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SUMMARY

Iterative imputation, in which variables are imputed one at a time conditional on all the oth- 15

ers, is a popular technique that can be convenient and flexible, as it replaces a potentially diffi-
cult multivariate modeling problem with relatively simple univariate regressions. In this paper,
we begin to characterize the stationary distributions of iterative imputations and their statistical
properties, accounting for the conditional models being iteratively estimated from data rather
than being pre-specified. When the families of conditional models are compatible, we provide 20

sufficient conditions under which the imputation distribution converges in total variation to the
posterior distribution of a Bayesian model. When the conditional models are incompatible but
valid, we show that the combined imputation estimator is consistent.

Some key words: chained equation; convergence; iterative imputation; Markov chain.

1. INTRODUCTION 25

Iterative imputation is widely used for imputing multivariate missing data. The procedure
starts by randomly imputing missing values using some simple stochastic algorithm. Missing
values are then imputed one variable at a time, each conditionally on all the others using a
model fit to the current iteration of the completed data. The variables are looped through until
approximate convergence that is measured, for example, by the mixing of multiple chains. 30

With iterative imputation, there is no need to explicitly construct a joint multivariate model of
all types of variables: continuous, ordinal, categorical, and so forth. Instead, one only needs to
specify a sequence of families of conditional models such as linear regression, logistic regression,
and other standard and already programmed forms. The distribution of the resulting imputations
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is implicitly defined as the stationary distribution of the Markov chain corresponding to the35

iterative fitting and imputation process.
Iterative, or chained, imputation is convenient and flexible and has been implemented in vari-

ous ways in several statistical software packages, including mice and mi in R, IVEware in SAS,
and ice in Stata; see van Buuren & Groothuis-Oudshoorn (2011), Su et al. (2011), Raghunathan
et al. (2010), and Royston (2004, 2005). The popularity of these programs suggests that the re-40

sulting imputations are believed to be of practical value. However, the theoretical properties of
iterative imputation algorithms are not well understood. Even if the fitting of each conditional
model and the imputations themselves are performed using Bayesian inference, the stationary
distribution of the algorithm, if it exists, does not in general correspond to Bayesian inference on
any specified multivariate distribution.45

Iterative imputation poses several key questions. Under what conditions does the algorithm
converge to a stationary distribution? What statistical properties does the procedure admit given
that a unique stationary distribution exists? For the first question, researchers have long known
that the Markov chain may be non-recurrent, even if each of the conditional models is fitted
using a proper prior distribution. For example, the chain may blow up to infinity or drift like50

a nonstationary random walk. In this paper, we assume that the unique stationary distribution
of the iterative imputation exists and focus on the second question, the characterization of this
distribution.

The analysis of iterative imputation is challenging for at least two reasons. First, the range of
choices of conditional models is wide, and it would be difficult to provide a solution applicable55

to all situations. Second, the distributions for the imputations are known only within specified
parametric families. For example, if a particular variable is to be updated conditional on all the
others using logistic regression, the actual updating distribution depends on the logistic regres-
sion coefficients, which are themselves estimated given the latest update of the missing values.

The contribution of this paper is a mathematical framework under which the asymptotic prop-60

erties of iterative imputation can be discussed. In particular, we demonstrate the following results.
First, for a positive Harris recurrent iterative imputation Markov chain whose unique stationary
distribution exists, we provide a set of conditions under which this distribution converges in total
variation to the posterior distribution of a joint Bayesian model, as the sample size tends to in-
finity. Under these conditions, iterative imputation is asymptotically equivalent to full Bayesian65

imputation using some joint model. This asymptotic result does not depend on the validity of
the model, that is, the asymptotic equivalence holds when the model is misspecified. Among
these conditions, the most important is that the conditional models are compatible, that is, that
there exists a joint model whose conditional distributions are identical to the conditional model-
s specified by the iterative imputation. Second, we consider model compatibility as a typically70

necessary condition for the iterative imputation distribution to converge to the posterior distribu-
tion of some Bayesian model. This is discussed in Section 3·4. Lastly, for incompatible models,
imputation distributions are generally different from any Bayesian model, and we show that the
combined completed-data maximum likelihood estimator of the iterative imputation is a consis-
tent estimator if the set of conditional models are valid, that is, if each conditional family contains75

the true distribution.
The theoretical results have several practical implications. If the conditional models are com-

patible and all other regularity conditions are satisfied, then the imputation distribution of joint
Bayesian models and that of the iterative procedure are asymptotically the same. Thus, with cer-
tain moment conditions, Rubin’s rules for combining imputed data sets (Little & Rubin, 2002)80

are applicable. For incompatible models, the combined point estimators are consistent as long as
each conditional model is correctly specified. For large scale data sets and in presence of multiple
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types of variables, it is generally difficult to maintain or to check model compatibility. In fact, it
is precisely in the situation when a joint model is difficult to obtain that iterative imputation is
preferred. With incompatible models, the most important condition is the validity of the condi- 85

tional models. In addition, given that the goal is predictive, one may employ more sophisticated
procedures beyond generalized linear models, such as hierarchical modeling, model selection,
penalized estimation, etc. From the modeling point of view, the imputers should try as much as
possible to check and to achieve model compatibility. When compatibility is difficult to obtain,
one should make an effort to improve the prediction quality of each conditional regression model. 90

Lastly, one important element in the technical development is a bound on the convergence rate,
which, in practice, corresponds to the mixing of iterative chains. Slow mixing rates for typical
Markov chain Monte Carlo problems mean inefficient computation and often can be solved by
running longer chains to reach the stationary distribution. In the context of iterative imputation,
in addition to computational inefficiency, slow mixing also indicates potentially less accurate 95

inferences. Such inaccuracies persist even if the chain has reached stationarity and thus slow
mixing should raise a warning to the imputer. Therefore, we recommend that the imputer always
check the convergence of the iterative chain. If the chain mixes slowly, one might consider a
smaller data set by dropping some less important variables for the imputation.

The analysis presented in this paper connects to separate existing literatures on missing data 100

imputation and Markov chain convergence. Standard references on imputation inference include
Rubin (1987), Schafer (1997), Li et al. (1991), Barnard & Rubin (1999), Meng (1994), and
Rubin (1996). Large sample properties are studied by Robins & Wang (2000), Schenker & Welsh
(1988), and Wang & Robins (1998); congeniality between the imputer’s and analyst’s models is
considered by Meng (1994). A framework of fractional imputation was proposed by Kim (2011). 105

Iterative imputation is a procedure to which these and other results in the field do not apply. The
current work provides theoretical backup of this procedure by means of theories and techniques
developed for Markov chains that will be discussed in the following paragraph.

