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device (\Our data pass a series of tests, thus we do not reject the model") but rather as a creativetool for uncovering aspects of reality that are imperfectly captured by the existing model.For the rest of this paper, we focus on a particular model and application. Probability matrixdecomposition (PMD) models have been introduced by Maris, De Boeck, and Van Mechelen (1996).In general, these models may be used to explain observed binary associations between two sets ofelements, usually denoted by objects and attributes. In order to explain observed associations it isassumed that B latent Bernoulli variables are realized at both the object and the attribute side. Eachlatent variable indicates whether an object or an attribute has one of B latent features. Furthermoreit is assumed that observed binary associations are a deterministic function of the realized latentvariables.With the PMD model, the distribution of both latent and observed variables, or rather the distri-bution of the augmented data, has a mathematically tractable form. As a result the EM algorithm(Dempster, Laird, and Rubin, 1977) may be used to compute maximum likelihood or posteriormode estimates of the model (Maris, De Boeck, and Van Mechelen, 1996). As an alternative, onecould also turn to a fully Bayesian framework in order to solve the estimation problem for the PMDmodel. As a matter of fact one could use a data augmentation algorithm (Tanner and Wong, 1987)to compute a sample of the entire observed posterior distribution. As with the EM algorithm, dataaugmentation is most conveniently computed using properties of mathematical tractability of theaugmented posterior distribution. Apart from solving the estimation problem, simulation of drawsfrom the posterior distribution has three important advantages (see Gelman et al., 1995): (1) thecomputation of posterior intervals of any estimands of interest is straightforward, (2) the posteriorsample can be used to investigate problems of local maxima and to trace trade-o� relations betweenparameters in the model and (3) the posterior sample can be used to check the �t of the model usingposterior predictive checks. Meulders et al. (1997) implemented a data augmentation algorithm forthe PMD model and discuss each of the above-mentioned advantages.In this paper we �rst brie
y reconsider the model and the estimation of its parameters witha data augmentation algorithm. Second, we summarize how to use the sample from the posteriordistribution in order to assess the �t of the model with the technique of posterior predictive checks.Third, we use the PMD model to analyze data on psychiatric diagnosis. In the phase of modelchecking we focus on the appropriateness of the prior distribution for a set of latent parameters.From the posterior distribution of the ensemble of these parameters, we conclude that a relatively
at prior density is not appropriate for these data. Consequently, in order to expand the model ina meaningful way, a mixture of two beta distributed components is used as the prior distribution.2



2 The PMD modelIn general, PMD models are used to explain replicated observed binary associations between twosets of elements, usually denoted by objects and attributes. The two sets may for instance containpatients and symptoms, situations and responses, countries and items, etc. Replications couldbe de�ned as opinions of several psychiatrists concerning whether a patient has a symptom, theresponses of di�erent persons in a situation, the answers of di�erent inhabitants of a country to anitem, etc. Formally, the observed variable Y oai equals 1 if object o (o = 1; : : : ; O) has attribute a(a = 1; : : : ; A) at the ith replication (i = 1; : : : ; Ioa), and 0 otherwise.The following two aspects of the model are needed in order to explain observed associationsbetween objects and attributes.1. It is assumed that B latent Bernoulli variables are realized at both the object and the attributeside. More speci�cally, for a triple (o; a; i), the latent variables Sobai � Bernoulli(�ob) andP aboi � Bernoulli(�ab) (b = 1; : : : ; B) are realized. These variables equal 1 if object o andattribute a have feature b, and 0 otherwise.2. It is assumed that the observed variables are a deterministic function of the correspondinglatent variables. That is, Y oai = C(So1ai ; : : : ; SoBai ; P a1oi ; : : : ; P aBoi ). Maris, De Boeck, and VanMechelen (1996) describe several functions, which they call condensation rules. In this paperwe use one of these rules, namely a disjunctive communality rule which is de�ned as follows:Y oai = 1, 9b : Sobai = 1 ^ P aboi = 1 (b = 1; : : : ; B) (1)Maris, De Boeck, and Van Mechelen (1996) show that for rule (1) the probability that Y oai