw N; values of z from the distribution p(x|6;), given the current guess 0,
then perform one Newton—Raphson optimization step using (2.2) and (2.5). For the
algorithm to converge, N; must be increased as ¢ increases, so that the Monte Carlo error
approaches zero as the Newton—Raphson algorithm approaches convergence. Ruppert
(1985) discussed the convergence of a similar algorithm that numerically estimates '
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without using the analytic derivative in formula (2.4). In addition to the inconvenience of
requiring a schedule of increasing N (which should ideally be determined by estimating
the Monte Carlo accuracy at each step of the simulation), our algorithm (and Ruppert’s)
is inefficient because it requires a new set of draws of x at each step of the iteration.
In addition, if the x;’s are themselves drawn by an iterative method such as that of
Metropolis et al. (1953), the nested looping is awkward and may require repeated checks
for convergence of the simulations.

If the support of the distribution p(z|@) depends on 6, as in censored data, an
additional term must be added to (2.3) to account for the derivative of the limits of
integration with respect to 6.

2.2 UsING IMPORTANCE SAMPLING TO USE THE SIMULATIONS MORE EFFICIENTLY

We can do better and make full use of all the sample draws by using importance
sampling in the manner of Geyer (in press) and Geyer and Thompson (1992). Suppose
we have drawn samples x,, ...,z from a density g(z) that may differ from p(z|6); the
rule of importance sampling yields the estimates,

o LS p(ailf)

p(x:]6)
g(xi)

N
pO) = %Zh(wi)U(xi,())T (2:6)
=1

These estimates will be useful as long as g(z) is close to p(z|6), as is generally understood
in importance sampling (see, e.g., Hammersley and Handscomb 1964).

We define an optimization step as a single step of the optimization algorithm (e.g.,
Newton-Raphson) based on a single set of simulations; using the importance sampling
estimates of /i(#) and /i’ (6), one can perform any number of successive optimization steps
using a fixed set of simulations. We define a simulation step as a new set of simulation
draws of x from the current guess of §. We can now improve our earlier algorithm by
applying a suggestion used for maximum likelihood calculations by Gelfand and Carlin
(in press) and Wei and Tanner (1990): performing several optimization steps after each
simulation step. However, a single simulation step (that is, just sampling a large number
N draws z; from the initial guess ¢;) will generally not be enough, because if the initial
guess is far from the actual moments estimate, the importance ratios in the estimates (2.6)
will become too variable as 6, moves from its initial guess. However, a few simulation
steps, each followed by several optimization steps, should bring the estimate 6, close
enough to the goal that further importance ratios will be well behaved. At this point
one can sample a large number N draws from p(z|6;) and iterate Newton—Raphson to
approximate convergence. If there is a concern that the moments estimate is not unique,
then one can run the algorithm several times starting in different regions of parameter
space and see if they converge to the same value of 6.

In practice, one can monitor the simulations and increase N when the variability from
step to step gets larger than the systematic movement toward convergence. Similarly, one
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can run optimization steps after each simulation draw, stopping to draw more simulations
when the optimization steps have moved so far from the last simulation distribution that
the importance ratios are ill behaved (e.g., see Kong 1992 for discussion of how to
diagnose poor importance ratios).

3. GENERALIZING TO DENSITIES WITH UNKNOWN
NORMALIZING CONSTANTS

It is common in complicated statistical models for a family of probability distribu-
tions to be specified up to an unknown normalizing constant that depends on the model
parameters; that is, we can write the density function as,

plait) = L5, (1)
where the unnormalized density function q(x|8) can be easily computed, but the normaliz-
ing function z(#) can be expressed only as an intractable integral. We can easily extend
our importance sampling method to unnormalized densities, using identities that were
applied to similar problems for maximum likelihood estimation by Geyer (in press) and
Geyer and Thompson (1992). Here we derive the analogous identities for the purposes
of moments estimation. The vector of theoretical moments can be expressed as

q(z 0
wo) = [ n)? '
6
o (o)
a0 ’
Eq ( g(z) )
where E,; is the expectation under the density proportional to g(x), and g is also allowed
to be an unnormalized density. The natural Monte Carlo extension of (2.6) is then

1 N 7l

ﬂ( ) _ N Z i)q;zti))
= ]
. Z g(zi]0)

i=1 9(11)

3.2)