Our asymptotic findings for compatible and incompatible models use results on the conver-
gence and coupling of Markov chains, a subject on which there is a vast literature concerning 110

stability and rate of convergence (Amit & Grenander, 1991). For the analysis of compatible mod-
els, we need to construct a bound for the convergence rate using renewal theory, which has the
advantage of not assuming the existence of an invariant distribution, which is naturally yield-
ed by minorization and drift conditions (Baxendale, 2005; Meyn & Tweedie, 1993; Rosenthal,
1995). Some other related works include incompatible Gibbs samplers studied by van Dyk & 115

Park (2008) and functional compatible Gibbs samplers studied in Hobert & Casella (1998).

2. BACKGROUND

2·1. Bayesian modeling, imputation, and Gibbs sampling
Consider a data set with n cases and p variables, where X = (X1, ...,Xp) represents the com-

plete data and Xj = (x1,j , ..., xn,j)
T is the jth variable including both the observed and the miss-

ing data. Let rj be the vector of observed data indicators for variable j, equaling 1 for observed
variables and 0 for missing variables. Let Xobs

j and Xmis
j be the observed and missing subsets of

variable i and furthermore let Xobs = {Xobs
j : j = 1, ..., p} and Xmis = {Xmis

j : j = 1, ..., p}. To
facilitate our description of the procedures, we define

X
obs
−j = {Xobs

l : l = 1, ..., j − 1, j + 1, ..., p}, X
mis
−j = {Xmis

l : l = 1, ..., j − 1, j + 1, ..., p}.
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Notation that does not have superscripts, such as Xj and X−j , includes both the observed and
the imputed data, that is, Xj = (Xobs

j ,Xmis
j ) and X−j = (Xobs

−j ,X
mis
−j ). We use X to denote the120

entire data set and x to denote individual observations, that is, x could be a row vector of X.
Furthermore, we use xj to denote the jth variable of one observation and x−j to denote all the
others.

We assume that the missing data process is ignorable throughout. One set of sufficient condi-
tions for ignorability is that the r process is missing at random and the parameter spaces for the125

distributions of X and r given X are distinct and have independent prior distributions (Little &
Rubin, 2002).

In Bayesian inference, imputed data sets are treated as samples from the posterior distribution
of the incompletely observed data matrix. In the parametric Bayesian approach, one specifies a
family of distributions f(X | θ) and a prior π(θ) and then performs inference using independently130

and identically distributed samples from the posterior predictive distribution

p(Xmis | Xobs) =

∫
Θ
f(Xmis | Xobs, θ)p(θ | Xobs)dθ, (1)

where p(θ | X) ∝ π(θ)f(X | θ). Direct simulation from (1) is generally difficult. One standard
solution is to draw approximate samples using the Gibbs sampler or some more complicated
Markov chain Monte Carlo algorithm. In the scenario of missing data, one can use the data
augmentation strategy to iteratively draw θ given (Xobs,Xmis) and Xmis given (Xobs, θ). Under135

regularity conditions such as positive recurrence, irreducibility, and aperiodicity, the Markov
process is ergodic with limiting distribution p(Xmis, θ | Xobs) (Geman & Geman, 1984).

To connect to the iterative imputation that is the subject of the present article, we consider a
slightly different Gibbs scheme. Let X(k − 1) be the entire data set including both the observed
data and the imputed data at iteration k − 1. To evolve to X(k), we need to update one variable140

at a time according to Algorithm 1.

Algorithm 1 Gibbs chain
Step 0. Set X ← X(k − 1) and update the variables of X one at a time.
Step 1. Draw θ ∼ p(θ | Xobs

1 ,X−1) and Xmis
1 ∼ f(Xmis

1 | Xobs
1 ,X−1, θ).

...
Step p. Draw θ ∼ p(θ | Xobs

p ,X−p) and Xmis
p ∼ f(Xmis

p | Xobs
p ,X−p, θ).

Step p+ 1. Set X(k)← X.

At each step, the posterior distribution is based on the updated values of the parameters and
imputed data. It is not hard to verify that, under mild regularity conditions as in Rosenthal (1995),
the Markov chain evolving according to Algorithm 1 converges to the posterior distribution of
the corresponding Bayesian model.145

2·2. Iterative imputation and compatibility
For iterative imputation, we need to specify p conditional models, gj(Xj | X−j , θj), for θj ∈

Θj with prior distributions πj(θj) (j = 1, ..., p). When there is no ambiguity, we shall use gj as
a generic notation for the conditional model for variable j, and its meaning may differ slightly
from place to place. For instance, we shall constantly use g1(Xmis

1 | Xobs
1 ,X−1, θ1) to refer to150

the conditional distribution of missing data Xmis
1 given (Xobs

1 ,X−1) and θ1. Iterative imputation
evolves from iteration k − 1 to iteration k according to Algorithm 2.
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Algorithm 2 Iterative chain
Step 0. Set X ← X(k − 1) and update the variables of X one at a time.
Step 1. Draw θ1 from p1(θ1 | Xobs

1 ,X−1), which is the posterior distribution associated with g1 and π1.
Draw Xmis

1 from g1(Xmis
1 | Xobs

1 ,X−1, θ1);
...

Step p. Draw θp from pp(θp | Xobs
p ,X−p), which is the posterior distribution associated with gp and πp.

Draw Xmis
p from gp(X

mis
p | Xobs

p ,X−p, θp).
Step p+ 1. Set X(k)← X.

Iterative imputation has the practical advantage that, at each step, one only needs to set up
a sensible regression model for Xj given X−j . This substantially reduces the modeling task,
given that there are usually standard linear or generalized linear models for univariate responses 155

of different variable types. In contrast, full Bayesian or likelihood modeling requires the more
difficult task of constructing a joint model for X. Whether it is preferable to perform p easy tasks
or one difficult task depends on the problem at hand. All that is needed here is the recognition
that, in some settings, users prefer the p easy steps of iterative imputation.

Iterative imputation has problems. In general there is no joint distribution of X such that f(Xj | 160

X−j , θ) = gj(Xj | X−j , θj) for each j. In addition, it is unclear whether the Markov process has
a probability invariant distribution; if there is such a distribution, it lacks characterization.

Iterative imputation has some variations. For example, the parameter θj for the conditional
model gj can be sampled from the posterior distribution given the complete data sets X where
the missing values are updated from the previous step, in contrast to the current scheme in which 165

the posterior distribution is conditional on (Xobs
j ,X−j). For this new scheme, we can construct a

Gibbs sampler similarly as in Section 2·1 for the joint Bayesian model correspondingly: at each
step, θ is sampled from the posterior, p(θ | X). This new sampler couples with the new iterative
chain. The analysis strategy and results apply to the new iterative imputation schemes. Another
situation is that the parameter θj is only updated conditional on the fully observed cases. For this 170

procedure, we can only apply the results in Section 4, that is, consistency can be obtained under
model validity. For the detailed development, we only consider the scheme for which the updates
are conditional on (Xobs

j ,X−j). We study the stationary distribution of the iterative imputation
by first classifying the set of conditional models as compatible or incompatible.