equals 1is given by: Pr(Y oai = 1j�o; �a) = 1�Yb (1� �ob�ab): (2)Now let foa1 and foa0 respectively denote the number of observed 1- and 0-responses with respectto the pair (o; a). Furthermore let Y and Z comprise all the observed and latent variables and let �be the vector of all the parameters in the model. The observed posterior distribution may then beexpressed as follows:p(�jY) / p(�)p(Yj�) =Yo Ya Pr(Y oai = 1j�)foa1Pr(Y oai = 0j�)foa0: (3)In the above expression one still has to make a choice with respect to the prior distribution p(�).One possibility is to take p(�) / 1 so that the posterior density is proportional to the likelihood.However, Maris, De Boeck, and Van Mechelen (1996) show that this choice leads to computational3



di�culties, because it does not guarantee the existence of maximum likelihood estimates withinthe interior of the parameter space. A useful alternative prior distribution, which guarantees theexistence of posterior mode estimates within the boundaries of the parameter space, is p(�) �Beta(�j2; 2).The observed posterior distribution for the PMD model is complex. However, the joint posteriordistribution of observed and latent data|that is, the augmented posterior distribution p(�jY;Z)|has a tractable form. Therefore one may easily use the EM algorithm to locate the posterior mode.Maris, De Boeck, and Van Mechelen (1996) provide details with respect to the implementation ofthe EM algorithm for the PMD model. An alternative approach, which also exploits the tractabilityof the augmented posterior density, is to use a data augmentation algorithm to compute a sampleof the observed posterior distribution. Meulders et al. (1997) discuss the implementation of thisalgorithm for the PMD model in detail. In this paper we only brie
y summarize the general schemeof this approach.Given starting values �(0), the (m + 1)st iteration of the data augmentation algorithm consistsof the following two steps:1. Imputation step: generate latent data Z(m+1) from the conditional predictive distribution,p(Zj�(m);Y).2. Posterior step: draw a simulation �(m+1) of the parameter vector from the augmented posteriordistribution, p(�jY;Z(m+1)).Tanner and Wong (1987) show that the subsequent values �(1); �(2); : : : form a Markov chain that,under some regularity conditions, converges to the posterior distribution. In practice, an importantaspect is to monitor the convergence of the chain in order to determine the required number ofiterations. Gelman and Rubin (1992) recommend to simulate multiple chains from di�erent startingpoints and to judge approximate convergence when the statistic pR̂, which measures the ratio ofbetween- plus within-chain variation to within-chain variation, becomes close to 1 for each scalarestimand of interest. In this approach one should discard some initial iterations to exclude thein
uence of the starting points.3 Model checkingOnce a sample of the observed posterior distribution is available, assessment of the �t of the modelis straightforward in a Bayesian framework using posterior predictive checks (Rubin, 1984, Gelman,Meng, and Stern, 1996). With this technique, model checking is basically a matter of comparing4



observed data Y with replicated data Yrep that could have been observed under the model if theexperiment of today were replicated with the same value of �.To compare observed and replicated data, one usually de�nes a test quantity T (Y) that is afunction of the data only. Rubin (1984) de�nes the posterior predictive p-value as the probabilitythat T (Yrep) exceeds or equals T (Y). An extreme p-value indicates that T (Y) is unlikely to haveoccurred under the model, which means that the model aspect measured by T (�) is questionable. Inorder to estimate the posterior predictive p-value, one has to carry out the following steps for eachdraw �(l) (l = 1; : : : ; L) of the posterior distribution:1. Generate Yrep;l from p(Yj�(l)).2. Compute T (Yrep;l).This procedure would typically be repeated with several di�erent test statistics T (�) in order tocheck the �t of di�erent aspects of the model.One can then estimate the posterior predictive p-value as the proportion of simulated values T (Yrep;l)that exceed or equal T (Y). In terms of a corresponding graphical representation, one may situateT (Y) in the simulated reference distribution T (Yrep).Gelman, Meng, and Stern (1996) also consider the use of test quantities T (Y; �) that are afunction of both data and parameters, which they label realized discrepancy measures. In this casethe posterior predictive p-value is de�ned as the probability that the realized discrepancy measurebased on the replicated data T (Yrep; �) exceeds or equals the realized discrepancy measure basedon the observed data T (Y; �). For a realized discrepancy measure, the