Estimating u'(6) requires one further step. Define

d
Ug(z,0) = 25 18 q(z16)

= U(z,0)+ d logz(H)

We seek a computing formula for p'(0) that can be written in terms of U,, which is
easily computable, rather than U, which depends on the unknown function z. The key
step is the well-known identity,

:9 log2(6) = / z—(;—)a%q(xlﬁ)dx

- () 0

E(Uq(z,9)), 3.3)
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with the expectation taken over p(z|@), once again assuming that one can differentiate
under the integral sign and that the range of integration does not depend on 6. We can
then write,

E (h(z)U(z,0)T)
E (h(z)U,(z,0)T) — E(h(z) (a‘% log z(0))T>
E (h(z)Uqy(z,60)T) — E(h(z))E(U,(x,8))T. (3.4)

We can now apply the importance sampling identity to transform into an expression
based on simulations from the density proportional to g(z):

0 0
o) E, (h(x)U (z, o)T";f;))) K (h( )"(g;) E, ( o (z,0) Ll )
B a(z16) a(z]6) a(z]6) ’
B (%757) E (%57) E, (%75)
which can also be obtained directly by differentiating (3.2). The estimate fi’ is obtained
by replacing E; by 1/N Zf;l everywhere and z by z; in the previous expression.

u'(0)

4. LEAST SQUARES FIT WHEN THERE ARE MORE
MOMENTS THAN PARAMETERS

4.1 LEAST SQUARES FIT TO MOMENTS

Suppose now the problem is overdetermined, with more moments specified than
parameters in the model, and we would like the @ that gives the best least-squares fit,
minimizing ||uo — p(0)||>. The normal equations are u/(6)(uo — (6)) = 0, which we
can again solve by Newton—Raphson, using iterative least squares. Starting out at a guess
0, fort =1,2,..., the updated guess is

0:+1 = 0; + [least squares regression of (po — pu(6;)) on the matrix u'(6;)].

Ideally, this iteration converges to a (local) least squares fit. The least squares updating
is identical to the step (2.1) if the number of moments equals the number of parameters,
in which case p'(6) is a square matrix.

One can apply the Monte Carlo method as before, using the estimates [i(f) and
f'(0) from the previous sections and converging to an approximate least squares fit by
simulating a large number N of draws once the estimate 6; is close to convergence.

In addition, one can trivially extend to a weighted least squares fit by replacing the
linear regression described previously by a weighted linear regression. In many problems,
a reasonable weighting can be chosen based on the natural scales of the functions h(z).
We illustrate with an example in Section 6.1 in which the moments are rescaled so that
an unweighted least squares fit is desirable.

4.2 LEAST SQUARES FIT TO A FUNCTION OF THE MOMENTS

We can further extend the method to find a least squares fit to a multivariate function
of the moments, f(x), thus minimizing || f(uo) — f(1(6))||*. Least squares fitting to a
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function of the moments is almost the same as described, except that the normal equations
become f’(u)u'(8)(f(ro) — f(1(6))) = 0. The optimization step becomes

0:+1 = 0; + [least squares regression of (f(uo) — f(1(6:)))

on the matrix  f'(u(0:))’(62)],

using the estimates i(6;) and 2'(6;).

An example of such a problem is fitting the mean and standard deviation of a scalar
random variable x to their theoretical values. In a two-parameter model we can match
the mean and standard deviation exactly by matching the first two moments; that is,
h(z) = (z,z?), and u = (E(z), E(z?)). If we wish to match both moments in a single-
parameter model, however, we cannot fit them exactly, and it may make more sense to
fit the mean and standard deviation—not the mean and E(z?)—by least squares. In the

described notation,
fpi, p2) = (un, V2 — uf) ,

and

1 0
()= ( —p 1/2 ) .
Vim—p?  fupa—pl

At each step of the iteration, this matrix should be computed based on the latest Monte
Carlo estimate, [i(6;).

5. RELATION TO MAXIMUM LIKELIHOOD

The concept of method of moments can be generalized to include maximum likeli-
hood as a special case. The Monte Carlo Newton—-Raphson method for maximum likeli-
hood was proposed by Penttinen (1984) and was referred to by Ripley (1988, pp. 64-65).
In this section we extend the method presented in Sections 2 and 3 to rederive the maxi-
mum likelihood (or maximum posterior density) method of Gelfand and Carlin (in press)
and Moyeed and Baddeley (1991), which are related to the Monte Carlo EM algorithm
of Wei and Tanner (1990). The key is to interpret the equation setting the derivative of
the log-likelihood to zero as an equation specifying a vector of moments. None of the
maximum likelihood methods discussed in this section are new; we present them here to
illustrate the generality of the method of moments paradigm for these problems.