3. COMPATIBLE CONDITIONAL MODELS 175

3·1. Model compatibility
Analysis of iterative imputation is particularly challenging partly because of the large col-

lection of possible choices of conditional models. We begin by considering a restricted class,
compatible conditional models, defined as follows:

DEFINITION 1. A set of conditional models {gj(xj | x−j , θj) : θj ∈ Θj , j = 1, ..., p} is said 180

to be compatible if there exists a joint model {f(x | θ) : θ ∈ Θ} and a collection of surjec-
tive maps, {tj : Θ→ Θj : j = 1, ..., p} such that for each j, θj ∈ Θj , and θ ∈ t−1

j (θj) = {θ :

tj(θ) = θj}, gj(xj | x−j , θj) = f(xj | x−j , θ). Otherwise, {gj : j = 1, ..., p} is said to be in-
compatible.
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Throughout this paper, we assume that all the observations are independently and identically185

distributed and thus one only needs to specify the distribution of a single observation. Though
imposing certain restrictions, compatible models do include quite a collection of procedures
practically in use, for instance, ice in Stata. In what follows, we give a few examples of compat-
ible and incompatible conditional models.

Example 1 (bivariate Gaussian). Consider a binary continuous variable (x, y) with

x | y ∼ N(αx|y + βx|yy, τ
2
x), y | x ∼ N(αy|x + βy|xx, τ

2
y ).

These two conditional models are compatible if and only if (βx|y, βy|x, τx, τy) lie on a subspace190

determined from the joint model,(
x
y

)
∼ N

{(
µx
µy

)
,Σ

}
, Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
,

with σx, σy > 0 and −1 ≤ ρ ≤ 1. The reparameterization is

t1(µx, σ
2
x, µy, σ

2
y , ρ) = (αx|y, βx|y, τ

2
x) =

{
µx −

ρσx
σy

µy,
ρσx
σy

, (1− ρ2)σ2
x

}
t2(µx, σ

2
x, µy, σ

2
y , ρ) = (αy|x, βy|x, τ

2
y ) =

{
µy −

ρσy
σx

µx,
ρσy
σx

, (1− ρ2)σ2
y

}
.

Example 2 (continuous data). Consider a set of conditional linear models: for each j,

xj | x−j , βj , σ2
j ∼ N

{
(1, x−j)βj , σ

2
j

}
,

where βj is a p× 1 vector. Consider the joint model (x1, ..., xp) ∼ N(µ,Σ). Then the condi-
tional distribution of each xj given x−j is Gaussian. The maps tj can be derived by conditional
multivariate Gaussian calculations.195

Example 3 (continuous and binary data). Let x1 be a Bernoulli random variable and x2 be a
continuous random variable. The conditional models are

x1 | x2 ∼ Bernoulli
(

eα+βx2

1 + eα+βx2

)
, x2 | x1 ∼ N(β0 + β1x1, σ

2).

The above conditional models are compatible with the joint model

x1 ∼ Bernoulli(p), x2 | x1 ∼ N(β0 + β1x1, σ
2).

If we let

t1(p, β0, β1, σ
2) =

(
log

p

1− p
− β2

1

2σ2
,
β1

2σ2

)
= (α, β)

and t2(p, β0, β1, σ
2) = (β0, β1), the conditional models and this joint model are compatible with

each other (Efron, 1975; McCullagh & Nelder, 1998).

Example 4 (incompatible Gaussian conditionals). The two conditional models,

x | y ∼ N(β1y + β2y
2, 1), y | x ∼ N(λ1x, 1),

are compatible only if β2 = 0. Nonetheless, this model is semi-compatible, the definition of
which will be given in Section 4.

Example 5 (ordinal and continuous variable). Suppose x1 is continuous, x2 takes values in200

{0, 1, ...,m}, and x1 | x2 ∼ N(α0 + α1x2, τ
2
1 ). The model of x2 | x1 assumes a latent structure,
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with z ∼ N(β0 + β1x1, τ
2
2 ) and x2 taking on the value 0 if z ≤ µ1, 1 if µ1 < z ≤ µ2, . . . , m if

z > µm. This is another family of reasonable but incompatible conditional models.

3·2. Total variation distance between two transition kernels
Let {Xmis,1(k) : k ∈ Z+} be the Gibbs chain and {Xmis,2(k) : k ∈ Z+} be the iterative chain 205

as described in Sections 2·1 and 2·2. Both chains live on the space of the missing data. We write
the completed data as Xi(k) = (Xmis,i(k),Xobs) for the Gibbs chain (i = 1) and the iterative
chain (i = 2) at the kth iteration of the iterative chain. The transition kernels are

Ki(w, dw′) = pr{Xmis,i(k + 1) ∈ dw′ | Xmis,i(k) = w}, i = 1, 2, (2)

where w is a generic notation for the state of the processes. The transition kernels, K1 and K2,
depend on Xobs. For simplicity, we omit the index Xobs in the notation Ki. Also, we define

K
(k)
i (ν,A) = prν{Xmis,i(k) ∈ A},

for Xmis,i(0) ∼ ν and ν being some starting distribution. The probability measure prν also de-
pends on Xobs. Let dTV denote the total variation distance between two measures; that is, for 210

two measures, ν1 and ν2, defined on the same probability space (Ω,F) we define dTV(ν1, ν2) =
supA∈F |ν1(A)− ν2(A)|. We further define ‖ν‖V = sup|h|≤V

∫
h(x)ν(dx) and ‖ν‖1 = ‖ν‖V

for V ≡ 1.
Throughout this paper, we assume that both chains are positive Harris recurrent and thus Ki

admits its unique stationary distribution denoted by νX
obs

i . We intend to establish conditions 215

under which dTV(νX
obs

1 , νX
obs

2 )→ 0 in probability as n→∞ and thus the iterative imputation
and the joint Bayesian imputation are asymptotically the same.

Our basic strategy for analyzing the compatible conditional models is to first establish that
the transition kernels K1 and K2 are close to each other in a large region An depending on the
observed data Xobs, that is, ‖K1(w, ·)−K2(w, ·)‖1 → 0 as n→∞ for w ∈ An; and, second, 220

to show that the two stationary distributions are close to each other in total variation in that the
stationary distributions are completely determined by the transition kernels. In this subsection,
we start with the first step, that is, to show that K1 converges to K2.