posterior predictive p-valuemay be estimated by the following procedure. For each draw �(l) (l = 1; : : : ; L):1. Generate Yrep;l from p(Yj�(l))).2. Compute T (Yrep;l; �(l)).3. Compute T (Y; �(l)).Subsequently, the posterior predictive p-value may be estimated as the proportion of simulatedvalues T (Yrep;l; �(l)) that exceed or equal T (Y; �(l)). The corresponding graphical representation isa scatterplot of pairs (T (Yrep;l; �(l)); T (Y; �(l))) (l = 1; : : : ; L).With the PMD model, assessment of the �t may focus on various aspects of the model. A �rstimportant aspect concerns the overall goodness of �t of the model, which can be measured usinga Pearson �2 discrepancy measure (Gelman, Meng and Stern, 1996). For the PMD model this5



discrepancy measure may be expressed as follows:X2(Y; �) =Xo Xa � (foa1 � E(foa1j�))2E(foa1j�) + (foa0 � E(foa0j�))2E(foa0j�) � : (4)A second aspect concerns the relative �t of models with di�erent numbers of features. Meulderset al. (1997) discuss the use of a likelihood ratio discrepancy measure in order to investigate thisaspect of the PMD model. A similar measure was used by Rubin and Stern (1994) to determine thenumber of latent classes in a latent class analysis.Besides general aspects, model checking may also focus on speci�c model assumptions, such asthe independence of latent variables. Gelman et al. (1997) show that with the PMD model it is evenmeaningful to use test quantities that are functions of the latent data only. In the present papermodel checking focuses on the appropriateness of the prior distribution.4 Example4.1 DataIn this paper we analyze data on psychiatric diagnosis collected by Van Mechelen and De Boeck(1990). In their study 15 psychiatrists were asked to judge descriptions of 30 patients with respectto 23 symptoms. Hence, the observed variables indicate whether a patient has a symptom in theopinion of several psychiatrists, whose judgments are considered to be replications. The PMD modelmay now be used to explain the observed variables through the following assumptions: (1) patientshave each of B latent syndromes with a certain probability; (2) symptoms are characteristic to eachof B latent syndromes with a certain probability; and (3) whether a patient has a symptom is adeterministic function of the syndromes associated with the patient, and of the syndromes for whichthe symptom is characteristic. Maris, De Boeck, and Van Mechelen (1996) analyzed these data witha PMD model involving a disjunctive communality rule, which means that a patient has a symptomif there is at least one syndrome for which it holds that the patient has that syndrome and thatthe symptom is characteristic of that syndrome. The authors used an EM algorithm to computeposterior mode estimates for models with from one to four syndromes. They subsequently argue thata model with three syndromes is preferable. In the following paragraphs we discuss a full Bayesianestimation and model checking for this model.4.2 Bayesian estimation and model checking4.2.1 Computation of posterior simulationsWe simulate draws from the posterior distribution of the parameters of a disjunctive PMD modelwith independent Beta(�j2; 2) prior distributions on the patient and symptom parameters �j . We6



use a data augmentation algorithm to simulate four chains of 2500 iterations, of which the �rst500 are discarded to remove the in
uence of the starting point. The convergence diagnostic pR̂is smaller than 1.1 for all parameters, so it may be concluded that further simulation would notimprove much the precision of the simulated posterior distribution. We construct a sample of 2000draws from this posterior distribution by gathering every 4th iteration of each chain (to save timein further computations, we do not keep every draw). Then, for each draw �l (l = 1; : : : ; 2000), wedraw a replicated dataset Yrep;l from the predictive distribution p(Yrepj�).4.2.2 Omnibus �2 testThe computed sample of the posterior predictive distribution may now be used to assess the �tof the model. We begin by evaluating the goodness of �t of the model with a Pearson �2 dis-crepancy measure. The resulting posterior predictive p-value equals 0.000, as X2(Y; �(l)) exceedsX2(Yrep;l; �(l)) for all the replicated datasets. Hence, the observed frequencies systematically de-viate from the frequencies that could have been observed if the model were true and if the studywere replicated with the same value of �. Figure 1 displays a graphical representation of the pairs(X2(Yrep;l; �(l)); X2(Y; �(l))) (l = 1; : : : ; L). This picture is de�nitely more informative than merelyreporting the posterior predictive p-value because the graph also shows the relative magnitudes ofthe realized and replicated discrepancies.4.2.3 Comparison of the number of