5.1 MaxmMuM LIKELIHOOD WITH UNKNOWN NORMALIZING CONSTANTS

We first address the problem of maximum likelihood given unnormalized density
functions, using the notation (3.1) for unnormalized densities. Using the normalized and
unnormalized density formulation, the likelihood equation becomes

d d
75 108 4(20]0) — —5 log 2(9) =0,
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where z is the observed data set. Using (3.3), this becomes
Uq(20,0) = E(Uqy(x, 9))-

We can interpret this as a method of moments equation, with the left and right sides
corresponding to the observed and theoretical moments, respectively:

o) = h(o,6) = Uy(zo,0) (5.1)
w) = E(h(z,6)) = E(U,(z,0)).

Strictly speaking, these expressions are not moments because the function A and
the “observed moments” po depend on the unknown parameter 6 as well as x (unless
the model is an exponential family, in which case the generalized moments are in fact
moments—the expectations of the sufficient statistics under the model). However, we
can generalize our method by solving for the equation, 1(6) — uo(6) = 0. As before,

N |6
% Zi:l Uq(zi, o)q;a(czl))

o) = L N a(zilo)

i=1 g(x;)

Now that h depends on 6, however, we must also differentiate with respect to h to
determine 4. The new expression, replacing (2.4) and (3.4), is,

' (6)

d
Z5E(h(z,0)16)

E ((%h(z, 0)) +E (h(z, 0)U (2, 6)T)

- E (zi%h(.r,ﬁ)) +E (h(z,0)Uy(x,6)")

—E(h(z,8))E(U,(x,0))T. (5.2)
For the maximum likelihood problem, expression (5.2) has a nice symmetric form:
1 (8) = E(Uzg(w,0)) + E (Uy(z, 0)Uq(z,0)7) — E(Uy(x,0))E(Uy(,6))7,  (5.3)
where the matrix function Uy, is defined by

d
Uzq(x7 9) = @h(ﬁ?, 9)

d2
Formula (5.3) appears in Wei and Tanner (1990) in the context of missing data models.
Applying the importance sampling identity yields,

Eq (Uzq(w,e)"‘—z‘f’l) E, (Uq(z,H)Uq(x,B)Tq_(ilﬁl)

g(x) g(x)
q(z]6) q(z|6)
Eq ( g(z)') Eq ( o) )

W) =
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with the estimate /i’ obtained by replacing E; by 1/N Zfi , everywhere and z by z;. In
most models for which ¢ is known, the vector and matrix functions U, and U, can also
be determined, and so the Monte Carlo estimates £ and 4’ can be computed directly.
The optimization step is then

i1 = 0 + [0/ (6:) — 16(0:)] ™" (120(0:) — 2(6y)),
where 1i9(6;) = Uq(0, 6;) from (5.1), and

d
po(0:) = d—éﬂo(gt) = Uzg(z0, 01)-

Applying the algorithm of Sections 2 and 3 is straightforward and ideally will con-
verge to a point of zero derivative of the likelihood function as the number of steps and
iterations approach infinity. As with other maximization algorithms, if several modes are
suspected, the iteration can be started from several points to explore parameter space. In
addition, the log-likelihood function or its derivatives can itself be computed using the
importance sampling formula at any point of interest using simulations based on a nearby
value of 6, as suggested by Geyer and Thompson (1992). Gelfand and Carlin (in press)
suggest maximizing the Monte Carlo-computed log-likelihood by stepwise ascent, which
could be expected to be slower than Newton—Raphson but more reliable, especially for
the early iterations far from a mode.

The Hessian matrix of the log-likelihood, which can be used as an asymptotic inverse
covariance matrix for the maximum likelihood estimate, is estimated as a by-product of
the Newton—Raphson iteration; in our notation, the estimated Hessian is ji(6) evaluated
at the maximum likelihood estimate 6. Essentially the same result was noted by Gelfand
and Carlin (in press), and Geyer (in press), and Wei and Tanner (1990).