Both the Gibbs chain and the iterative chain evolve by updating each missing variable from
the corresponding posterior predictive distributions. Upon comparing the difference between the 225

two transition kernels associated with the simulation schemes in Sections 2·1 and 2·2, it suffices
to compare the following posterior predictive distributions for each 1 ≤ j ≤ p,

f(Xmis
j | Xobs

j ,X−j) =

∫
f(Xmis

j | Xobs
j ,X−j , θ)p(θ | Xobs

j ,X−j)dθ, (3)

gj(X
mis
j | Xobs

j ,X−j) =

∫
gj(X

mis
j | Xobs

j ,X−j , θj)pj(θj | Xobs
j ,X−j)dθj , (4)

where p and pj denote the posterior distributions under f and gj respectively. Due to compatibil-
ity, the distributions of the missing data given the parameters are the same for the joint Bayesian
model and the iterative imputation model f(Xmis

j | Xobs
j ,X−j , θ) = gj(X

mis
j | Xobs

j ,X−j , θj) if 230

tj(θ) = θj . The only difference lies in their posterior distributions. Therefore, we move to com-
paring p(θ | Xobs

j ,X−j) and pj(θj | Xobs
j ,X−j).

Upon comparing the posterior distributions of θ and θj , the first disparity to reconcile is that the
dimensions are usually different. Typically θj is of lower dimension. Consider the linear model
in Example 1. The conditional models include three parameters, two regression coefficients and 235

the error variance, while the joint model has five parameters µx, µy, σx, σy, and ρ. This is
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because the regression models are usually conditional on the covariates. The joint model not only
parameterizes the conditional distributions of Xj given X−j but also the marginal distribution of
X−j . Therefore, it includes extra parameters, although the distributions of the missing data is
independent of these parameters. We augment the parameter space of the iterative imputation240

to (θj , θ
∗
j ) with the corresponding map θ∗j = t∗j (θ). The augmented parameter (θj , θ

∗
j ) is a non-

degenerate reparameterization of θ, that is, Tj(θ) = {tj(θ), t∗j (θ)} is a one-to-one invertible map.
To illustrate this parameter augmentation, we consider the linear model in Example 1 in which

θ = (µx, σ
2
x, µy, σ

2
y , ρ), where we use µx and σ2

x to denote the mean and variance of the first
variable, µy and σ2

y to denote the mean and variance of the second, and ρ to denote the correlation.245

The reparameterization is,

θ2 = t2(µx, σ
2
x, µy, σ

2
y , ρ) = (αy|x, βy|x, τ

2
y ) =

{
µy −

ρσy
σx

µx,
ρσy
σx

, (1− ρ2)σ2
y

}
,

θ∗2 = t∗2(µx, σ
2
x, µy, σ

2
y , ρ) = (µx, σ

2
x).

The function t2 maps to the regression coefficients and the variance of the residuals; t∗2 maps to
the marginal mean and variance of x. Similarly, we can define the map of t1 and t∗1.

Because we are assuming compatibility, we can drop the notation gj for the conditional model
of the jth variable. Instead, we unify the notation to that of the joint Bayesian model f(Xj |250

X−j , θ). In a slight abuse of notation, we write f(Xj | X−j , θj) = f(Xj | X−j , θ) for tj(θ) = θj .
For instance, in Example 1, we write f(y | x, αy|x, βy|x, σy|x) = f(y | x, µx, µy, σx, σy, ρ) as
long as αy|x = µy − ρσyµx/σx, βy|x = ρσy/σx, and σ2

y|x = (1− ρ2)σ2
y .

The prior distribution on θ for the joint Bayesian model implies a prior on (θj , θ
∗
j ) of

π∗j (θj , θ
∗
j ) = det(∂Tj/∂θ)

−1π{T−1
j (θj , θ

∗
j )}.

For the full Bayesian model, the posterior distribution of θj is255

p(θj | Xobs
j ,X−j) =

∫
p(θj , θ

∗
j | Xobs

j ,X−j)dθ∗j ∝
∫
f(Xobs

j ,X−j | θj , θ∗j )π∗j (θj , θ∗j )dθ∗j .

Because f(Xobs
j | X−j , θj , θ∗j ) = f(Xobs

j | X−j , θj), the above posterior can be further reduced to

p(θj | Xobs
j ,X−j) ∝ f(Xobs

j | X−j , θj)
∫
f(X−j | θj , θ∗j )π∗j (θj , θ∗j )dθ∗j .

If we write πj,X−j (θj) =
∫
f(X−j | θj , θ∗j )π∗j (θj , θ∗j )dθ∗j , then the posterior distribution of θj

under the joint Bayesian model is

p(θj | Xobs
j ,X−j) ∝ f(Xobs

j | X−j , θj)πj,X−j (θj).

Compared with the posterior distribution under iterative imputation,

pj(θj | Xobs
j ,X−j) ∝ gj(Xobs

j | X−j , θj)πj(θj) = f(Xobs
j | X−j , θj)πj(θj),

the difference lies in the prior distributions, πj(θj) and πj,X−j (θj).260

We put forward tools to control the distance between the two posterior predictive distributions
in (3) and (4). Let X be the generic notation for the observed data, and let fX(θ) and gX(θ)
be two posterior densities of θ. Let h(x̃ | θ) be the density function for future observations giv-
en the parameter θ, and let f̃X(x̃) =

∫
h(x̃ | θ)fX(θ)dθ and g̃X(x̃) =

∫
h(x̃ | θ)gX(θ)dθ be the

posterior predictive distributions. Then it is straightforward that265

‖f̃X − g̃X‖1 ≤ ‖fX − gX‖1. (5)
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The next proposition provides sufficient conditions that ‖fX − gX‖1 vanishes.

PROPOSITION 1. Let n be the sample size. Let fX(θ) and gX(θ) be two posterior density
functions that share the same likelihood but have two different prior distributions πf and πg. Let

L(θ) =
πg(θ)

πf (θ)
, r(θ) =

gX(θ)

fX(θ)
=

L(θ)∫
L(θ′)fX(θ′)dθ′

.

Let ∂L(θ) be the partial derivative with respect to θ and let ξ be a random variable such that

L(θ) = L(µθ) + ∂L(ξ)T(θ − µθ),

where µθ =
∫
θfX(θ)dθ. If there exists a random variable Z(θ) with finite variance under fX ,

such that

|n1/2∂L(ξ)T(θ − µθ)| ≤ |∂L(µθ)|Z(θ), (6)

then there exists a constant κ > 0 such that, for n sufficiently large, 270

‖f̃X − g̃X‖1 ≤
κ|∂ logL(µθ)|1/2

n1/4
. (7)

We prove this proposition in the Supplementary Material.