zeroes in the datasetA crude way to investigate the mis�t of the model is a visual comparison of the observed frequencies(observed variables aggregated across psychiatrists) with a few replicated datasets. This comparisonshows that the observed data matrix contains far more zero cells than a typical replicated datamatrix. Actually, 225 out of 30 � 23 = 690 cells of the observed aggregated data matrix equalzero, whereas the simulated reference distribution of the number of zeroes has mean 88 and a 95%posterior interval of [71; 104]. In other words, for about 33% (225 out of 690) of all patient-symptompairs it holds that all psychiatrists agree that the patient does not have the symptom, whereas thiswould occur signi�cantly less frequently in the replicated data if the model were actually true.4.2.4 Comparison of the distributions of the �j parametersFor a PMD model with a disjunctive communality rule, a zero in the replicated data matrix impliesthat for each syndrome either the patient has a low probability of having that syndrome or that thesymptom has a low probability of being characteristic of that syndrome. Figure 2 displays histogramsof one representative draw of the posterior distribution of respectively all patient parameters andall symptom parameters. It must be noticed that for patients and symptoms, one draw consists of7



respectively 3� 30 = 90 and 3� 23 = 69 parameters. The histograms in Figure 2 show a peak nearzero, but clearly this peak is not high enough to replicate the observed number of zeroes. One maywonder to what extent this result is caused by the Beta(�j2; 2) prior distribution. In other words,it is possible that this prior distribution pulls parameter estimates towards 12 . A more appropriateprior distribution could imply that a histogram of one draw of the posterior distribution resemblesthe prior. Figure 2 also indicates that we should consider di�erent prior distributions for patientand symptom parameters. Indeed, relatively more symptom parameters are close to zero.4.2.5 Using the results of the model check to suggest a direction for model expansionIn general, a mixture of two beta distributed components seems to be a good alternative for theprior distribution. This mixture may be expressed as follows:p(�j) = �Beta(�j j�; �) + (1� �)Beta(�j j�0; �0): (5)The parameters of the mixture may be guessed from a histogram of many draws of the posteriordistribution. For patient and symptom parameters, (�; �; �; �0�0) are respectively chosen to equal(.50, 1, 1, 1, 6) and (.50, 1, 1, 1, 16). We decided to use �xed values for the shape parameters of themixture components and for the probability that a parameter �j belongs to a speci�c component,rather than estimating these values from the data. The latter strategy would perhaps be preferablein principle but would require additional data augmentation steps and potential new modelingdi�culties (for example, instability in the estimated hyperparameters) that we do not want to worryabout here. Our main concern at this point is modeling the distribution of the �j parameters in areasonable way. (In fact, the procedure of creating Figure 2 and using it to specify hyperparametersin the mixture model could be thought of as a crude, one-step form of data-augmentation.)4.3 Model expansionThe implementation of a mixture prior distribution instead of a Beta(�j2; 2) distribution requiresonly a modi�cation of the posterior step of the data augmentation algorithm. In the posterior stepone has to draw � from the augmented posterior distribution p(�jY;Z). And since the individualcomponents of � are independent conditional on Z, Meulders et al. (1997) show that each component�j may be sampled from: p(�j jY,Z) / p(�j)�t1jj (1� �j)t0j ; (6)t1j and t0j being functions of the latent data that summarize the information about �j from the pre-ceding imputation step. That is to say, for a patient parameter �j that indicates the probability thatpatient o has latent syndrome b, the values t1j and t0j equal the number of times that patient o has8



syndrome b and does not have syndrome b, respectively, summing over symptoms and psychiatrists.In the same way, for a symptom parameter �j that indicates the probability that symptom a appliesto syndrome b, t1j and t0j equal the number of times that symptom a does apply (respectivelydoes not apply) to syndrome b, summing over patients and psychiatrists. It is now easy to see thatp(�j jY;Z) / Beta(�j jt1j + 2; t0j + 2) if p(�j) � Beta(�j j2; 2).If the mixture of expression (5) is the prior distribution, one must sample each parameter �jfrom p(�j jY;Z) / [�Beta(�j j�; �) + (1� �)Beta(�j j�0; �0)] �t1jj (1� �j)t0j : (7)Using the de�nition of the beta distribution, this expression may be simpli�ed as follows:p(�j jY;Z) / �kjBeta(�j