In the special case that the normalized density functions are known, g(z|@) reduces
to p(z|0), p(0) is identically zero, p1 is the Hessian of the log-likelihood, and, in the limit
of large N, our algorithm becomes equivalent to simple Newton-Raphson maximization
of the likelihood.

5.2 MaxiMuM LIKELIHOOD WITH MISSING DATA

As discussed by Gelfand and Carlin (in press), Geyer (in press), and Thompson and
Guo (1991), the problem of missing data is mathematically very similar to unknown
normalizing constants. A standard approach to maximizing likelihood with missing data
is the EM algorithm (Dempster, Laird, and Rubin 1977). We show here that maximum
likelihood with missing data can also be viewed as a generalized method of moments
problem. The identities developed for our method are identical to those used for the
Monte Carlo EM algorithm of Wei and Tanner (1990).

Let = be the observed data, y be the unobserved missing (or “latent”) data, and
p(z,y|6) be the “complete-data” likelihood, which is assumed known. The goal of max-
imum likelihood with missing data is to maximize the observed data likelihood,

p(z]6) = / p(,416)dy,
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or, equivalently, setting to zero the derivative of the observed-data log-likelihood, as in
Fisher scoring,

aroerteld) = [ (Goentaalo)) Koty

I

d
B (g roereud),

where the expectation averages over y in the distribution p(y|z,#). We immediately
recognize this as a generalized method of moments expression, in which yy = 0,

h(y) = U((2,9),6) = 5 logp(z, 1),

and z is taken as fixed and equal to the observed data, z,. The unobserved data y and
the conditional likelihood p(y|z, #) play the role of z and p(z|6) in our earlier notation,
and the Monte Carlo algorithm requires simulation of y from p(y|z,#). As usual, these
draws can be obtained directly for many standard models or using iterative simulation in
general. If the joint density is only known in unnormalized form as ¢(z, y|6), the method
can be generalized as in Section 5.1.

6. EXAMPLES
6.1 SPECIFYING A PRIOR DISTRIBUTION IN A CONSTRAINED-PARAMETER FAMILY

Bois, Gelman, Jiang, and Maszle (1994) present an analysis of toxicology data using
a pharmacokinetic model that describes metabolism of a toxin in the body in terms
of a set of 19 physiological parameters. The physiological parameters are themselves
characterized by a prior distribution that captures variability among persons in the general
population. As a prelude to a Bayesian analysis, the prior distribution for the physiological
parameters was specified based on a review of the relevant biological literature. It was
deemed acceptable, from a scientific framework, to assign independent lognormal prior
distributions to most of the 19 parameters, with parameters assigned based on the informal
literature review. The major technical difficulty came with four parameters relating to
blood flow, which were constrained to sum to 1. We now discuss how we assigned a prior
distribution to these parameters that matched specified prior moments while satisfying
the constraint.

For the purposes of this article we label the parameters x;, z;, 23, 24, with the con-
straint Z‘]‘.:l z;j = 1. The information from the literature search was summarized as prior

Table 1. Specified Prior Moments for the Constrained-Parameter Example

Parameter  E(log x;)  sd(log x;)

X4 log(.48) log(1.2)
Xo log(.20) log(1.2)
X3 log(.07) log(1.2)

X4 log(.25) log(1.1)
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means and standard deviations on the logarithms of the parameters, as displayed in Table
1. (Specification in terms of the logarithms makes sense for the lognormal distributions
of the other parameters in the model. In practice, the prior variances are low enough that
specifying the mean and coefficient of variation on the untransformed scale of ¢ would
give virtually identical results.)

We first construct a parametric family for the prior distribution of z, given hyperpa-
rameters 6, and then determine 6 by matching to the eight transformed moments given in
Table 1, using the algorithm of Section 4.2. Given the constraint on z, we do not expect
to have a full eight-parameter model, and so we use the least-squares fit to the given
moments. For this application, an inexact fit is acceptable, since the numbers in Table 1
are only approximations based on a literature review.