Remark 1. We adapt Proposition 1 to the analysis of the conditional models. Expression (6)
implies that the posterior standard deviation of θ is O(n−1/2). For most parametric models,
(6) is satisfied as long as the observed Fisher information is bounded from below by εn for
some ε > 0. In particular, we let θ̂(X) be the complete-data maximum likelihood estimator and 275

An = {X : |θ̂(X)| ≤ γ}. Then, (6) is satisfied on the set An for any fixed γ.

Remark 2. In order to verify that ∂ logL(θ) is bounded, one only needs to know πf and πg
up to a normalizing constant. This is because the bound is in terms of ∂L(θ)/L(θ). This helps to
handle the situation when improper priors are used and it is not feasible to obtain a normalized
prior distribution. In the current context, the prior likelihood ratio is L(θj) = πj(θj)/πj,X−j (θj). 280

We further provide a special case where the above proposition applies. Suppose that the param-
eter spaces of the conditional distribution and the covariates are separable, that is, f(Xj ,X−j |
θj , θ

∗
j ) = f(Xj | X−j , θj)f(X−j | θ∗j ) and there exists a prior π for the joint model f such that θj

and θ∗j are a priori independent for all j. Then, the boundedness of ∂ logL(θj) becomes straight-
forward to obtain. The ratio L(θj) = πj(θj)/πj,X−j (θj), and πj,X−j (θj) = π∗j (θj)

∫
f(X−j | 285

θ∗j )π
∗
j (θ
∗
j )dθ∗j . Thus, L(θj) = πj(θj)/π

∗
j (θj) is independent of data. Further, if one chooses

πj(θj) = π∗j (θj), then the transition probabilities of the iterative and Gibbs chains coincide and

νX
obs

1 = νX
obs

2 .

3·3. Convergence of the invariant distributions
With Proposition 1 and Remark 1, we have established that the transition kernels of the Gibbs 290

chain and the iterative chain are close to each other in a large region An. The subsequent anal-
ysis falls into several steps. First, we slightly modify the processes by conditioning on the set
An with stationary distributions ν̃X

obs

i , the details of which is provided below. The stationary
distributions of the conditional processes and the original processes, ν̃X

obs

i and νX
obs

i , are close
in total variation. Second, we show in Lemma 2 that, with a bound on the convergence rate of 295

the Markov process, ν̃X
obs

1 and ν̃X
obs

2 are close in total variation and so it is with νX
obs

1 and νX
obs

2 .
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An upper bound for convergence rate of the Markov chains, in particular rk in Lemma 2, can be
established by Proposition 2.

To proceed, we consider the chains conditional on the set An where the two transition kernels
are uniformly close to each other. In particular, for each set B, we let300

K̃i(w,B) =
Ki(w,B ∩An)

Ki(w,An)
. (8)

That is, we create another two processes, for which we update the missing data conditional on
X ∈ An. Next we show that we only need to consider the chains conditional on the set An.

LEMMA 1. Suppose that both K1 and K2 are positive Harris recurrent. We can choose An as
in the form of Remark 1 and γ sufficiently large so that

νX
obs

i (An)→ 1 in probability as n→∞. (9)

Let X̃mis,i(k) be the Markov chains following K̃i, defined as in (8), with invariant distribution305

ν̃X
obs

i . Then,

lim
n→∞

dTV(νX
obs

i , ν̃X
obs

i ) = 0. (10)

The proof is elementary by the representation of νX
obs

i through renewal theory and therefore is
omitted. Based on the above lemma, we need to show that dTV(ν̃X

obs

1 , ν̃X
obs

2 )→ 0. The expression
‖K1(w, ·)−K2(w, ·)‖1 approaches 0 uniformly for w ∈ An. This implies that

lim
n→∞

‖K̃1(w, ·), K̃2(w, ·)‖1 = 0 uniformly for w ∈ An. (11)

With the above convergence, we can establish the convergence between ν̃X
obs

1 and ν̃X
obs

2 .310

LEMMA 2. Let X̃mis,i(k) admit data-dependent transition kernels K̃i for i = 1, 2. We use n to
denote sample size. Suppose that each K̃i admits a data-dependent unique invariant distribution,
denoted by ν̃X

obs

i , and that the following two conditions hold.
First, the convergence of the two transition kernels are in place, that is,

d(An) = sup
w∈An

‖K̃1(w, ·)− K̃2(w, ·)‖V → 0 in probability as n→∞. (12)

The function V is either a geometric drift function for K̃2 or a constant, i.e., V ≡ 1.315

Second, there exists a monotone decreasing data-independent sequence rk → 0 and a data-
dependent starting measure ν such that

pr
{
‖K̃(k)

i (ν, ·)− ν̃X
obs

i (·)‖V ≤ rk, for all k > 0
}
→ 1, n→∞. (13)

Then,

‖ν̃X
obs

1 − ν̃X
obs

2 ‖V → 0, in probability as n→∞. (14)

Remark 3. The proof is included in the Supplementary Material. Lemma 2 holds if V = 1 or
V is a drift function, the definition of which is given in (16). For the analysis of convergence in320

total variation, we only need that V = 1. We prepare the result when V is a drift function for the
analysis of incompatible models.

The first condition in the above lemma has been obtained by the result of Proposition 1 and
(11). Condition (13) is more difficult to establish. According to the standard results in Rosenthal
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(1995), one set of sufficient conditions for (13) is that the chains K̃1 and K̃2 admit a common 325

small set, C; in addition, each of them admits its own drift functions associated with the small
set C. See the Supplementary Material for more details.

Gibbs chains typically admit a small set C and a drift function V ; that is,

K̃1(w,A) ≥ q1µ1(A), for some positive measure µ1, (15)

with w ∈ C, 0 < q1 < 1; for some 0 < λ1 < 1 and for all w /∈ C,

λ1V (w) ≥
∫
V (w′)K̃1(w, dw′). (16)

With the existence of C and V , an upper bound rk with starting point w ∈ C can be established 330

for the Gibbs chain by standard results, and rk only depends on λ1 and q1. Therefore, it is
necessary to require that λ1 and q1 are independent of Xobs. In contrast, the small set C and drift
function V could be data dependent.

Given that K̃1 and K̃2 are close in total variation distance, the set C is also a small set for
K̃2, that is K̃2(w,A) ≥ q2µ2(A), for some 0 < q2 < 1, all w ∈ C, and all measurable set A. 335

The following proposition, whose proof is given in the Supplementary Material, establishes the
conditions under which V is also a drift function for K̃2 so that (13) is in place.