jt1j + �; t0j + �) + (1� �)k0jBeta(�j jt1j + �0; t0j + �0); (8)with kj = �(�+ �)�(t1j + �)�(t0j + �)�(�)�(�)�(t1j + t0j + �+ �) ; (9)and k0j being de�ned similarly, but with �0 and �0 replacing � and �. To ensure that expression (8)is a probability density function, we notice that the normalizing constant equals:Z p(�jY;Z)d� = �kj + (1� �)k0j ; (10)as both beta distributions in expression (8) are probability density functions. Hence normalizationof expression (8) yieldsp(�j jY;Z) = �jBeta(�j jt1j + �; t0j + �) + (1� �j)Beta(�j jt1j + �0; t0j + �0) (11)with �j = �kj�kj + (1� �)k0j : (12)To draw �j from the probability density function in expression (11) we �rst compute the probability�j that parameter �j belongs to the �rst component of the mixture and then sample the parameterfrom this component with probability �j and from the second component with probability 1 � �j .The �j 's are independent in the posterior distribution.The computation of �j is not straightforward, because it involves the evaluation of �(�), whichmay have a large value depending on its argument. A possible solution is to use a logarithmictransformation in order to avoid computational over
ow. More speci�cally one could perform thefollowing steps to compute each �j :1. Computecj = log(�kj) = log(�) + log(�(� + �)) + log(�(t1j + �)) + log(�(t0j + �))� log(�(�)) � log(�(�)) � log(�(t1j + t0j + �+ �)):9



2. Similarly, compute c0j = log((1� �)k0j) by replacing �; �; �; kj by 1� �; �0; �0; k0j in the aboveformula.3. Compute rj = exp((cj � c0j)=2).4. Compute �j = rjrj+1=rj .The parameters of the expanded model for the psychiatric diagnosis data are estimated with adata augmentation algorithm. Four chains of 8000 iterations are simulated and the �rst half of theiterations are discarded to remove the in
uence of the starting point. The convergence diagnosticpR̂ is smaller than 1.1 for all the parameters, so it may be concluded that further simulation wouldnot much improve the precision of the simulated posterior distribution. Subsequently, every 8thiteration of each chain is saved, and these are combined to construct a sample of 2000 draws fromthe posterior distribution.The change in the parameters due to the use of the mixture model may be investigated via acomparison of the posterior means of the parameters under the original and under the expandedmodel. Figure 3 displays a scatterplot of the posterior means of patient and symptom parametersfor the two models. In general, parameters that are already near zero under the original model,are closer to zero under the model with the mixture prior distribution. On the other hand, patientparameters with a rather high value (� .70) and symptom parameters with a moderate value (�.40 and � .70) slightly increase. Although the estimated parameters are quite similar under the twomodels, the di�erences are important, especially for the parameters near zero, which strongly a�ectthe probability that certain symptoms are not attributed at all to some patients.The obtained posterior sample may further be used to check the �t of the expanded model invarious aspects such as the overall goodness of �t of the model or the number of zero cells in thedata matrix. First, we evaluate the overall goodness of �t of the expanded model using a Pearson�2 discrepancy measure. The result shows that the expanded model still has to be rejected: againX2(Y; �(l)) exceeds X2(Yrep;l; �(l)) for each replicated dataset, which suggests that further modelimprovement is possible and desirable.Second, we compute the distribution of the frequency of zero cells in the replicated aggregateddata. The mean of this distribution equals 117, and the 95% posterior interval is [99; 135]. Therefore,the number of zero cells in the observed data (225) is still implausible for data that were generatedunder the model and with the same value of �. Yet, the expanded model predicts substantiallymore zero cells than the original model (the posterior interval of the number of zeroes under theoriginal model is [71; 104]), hence the model expansion appears to be a step in the right direction.Furthermore the prior distribution of the expanded model is more realistic as it better resembles a10



histogram of one draw of the posterior distribution (see Figure 4).In addition to improving �t, the expanded model has the interesting psychological interpretationthat some patient-syndrome pairs and some symptom-syndrome pairs are highly unlikely (these pairsthat correspond to the mixture component located near zero) whereas the other patient-syndromepairs and other symptom-syndrome pairs are more likely, with probabilities that vary approximatelyuniformly between 0 and 1. Future modeling can build on this perspective, which links probabilisticand deterministic matrix decomposition models.5 ConclusionThe above analysis illustrates that the Bayesian framework o�ers a powerful approach with respectto model checking. It allows one to focus on very general model aspects, such as omnibus goodness-of-�t measures like �2 discrepancies, or one may evaluate speci�c aspects such as the number ofzero cells in the observed data matrix. The above analysis shows the 