The most familiar model for variables that sum to 1 is the Dirichlet. Applying our
method, we fit the four parameters of the Dirichlet model to the eight moments given
in Table 1. In computing the logarithm of the Dirichlet density and its derivative, we
must compute the log-gamma function and its derivative, which are fortunately easy to
calculate numerically using standard computer programs. We start the iteration at the
point § = (48,20,7,25), which roughly fits the means and standard deviations in the
first column of Table 1. We proceed with 20 steps of simulation and Newton~Raphson
with N = 2,000, followed by one simulation of N = 10,000 and three Newton—Raphson
steps. A final check was applied by another simulation of N = 20,000 and three more
Newton—Raphson steps. For a comparison we ran another simulation, starting at the
point § = (240, 100, 35, 125). In both simulations the moments had reached approximate
convergence, but not to the desired moments in Table 1. For example, the standard
deviation of x; in the best method of moments fit is log(1.07), compared to the desired
value of log(1.2). In fact, the Dirichlet model is well known to be too restrictive for
many practical constrained-parameter situations (see, e.g., Aitchison 1986).

For a more flexible model, we use a transformed normal family, in which

e¢i
- e + ed2 + eP3 + e

z; fort=1,...,4,

and the random variables ¢; have independent normal distributions:
¢i ~ N (6;,67,4) .

We would like to determine the parameter vector § for which the random variables x
have the moments specified in Table 1. Actually, the transformed normal model has
only seven free parameters, because we can add a constant to the means 6, ...,0; and
not change the distribution for z. In our iterations we keep 0, fixed and seek the least
squares solution as a function of the other seven parameters. In applying our method the
random variables ¢ play the role of z in our earlier notation; we simulate the vector ¢
from its normal distribution, given 6, and compute x and thus the estimated moments
and their derivatives from ¢; there is no need to determine the analytic form of the
distribution of x. We start the iteration with the first four components of & (the means of
the components of ¢) set to the values in the first column of Table 1 and the second four
components (the standard deviations) set to the values in the second column of Table 1.
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Table 2. Results of Two Runs of the Estimation Procedure for the Transformed Normal Model

Specified values  Last two iterations of  Last two iterations of

simulation run 1 simulation run 2
04 -734 -734 -734 -734
0o -1.586 -1.602 -1.586 -1.582
03 -2.651 -2.773 -2.622 -2.633
04 -1.371 -1.669 -1.375 -1.365
05 .297 .237 .309 .298
g 177 .218 .182 187
07 212 .305 219 .205
g .002 153 .003 .029
E(log(x1)) log(.48) log(.47)  log(.47)  log(.47)  log(.47)
E(log(x2)) log(.20) log(.20)  log(.20)  log(.20)  log(.20)
E(log(x3)) log(.07) log(.07) log(.07) log(.07) log(.07)
E(log(xs)) log(.25) log(.25)  log(.-25)  log(.25)  log(.25)
sd(log(xq)) log(1.2) log(1.17) log(1.17) log(1.19) log(1.18)
sd(log(x2)) log(1.2) log(1.22) log(1.23) log(1.28) log(1.23)
sd(log(x3)) log(1.2) log(1.27) log(1.27) log(1.31) log(1.27)
sd(log(xs)) log(1.1) log(1.15) log(1.14) log(1.17) log(1.16)

NOTE: The top eight rows are parameter estimates; the bottom eight rows are the estimated
functions of moments, f; (4(6)), . . ., fg(/2(6)). Differences across the columns indicate that the
iterations have not yet converged, but the convergence is acceptable for practical purposes.

We then apply the algorithm of Section 4.2 with the same simulation schedule as for the
Dirichlet model. The results are displayed in Table 2. The estimates of § are somewhat
different, indicating that the algorithm has not reached convergence, but an examination
of the moments shows that they have converged for all practical purposes. The moments
depend very weakly on 6, so it is hard to find the exact solution to the least squares
problem. For the applied problem at hand, we would not attempt to specify the prior
mean and standard deviations of the parameters to more accuracy than the decimal places
displayed in Table 3. The final fit is good, but not perfect, most notably in that the standard
deviation of log(x4) is not as low as the specified value of log(1.10). After consultation
with the biologist who perused the substantive literature, it was decided that the best fit
transformed normal model was an acceptable summary of the prior information for the
problem. (In addition, the normal family is convenient for this application because it can
easily be generalized into a hierarchical model; see, e.g., Gilks et al. 1993.)