PROPOSITION 2. Assume the following conditions hold. First, the transition kernel K̃1 admit-
s a small set C and a drift function V satisfying (16). Second, let Lj(θj) = πj(θj)/πj,X−j (θj)
(j = 1, ..., p) be the the ratio of prior distributions for each conditional model, possibly depend- 340

ing on the data, so that on the set An sup|θj |<γ ∂Lj(θj)/Lj(θj) <∞. Third, for each j and
1 ≤ k ≤ p− j, there exists a Zj(θj) serving as the bound in (6) for each Lj . In addition, Zj
satisfies the following moment condition

Ẽ1

{
Z2
j+1(θj+1)V 2(wj+k) | wj

}
= o(n)V 2(wj), (17)

where Ẽ1 is the expectation associated with the updating distribution of K̃1, and wj is the state
of the chain when the jth variable is just updated. The convergence o(n)/n→ 0 is uniform in 345

wj ∈ An.
Then, there exists 0 < λ2 < 1 such that as n tends to infinity with probability converging to

one the following inequality holds

λ2V (w) ≥
∫
V (w′)K̃2(w, dw′). (18)

The proof is included in the Supplementary Material. The intuition is as follows. The function
V satisfying inequality (16) is a drift function of K̃1 to C. Since K̃1 and K̃2 are close to each 350

other, we may expect that
∫
V (w′)K̃1(w, dw′) ≈

∫
V (w′)K̃2(w, dw′). The above proposition

states the conditions under which this approximation is indeed true and suggests that V be a drift
function of K̃2 if it is a drift function of K̃1. Condition (17) is imposed for a technical purpose. In
particular, we allow the expectation of Z2

j+1(θj+1)V 2(wj+k) to grow to infinity but at a slower
rate than n. Therefore, it is a weak condition. We now summarize the analysis and the results of 355

the compatible conditional models in the following theorem.

THEOREM 1. Suppose that a set of conditional models {gj(xj | x−j , θj) : θj ∈ Θj , j =
1, ..., p} is compatible with a joint model {f(x | θ) : θ ∈ Θ}. Both the Gibbs chain and the it-
erative chain are positive Harris recurrent and thus admit their unique stationary distributions
νX

obs

i . Furthermore, the conditions in Proposition 2 hold so that K̃1 and K̃2 are geometrically 360

recurrent.
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Lastly, the following conditions are satisfied. Let An = {X : |θ̂(X)| ≤ γ}. One can choose γ
sufficiently large so that

νX
obs

i (An)→ 0, (19)

in probability as n→∞. Then, dTV(νX
obs

1 , νX
obs

2 )→ 0 in probability as n→∞.

One sufficient condition for (19) is that the stationary distributions of θ̂(X) under νX
obs

i con-365

verge to a value θi, where θ1 and θ2 are not necessarily the same. Therefore, (19) is a very weak
condition. In addition to the conditions of Proposition 1, Proposition 2 also requires that one
constructs a drift function towards a small set for the Gibbs chain. One can usually construct q1

and λ1 free of data if the proportion of missing data is bounded from the above by 1− ε. The
most difficult task usually lies in constructing a drift function.370

Proof. We summarize the analysis of compatible models in this proof. If gj’s are compatible
with f , then the conditional posterior predictive distributions of the Gibbs chain and the iterative
chain are given in (3) and (4). Thanks to compatibility, the total variation distance between the
posterior predictive distributions are bounded by the distance between the posterior distributions
of their own parameters as in (5).375

On the set An, the Fisher information of the likelihood has a lower bound of εn for some
ε. Then, by Proposition 1 and the second condition in Proposition 2, the distance between the
two posterior distributions is of order O(n−1/4) uniformly on set An. Similar convergence result
holds for the conditional transition kernels, that is, ‖K̃1(w, ·)− K̃2(w, ·)‖1 → 0. Thus, the first
condition in Lemma 2 has been satisfied.380

To verify the conditions of Proposition 2, one needs to construct a small set C such that (15)
holds for both chains, and a drift function V for one of the two chains such that (16) holds. Based
on the results of Proposition 2, K̃1 and K̃2 share a common data-dependent small set C with qi
independent of data and a drift function V possibly with different rate λ1 and λ2.

According to the standard bound of Markov chain rate of convergence stated in the Supple-385

mentary Material, there exists a common starting value w ∈ C and a bound rk such that (13)
holds. Then both conditions in Lemma 2 are satisfied, and dTV(ν̃X

obs

1 , ν̃X
obs

2 )→ 0 in probability
as n→∞. According to condition (19) and Lemma 1, this implies dTV(νX

obs

1 , νX
obs

2 )→ 0, and
so we are done.

3·4. On the necessity of model compatibility390

Theorem 1 shows that for compatible models and under suitable technical conditions, iterative
imputation is asymptotically equivalent to Bayesian imputation. The following theorem suggests
that model compatibility is typically necessary for this convergence.

Let prf denote the probability measure induced by the posterior predictive distribution of the
joint Bayesian model and prgj denote those induced by the iterative imputation’s conditional395

models. That is,

prf (Xmis
j ∈ A | Xmis

−j ,X
obs) =

∫
A
f(Xmis

j | Xmis
−j ,X

obs, θ)p(θ | Xmis
−j ,X

obs)dθ,

prgj (X
mis
j ∈ A | Xmis

−j ,X
obs) =

∫
A
gj(X

mis
j | Xmis

−j ,X
obs, θj)pj(θj | Xmis

−j ,X
obs)dθ.

Denote the stationary distributions of the Gibbs and iterative chains by νX
obs

1 and νX
obs

2 .
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THEOREM 2. Suppose that for some j ∈ Z+, sets A and C, and 0 < ε < 1/2,

inf
Xmis

−j∈C
prgj (X

mis
j ∈ A | Xmis

−j ,X
obs) > sup

Xmis
−j∈C

prf (Xmis
j ∈ A | Xmis

−j ,X
obs) + ε

or

sup
Xmis

−j∈C
prgj (X

mis
j ∈ A | Xmis

−j ,X
obs) < inf

Xmis
−j∈C

prf (Xmis
j ∈ A | Xmis

−j ,X
obs)− ε

and νX
obs

1 (Xmis
−j ∈ C) > q ∈ (0, 1). Then there exists a set B such that 400∣∣∣νXobs

2 (Xmis ∈ B)− νX
obs

1 (Xmis ∈ B)
∣∣∣ > qε/4.

For two models with different likelihood functions, one can construct sets A and C such that
the conditions in the above theorem hold. Therefore, if among the predictive distributions of all
the p conditional models there is one gj that is different from f as stated in Theorem 2, then the
stationary distribution of the iterative imputation is different from the posterior distribution of
the Bayesian model in total variation by a fixed amount. For a set of incompatible models and 405

any joint model f , there exists at least one j such that the conditional likelihood functions of Xj
given X−j are different for f and gj . Their predictive distributions have to be different for Xj .
Therefore, such an iterative imputation using incompatible conditional models typically does not
correspond to Bayesian imputation under any joint model.