exibility of model expansionwithin a Bayesian framework. Furthermore, the model expansion that was illustrated appears todecrease the discrepancy between observed and replicated data. In particular, the number of cellswith zero entries in the observed data matrix is better �t under the expanded model (although thereis still room for much improvement).The model check that was particularly useful in this example|comparing the ensembles of theestimated patient and symptom parameters �j to their assumed prior distributions|was only feasiblebecause of the internal replication in the model. After all, it would be hard for any single �j parameterto be inconsistent with an assumed Beta(�j2; 2) prior distribution. A set of 90 or 69 such parameters,however, can easily be compared with the model, as in Figure 2. This illustrates the general pointthat model checks|like models themselves|are most powerful when they incorporate structure inthe underlying problem being studied. In this case, we refer to the structure inherent in having90 replications of the patient/syndrome interactions and 69 replications of the symptom/syndromeinteractions. Model checks that did not take advantage of this replication (for example, by testingthe �t of the model on each of the �j parameters individually) would not be able to reveal the global�tting problem displayed in Figure 2.On the whole, one may stress the 
exibility of model checking in a Bayesian framework. Com-putation of posterior predictive checks is straightforward for any quantity of interest once a sampleof the posterior distribution is available. In general this quantity may be a function of the data onlyor a function of both data and parameters. An important consequence of this 
exibility is that itleads to a better understanding of the various model aspects and thus to a better comprehension ofthe data at hand. 11



Other approaches to Bayesian model building are also possible (see, e.g., Raftery, 1996, for aparadigm based on discrete model averaging). The purpose of this paper is not to claim that theposterior predictive approach is best, but rather to illustrate its use in a particular example ofinterest, in which model checking and expansion have been important tools in moving us towardmodels that �t the data better and that make substantive sense.
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Figure 1: Scatterplot of replicated �2 discrepancy, X2(Yrep;l; �(l)) vs. realized discrepancy,X2(Y; �(l)), for 2000 random draws of (�(l);Yrep;l) from the posterior distribution of the three-bundle PMD model �t to the psychiatric diagnosis data. The diagonal line corresponds to equalityof the discrepancies. The realized discrepancies are consistently much larger, indicating that thediscrepancy between data and model is much greater than would be predicted under the model.
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Figure 2: Histograms of (a) 90 patient parameters �j and (b) 69 symptom parameters �j , as estimatedfrom the three-bundle PMDmodel �t to the psychiatric diagnosis data. These histograms of posteriorestimates contradict the assumed Beta(�j2; 2) prior densities (plotted on top of the histograms) foreach set of �j 's, and motivated us to switch to mixture prior distributions. This implicit comparisonto the values of �j under the prior distribution can be viewed as a posterior predictive check in whichthe replicated data include 30 new patients and 23 new symptoms, and thus new values for the �j 's.14
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Figure 3: Estimates of parameters �j from the expanded PMD model (with mixture prior distri-butions on the �j 's) compared to the original model (with Beta(�j2; 2) prior distributions). Thediagonal lines correspond to equality of the estimates. The main change in �tting the mixturemodel is, for the parameters estimated near zero, to pull their estimates even closer to zero.
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Figure 4: Histograms of (a) 90 patient parameters �j and (b) 69 symptom parameters �j , as estimatedfrom the expanded model �t to the psychiatric diagnosis data. The mixture prior densities of the�j 's (plotted on top of the histograms) are not perfect, but they approximate the correspondinghistograms much better than the Beta(�j2; 2) densities in Figure 2.
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