6.2 ESTIMATION FOR A TWO-PARAMETER IMAGE MODEL

6.2.1 The Model and Simulation

We illustrate both the method of moments and the maximum likelihood computations
with a nonlinear model for image analysis introduced by Geman and McClure (1987).
In this problem the random variable x is a gray-level image defined on an n x n grid.
To keep computation time down for this simple example, we set n = 8. The probability
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density for x depends on two parameters and can be written in unnormalized form as

1
q(z]01,6:) =exp [0 ) ¢ ,
; 1+ (2 — x4)/62)?

where the coefficients c;; are defined by

cj = 1 if ¢ and j are orthogonal neighbors
= 1/v/2 ifiand j are diagonal neighbors
= 0 otherwise.

(In this notation, i and j index the n? pixels, with physical location coded by the matrix
c;;.) In addition, the gray levels z; are restricted to a finite range, which we set to [0, 64).
For #; > 0, the model favors nearly constant gray levels at adjacent pixels. However,
the function inside the exponent is bounded (unlike a Gaussian log-likelihood); hence,
when the gray levels of adjacent pixels are not nearly constant, they can differ by a large
amount. The result can be used to model an image with nearly constant plateaus and
occasional large changes.

Geman and McClure (1987) discussed the difficulties of estimating 8, and 6, from
indirect tomographic data. For simplicity, we apply our methods to estimate the pa-
rameters from direct data z, although our methods could be applied to indirect data as
well.

We know of no simple method of direct simulation of z, given 8, for this model,
so we construct a Markov chain of images z',22,..., as follows. One pixel of z is
altered at a time, as in the Gibbs sampler, but with changes made according to the
algorithm of Metropolis et al. (1953)—the candidate value of the component x; is drawn
from a normal distribution centered at the current value and with standard deviation o,
with wrap around if the drawn value is less than O or greater than 64. The Metropolis
rule is then used to decide whether to accept or reject the candidate image, Z. That
is, with probability min(g(%|6)/q(z4]0), 1), we set ™% = Z; otherwise, the Markov
chain stays still and we set z"* = z°¢ The value of o is altered adaptively so that
the Metropolis acceptance rate is neither too low or too high, with a target acceptance
rate of .4 (see Gelman, Roberts, and Gilks [in press] for a motivating argument for
why .4 might be approximately optimal for one-dimensional Metropolis jumps). The

Table 3. Simulated Data x From the Image Model With 6 = (1,12)

31 10 24 24 29 26 18 20
30 33 19 27 31 32 34 29
18 24 43 26 31 33 34 M4
32 24 16 25 32 34 25 31
38 31 35 12 43 43 37 15
43 46 46 34 39 36 56 34
39 %6 29 44 38 38 36 33
50 30 25 41 41 63 37 36

NOTE: Pixel intensities are on a 0 to 64 scale and are
rounded to the nearest integer.
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resulting algorithm is far from optimal for this problem—more sophisticated algorithms
have been developed for this sort of image model, and even restricting to one-pixel-at-
a-time Metropolis jumping, the .4 acceptance rate is not necessarily optimal here, but it
is acceptably fast for the purposes of the simulations presented here. More complicated
algorithms, based on altering several components of x at a time, could be expected to
greatly increase the efficiency of our simulations (see Besag and Green 1993).

We check convergence of the Metropolis algorithm by starting two simulations at a
constant image and an all-random image (corresponding to 3 = oo and 0, respectively,
as in the simulations for the Ising model in Gelman and Rubin [1992a] and monitoring
various univariate summaries, including the functions h(z) and h,(z) defined in the
following, using the between/within variance comparison of Gelman and Rubin (1992b).
The simulations were run long enough so that, for each summary, the ratio of total
variance to within-sequence variance was less than 1.1. When running simulations for
the method of moments estimation, we continue each new set of simulation runs where
the last runs ended, thus approximating the condition of very long runs in the limit of
convergence of the moments estimate.

To illustrate our estimation methods, we first simulate a “data” image xo from the
model, based on “true values” of §; = 1, §, = 12, and applying the Gibbs-Metropolis
simulation algorithm for 2,000 steps. The result is displayed in Table 3.

6.2.2 Method of Moments Estimation

We start by defining two functions of x—the average difference in gray levels
between neighboring pixels and the proportion of neighboring pixels that are nearly
identical, differing in gray level by no more than 2. We will match the moments of these
statistics.

25 Cijlei — 4

ule) Zij Cij
ho(w) = ZijcijI|z,-—zj|§2,
Ez’j Cij
where I is the indicator function, and
C;; = 1 ifiand j are orthogonal or diagonal neighbors

= 0 otherwise.