4. INCOMPATIBLE CONDITIONAL MODELS 410

4·1. Semi-compatibility and model validity
As in the previous section, we assume that the invariant distribution exists. For compatible

conditional models, we used the posterior distribution of the corresponding Bayesian model as
the natural benchmark and showed that the two imputation distributions converge to each other.
We can use this idea for the analysis of incompatible models. In this setting, the first task is 415

to find a natural Bayesian model associated with a set of incompatible conditional models. We
introduce the concept of semi-compatibility.

DEFINITION 2. A set of conditional models {hj(xj | x−j , θj , ϕj) : j = 1, ..., p}, each of
which is indexed by two sets of parameters (θj , ϕj), is said to be semi-compatible, if there exists
a set of compatible conditional models 420

gj(xj | x−j , θj) = hj(xj | x−j , θj , ϕj = 0) (j = 1, ..., p). (20)

We call {gj : j = 1, ..., p} a compatible element of {hj : j = 1, ..., p}.

By definition, every set of compatible conditional models is semi-compatible. A simple and
uninteresting class of semi-compatible models arises with iterative regression imputation. As
typically parameterized, these models include complete independence as a special case. A triv-
ial compatible element, then, is the one in which xj is independent of x−j under gj for all j. 425

Throughout the discussion of this section, we use {gj : j = 1, ..., p} to denote the compatible el-
ement of {hj : j = 1, ..., p} and f to denote the joint model compatible with {gj : j = 1, ..., p}.

Semi-compatibility is a natural concept connecting a joint probability model to a set of con-
ditionals. One foundation of almost all statistical theories is that data are generated according to
some probability law. When setting up each conditional model, the imputer chooses a rich family 430



14 J. LIU, A. GELMAN, J. HILL, Y.-S. SU, AND J. KROPKO

that is intended to include distributions that are close to the true conditional distribution. For in-
stance, as recommended by Meng (1994), the imputer should try to include as many predictors as
possible using regularization as necessary to keep the estimates stable. Sometimes, the degrees
of flexibility among the conditional models are different. For instance, some includes quadratic
terms or interactions. This richness usually results in incompatibility. Semi-compatibility in-435

cludes such cases in which the conditional models are rich enough to include the true model but
may not be always compatible among themselves. Example 4 in Section 3 is an incompatible but
semi-compatible case. To proceed, we introduce the following definition.

DEFINITION 3. Let {hj : j = 1, ..., p} be semi-compatible, {gj : j = 1, ..., p} be its compati-
ble element, and f be the joint model compatible with gj . If the joint model f(x | θ) includes the440

true probability distribution, we say {hj : j = 1, ..., p} is a set of valid semi-compatible models.

In order to obtain good prediction, we need the validity of the semi-compatible models. A
natural issue is the performance of valid semi-compatible models. Given that we have given up
compatibility, we should not expect iterative imputation to be equivalent to any joint Bayesian
imputation. Nevertheless, under mild conditions, we are able to show the consistency of the445

combined imputation estimator.

4·2. Main theorem of incompatible conditional models
Now, we list a set of conditions.
Condition B1. The Gibbs and iterative chains admit unique invariant distributions, νX

obs

1 and
νX

obs

2 .450

Condition B2. The posterior distributions of θ based on f and (θj , ϕj) based on hj given a
complete data set X have the representation |θ − θ̃| ≤ ξn−1/2, |(θj − θ̃j , ϕj − ϕ̃j)| ≤ ξjn−1/2,

where θ̃ is the maximum likelihood estimate of f(X | θ), (θ̃j , ϕ̃j) is the maximum likelihood
estimate of hj(Xj | Xj , θj , ϕj), and Ee|ξj | ≤ κ, Ee|ξ| ≤ κ for some κ > 0.

Condition B3. All the score functions have finite moment generating functions under f(Xmis |455

Xobs, θ).
Condition B4. For each variable j, let ιj be the subset of observations so that, for each i ∈ ιj ,

xi,j is missing and xi,−j is fully observed. Assume that the cardinality #(ιj)→∞ as n→∞.

Remark 4. The stationary distribution of the iterative imputation νX
obs

2 depends in general on
the order of updating. Even at convergence, the joint distribution of the imputed values changes460

after each variable is updated. Here we define νX
obs

2 as the imputation distribution when variable
p has been updated when stationarity has been reached; thus it is well defined if the chain does
not blow up or drift to infinity.

Remark 5. Conditions B2 and B3 impose moment conditions on the posterior distribution and
the score functions. They are satisfied by most parametric families. Condition B4 rules out certain465

boundary cases of missingness patterns and is imposed for technical purposes. The condition
is not very restrictive because it only requires that the cardinality of ιj tends to infinity, not
necessarily even of order O(n).

We now express the fifth and final condition which requires the following construction.
Assume the conditional models are valid and that X is generated from f(X | θ0). We use470

θ0
j = tj(θ

0) and ϕ0
j = 0 to denote the true parameters under hj . We define the observed-data

maximum likelihood estimator,

θ̂ = sup
θ
f(Xobs | θ), θ̂j = tj(θ̂), (21)
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and the combined estimator based on infinitely many imputations,

θ̂(2) = arg sup
θ

∫
log f(X | θ)νX

obs

2 (dXmis), (22)

(θ̂
(2)
j , ϕ̂

(2)
j ) = arg sup

θj ,ϕj

∫
log hj(Xj | X−j , θj , ϕj)νX

obs

2 (dXmis)

where X = (Xobs,Xmis), and θ̂, θ̂(2), (θ̂
(2)
j , ϕ̂

(2)
j ) only depend on Xobs.

Consider a Markov chain x∗(k) corresponding to one observation, that is, one row of the data 475

matrix, living on Rp. The chain evolves as follows. Within each iteration, each dimension j is
updated conditional on the others according to the conditional distribution hj(xj | x−j , θj , ϕj),
where (θj , ϕj) = (θ̂j , 0) + εξj and ξj is a random vector with finite moment generating function
independent of everything at every step. Alternatively, one may consider (θj , ϕj) as a sample
from the posterior distribution corresponding to the conditional model hj . Thus, x∗(k) is the 480

marginal chain of one observation in the iterative chain. Given that Xmis,2(k) admits a unique
invariant distribution, x∗(k) admits its unique stationary distribution for ε sufficiently small.

Furthermore, consider another process x(k) that is a Gibbs sampler and admits stationary
distribution f(x | θ̂). That is, each component is updated according to the conditional distribu-
tion f(xj | x−j , θ̂) and the parameters of the updating distribution are set at the observed data 485

maximum likelihood estimate, θ̂. If ε = 0, then x(k) is equal in distribution to x∗(k). The last
condition is stated as follows.