The functions h and h; roughly estimate the features of occasional large changes amid
nearly constant plateaus that are modeled by the specified family of distributions. We
purposely pick slightly awkward forms for k) and h; and set C;; different from Cij
to illustrate the flexibility available in setting the moments. (However, we still use the
known, correct values of ¢;; in computing the density function.)

We now proceed as in Section 3. Starting at @ = (.5, 5), we run 20 steps of simulation
and optimization at N = 2,000, with no importance sampling steps, followed by two
steps at V = 10,000, each with three importance sampling steps. The Newton-Raphson
steps in the replication behaved wildly in the early iterations, and so we started the
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Table 4. Method of Moments Estimation for the Image Model

Last two iterations of Last two iterations of

Observed value simulation run 1 simulation run 2
04 1.23 1.19 1.19 1.19
0o 3.40 3.75 3.70 3.65
e 9.20 9.19 9.20 9.20 9.20
1o .67 .67 .67 .67 .67

NOTE: Observed values of the moments come from the “data” in Table 3.

simulation again, beginning with 10 quick preliminary steps at N = 500 with the first 5
steps “decelerated” to a factor of .1 of their original size and the next 5 steps decelerated
to a factor of .5. We replicate the procedure starting at § = (2,40), with convergence
to approximately the same point. Rather than display all the iterations, we just show the
final two steps (to indicate the simulation variability); they are displayed in the first row
of Table 4. The fit to the moments is quite accurate, with some uncertainty still present in
the parameter estimates, as is roughly shown by the comparisons between the simulation
runs.

6.2.3 Maximum Likelihood Estimation

As a comparison we applied the method of Section 5.1 to estimate (6,,6,) by
maximum likelihood from the “data” in Table 3 (p. 48). The results of the iteration,
using the same simulation schedule as for the moments estimation, are shown in the
first two rows of Table 5; as in the previous computation, the early iterations were
decelerated to stop the Newton—Raphson steps from wandering away. In addition, the
asymptotic-theory covariance matrix for (0;,6,) was estimated as the inverse of the
Hessian computed from the last step of each simulation; the estimates are displayed at
the bottom of Table 5. Given that the data consist of only a single 8 x 8 image, the
normal-theory approximation to the likelihood is not necessarily accurate, but it may
be useful for a rough estimate of uncertainty. From the asymptotic covariance matrices
in Table 5 we estimate sd(d;) = 0.23, sd(f,) = 7.1 or 7.0, and corr(d;,0,) = .83 or
.85. Given these uncertainties, the sampling variability that remains in the estimates of
0 seems acceptable.

Table 5. Maximum Likelihood Estimation for the Image Model

Parameter estimates
Last two iterations of  Last two iterations of
simulation run 1 simulation run 2
04 1.10 1.09 1.10 1.09
05 13.14 1284 13.15 13.02
Estimates of cov(@4,05)
Simulation run 1 Simulation run 2

.051 1.32 or .055 1.39
1.32 50.02 1.39  49.47
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7. DISCUSSION
7.1 PrAcTICAL VIRTUES OF THE METHOD OF MOMENTS

Perhaps the greatest practical applications of the methods of this article are in set-
ting the parameters of probability models based on prior knowledge or speculation about
moments. In a Bayesian analysis it is fairly common for prior information to be under-
stood about moments but not in the form of any particular parametric model. In areas
such as image analysis, complicated models are commonly used for likelihoods and prior
distributions to encourage certain kinds of data fitting, but without any serious belief that
the probability distributions correspond to reality. In such cases it may be reasonable to
fit a distribution to moments, if only as an exploratory check on other methods such as
maximum likelihood or Bayesian estimation that may be more sensitive to artifacts of
the model. Besag (1986), Gelman (1994), and Ripley (1988, pp. 85-94) all discussed the
fallibility of maximum likelihood and Bayesian inference for models in time series and
spatial statistics that have smoothness assumptions not warranted by the data. If one is
using a model for the purposes of smoothing, it may not be necessary for the model to
fit the data, but the parameters in the model still must be estimated in some reasonable
way, perhaps by matching relevant moments, although one must always worry about the
lack of efficiency using such methods. The idea of estimating data using moments in the
context of a model that is either not fully specified or has features that may not fit the
data also appears in generalized estimating equations (Liang and Zeger 1986). In either
case—fitting to prior knowledge or data moments—the option of least squares fitting to
more moments than parameters provides additional flexibility and possibly robustness.

7.2 COMPUTATIONAL DIFFICULTIES

Computationally, the iterations are not always stable. In our experience so far, when
the algorithm does not work, it usually fails dramatically in the first few steps. Thus
we recommend looking at the early output of the estimated 6; and f values. We have
noticed the following typical problems (in addition to the usual programming errors).

e A starting point that is too far away from the solution, causing a jump into never-
never land. This happened in some of our simulations for the image example
in Section 6.2. Possible solutions include a search for a better starting point or
restricting the first Newton—Raphson steps to jump fractional amounts, as we
in fact did for the image example. Another approach is to go beyond Newton—
Raphson to more flexible optimization methods such as the Levenberg—-Marquardt
algorithm (Marquardt 1963), as has been done by researchers in Monte Carlo
maximum likelihood (e.g., Geyer and Thompson 1992).

e Too-variable importance ratios, caused by large jumps in 6. The solution is to
simulate a new set of Monte Carlo draws from the new value of 6 and not use
the importance sampling formula until the jumps in  become smaller.

e Jumps outside the boundary of parameter space. This occurred with the prior
distribution example of Section 6.1, in which the standard deviations for the
normal distributions were restricted to be positive. One possible solution is to
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restrict the Newton—Raphson steps to go only part way toward the boundary.
If the solution is itself on the boundary, one must abandon Newton-Raphson
entirely.

o It is possible to have moments po for which no value of § will produce corre-
sponding theoretical moments, or for the least squares fit to be unacceptably far
from the desired pp, as occured for the Dirichlet model in the prior distribution
example of Section 6.1. In these cases, it may be necessary to re-evaluate the
model or the specified moments in light of the disagreement. In fact, it may be
considered a virtue of this method that such discrepancies can come to light.

Another problem, which we have not encountered but may occur, is for the estimate '
to be noninvertible, due to Monte Carlo variation, for the method of moments problem.

In addition to the concerns of stability of the optimization steps, the Monte Carlo
simulations offer the usual question of how many simulations are needed at each iter-
ation. In our examples, it has been possible to monitor the runs and increase N where
necessary to increase stability. An interesting open problem is to set up a more quan-
titative approach, to allow relatively fast and automatic computation in large problems.
The Monte Carlo simulations provide an internal estimate of error which, presumably,
should optimally be the same order as the correction term in the optimization step. Fur-
ther research is needed on this point, perhaps following Carter (1991, 1993), as well as
in the related problems of Monte Carlo maximization and simulated annealing.

Finally, various open questions arise about the convergence of the optimization algo-
rithm under suitable conditions and a suitable schedule for increasing N and accelerating
or decelerating the optimization steps; the literature on stochastic approximation (e.g.,
Ruppert 1985) is relevant. Geyer (in press a, b) presents theoretical convergence results
about related Monte Carlo optimization schemes and discusses why very strong con-
ditions would be required for any general proofs of convergence of methods based on
Newton—Raphson. The theoretical results tell us that the methods described in this article
cannot be expected to automatically converge, even to a “local solution” and must be
used with caution.

7.3 SUMMARY

The method of moments is rarely, if ever, the best approach to a statistical problem
but is often useful as a robust alternative, an approximation, or a direct method of
incorporating prior information. The Monte Carlo Newton—Raphson algorithm can have
serious difficulties with convergence, but has the advantage of being straightforward to
implement for a wide variety of problems and is often effective, even when the unknown
parameter 6 has several dimensions. More generally, the Monte Carlo estimates for
generalized moments and their derivatives can be used with more sophisticated equation-
solving or optimization algorithms. We envision the family of methods described in this
article as a useful addition to a modeler’s toolkit (as in Tanner 1991), not as a stand-alone
general approach to statistics.

As a practical matter, the algorithm, in all its variations, has some useful redundancy
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in that convergence can be noted in three ways: (1) the estimates 6; should converge to
a point; (2) the Monte Carlo-estimated moments /& should approach the specified values
140; and (3) convergence should be attained from different starting points. Failure in any
of these points could be due to zero or multiple solutions to the moments equations, lack
of convergence of the Newton—Raphson algorithm, not enough Monte Carlo samples, or
simply programming error. In actual implementations, it should be possible to investigate
these possibilities.

[Received January 1994. Revised August 1994.]
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