Condition B5. The chains x∗(k) and x(k) satisfy conditions in Lemma 2 as ε→ 0, that is, the
invariant distributions of x∗(k) and x(k) converges in ‖ · ‖V norm, where V is a drift function
for x∗(k). There exists a constant κ such that all the score functions are bounded by

|∂ log f(x | θ0)| ≤ κV (x), |∂ log hj(xj | x−j , θ0
j , ϕj = 0)| ≤ κV (x).

Remark 6. By choosing ε small, the transition kernels of x∗(k) and x(k) converge to each
other. Condition B5 requires that Lemma 2 applies in this setting, that their invariant distributions
are close in the sense stated in the lemma. This condition does not suggest that Lemma 2 applies 490

to νX
obs

1 and νX
obs

2 , which represents the joint distribution of many such x∗(k)’s and x(k)’s.

We can now state the main theorem in this section.

THEOREM 3. Consider a set of valid semi-compatible models {hj : j = 1, ..., p}, and assume
conditions B1–5 are in force. Then, following the notations in (22), the following holds for all j:

θ̂(2) → θ0, θ̂
(2)
j → θ0

j , ϕ̂
(2)
j → 0, in probability as sample size n→∞. (23)

Remark 7. The proof is included in the Supplementary Material. The expression θ̂(2) corre- 495

sponds to the following estimator. Impute the missing data from distribution νX
obs

2 m times to
obtain m complete datasets. Stack the m datasets to one big dataset. Let θ̂(2)

m be the maximum
likelihood estimator based on the big dataset. Then, θ̂(2)

m converges to θ̂(2) as m→∞. Further-
more, θ̂(2) is asymptotically equivalent to the combined point estimator of θ according to Rubin’s
combining rule with infinitely many imputations. Similarly, (θ̂

(2)
j , ϕ̂

(2)
j ) is asymptotically equiv- 500

alent to the combined estimator. Therefore, Theorem 3 suggests that the combined imputation
estimators are consistent under conditions B1–5.

Remark 8. The consistency results of the above theorem implicitly requires that the analysts’
conditional models are consistent with the imputation models. Generally speaking if the analyst
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is using a different model, then the combined imputation estimators are usually inconsistent even505

for joint Bayesian imputations. On the other hand, recent developments show that consistency
can be maintained if the imputation model is more saturated than then that of the analyst, for
instance if the missing data are imputed based on p variables and the analyst is only interested in
running a model containing a subset of the p variables such as pairwise correlations.

5. SIMULATION STUDIES AND REAL-DATA ILLUSTRATION510

We perform simulation studies and give a real data illustration, further details of which are in
the Supplementary Material. The simulation studies confirm the results presented in the theorems
and also provide empirical performance of the imputation combining rules applied to the iterative
imputations.

A real data example is provided in the Supplementary Material. We consider a political science515

application involving imputation for the American National Election Study, a nationwide survey
that asks about individuals’ views on political issues, candidates, and sources of information,
and records other important political and demographic data. We consider a subset of 11 variables
representing different aspects of the survey: age of respondent, time to complete the survey, sex,
whether the respondent sees the environment as an important issue, education, income, a seven-520

point scale representing attitude toward government job assistance, religion, marital status, and
vote choice. We eliminate partially observed cases, leaving 1442 observations, and then simulate
new missing patterns for the remaining complete data, run iterative imputation, and assess the
quality of the iterative imputation algorithm by comparing imputed values against estimates for
the complete data sample.525

For the complete data set, we generate 1000 independent missingness patterns using a fairly
complicated missingness-at-random rule. First, a matrix C is created including one variable of
each type as the auxiliary variables that remain complete. These variables are age, sex, income,
and martial status. The categorical variables are broken into indicators for all but one of their
categories, and continuous variables are standardized. Second, for the remaining 7 variables, an530

n× 7 matrix M = Cβ + Z is created, where β is a matrix of coefficients. For each missing pat-
tern, the elements β are drawn independently from the standard Gaussian random variables. The
columns of Z are drawn from the N(0,Σ), where Σ has 1’s on its diagonal but is unconstrained
off-diagonal by the rdata.frame command in the mi package with option restrictions=“none”.
The elements of M are further transformed to πi,j = Uij − logit−1(Mi,j) where Uij are inde-535

pendently and identically distributed as uniform distribution over the interval [0, 1]. Third, for
each of the 7 variables subject to missingness, the observations corresponding to the highest
10% of πij are set to be missing.

For each missingness pattern, we use the mi package in R to impute the missing data. Linear,
logistic, ordered logit, and multinomial logit regressions are used for continuous, binary, ordi-540

nal, and unordered categorical variables respectively. For such complicated conditional models,
it is generally hard to verify the model compatibility and we generally believe that they are in-
compatible among each other. We perform empirical diagnosis of the validity for the conditional
models, which is the most important condition in Theorem 3. In particular, we compare the model
prediction and the observed values to ensure that they provide reasonable predictions.545

We assess the quality of the imputations by calculating the differences between the combined
estimators of some regression coefficients based on the imputed data and those based on the
complete data and examine the differences graphically in Figure 1 for a linear model. The de-
tailed results and more graphical illustrations are presented in Section 1.4 of the Supplementary
Material. The estimates using the imputed data appear to be roughly equal in expectation to the550
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parameters from the true data. In this study, we have an empirical diagnosis of the conditional
models, while remaining agnostic about the joint distribution of the data and without making
overly restrictive assumptions about the missing data process.
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Fig. 1. Histogram of the combined estimates and the true
values for 1000 missing patterns. Dependent variable: time

to completion with linear regression.

6. DISCUSSION

There are several natural directions for future research. From one direction, it should be pos- 555

sible to obtain exact results for some particular classes of models such as linear regressions with
Gaussian errors and Gaussian prior distributions, in which case convergence can be expressed in
terms of simple matrix operations. In the more general case of arbitrary families of regression
models, it would be desirable to develop diagnostics for stationarity along with proofs of the ef-
fectiveness of such diagnostics under some conditions and empirical measures of the magnitude 560

of discrepancies between fitted and stationary conditional distributions.
Another open problem is how to consistently estimate the variance of the combined imputation

estimator. For compatible models, iterative imputation is asymptotically equivalent to Bayesian
simulation. Under model compatibility, we speculate that Rubin’s variance estimator is generally
applicable to the iteratively imputed datasets. For incompatible models, the imputation distribu- 565

tion is asymptotically different from any joint Bayesian imputation, hence there is no guarantee
that the existing variance estimators are asymptotically consistent. In addition, as the combined
imputation estimator cannot be represented by some estimating equations, Robins and Wang’s
approach does not apply either. Even for joint Bayesian imputation, estimating the variance of the
combined estimator is still a nontrivial task under specific situations (Kim, 2004; Meng, 1994). 570

We leave this issue to future studies.
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SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online includes the technical proofs of all the
theorems and numerical results from the simulation study and the real data analysis.
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