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1 Introduction

Appropriate models in biostatistics are often quite complicated, reflecting longitudinal data
collection, hierarchical structure on units of analysis, multivariate outcomes, and censored
and missing data. Although simple, standard, analytically tractable models may sometimes
be useful, often special models need to be fit that do not have analytically tractable solutions.
It is natural in such cases to turn to Bayesian methods, which can often be implemented
using simulation techniques. In fact, as emphasized in Rubin (1984), one of the great
scientific advantages of simulation analysis of Bayesian methods is the freedom it gives the
researcher to formulate appropriate models rather than be overly interested in analytically
neat but scientifically inappropriate models. The basic idea of simulation is simple and
important: after collection of data y, uncertainty about a vector of parameters in a statistical
model is summarized by a set of random draws of the parameter vector, 6, from a posterior
distribution: p(f|y). Markov chain Monte Carlo methods are an extremely important set
of tools for such simulations.

In this article, we review some important general methods for Markov chain Monte Carlo
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simulation of posterior distributions. None of these methods are specific algorithms with
automatic computer programs; rather, they are approaches to computation that, at this
point, require special programming for each new application. General computer programs
for these methods are being developed (see Spiegelhalter et al., 1994), but at this point,
individual programming is needed because it is generally necessary to develop a new model
for each new statistical problem.

We anticipate that some readers of this article are already experienced in programming
for statistical tasks such as computing point estimates and standard errors for classical
models in biostatistics. These readers can use this article as an introduction to the ways in
which Markov chain Monte Carlo simulation generalizes earlier, deterministic calculations,
and as a source of references to more thorough treatments of particular simulation methods.
For readers who are not experienced in statistical computation, an important role of this
survey is to explain the continuity between the earlier methods of point estimation and
the Markov chain Monte Carlo methods that are becoming standard for computing fully

Bayesian analyses in complicated models.

1.1 Bayesian models and computation in biostatistics

In Bayesian inference, all unknowns are treated as random variables, which follow the
posterior distribution, p(f|y) o« p(0)p(y|0), after collection of data y. In this notation, ¢
includes all parameters and uncertain quantities in the model, including (in the terminology
of regression) fixed effects, random effects, hierarchical parameters, unobserved indicator
variables, and missing data; p(f) is the prior or marginal distribution of 8, and p(y|#) is the
sampling distribution for y, given 6.

Only in a very few simple examples can the posterior distribution be written in a stan-
dard analytic form; the most important of these examples are the normal, binomial, Poisson,

exponential, and normal linear regression models with conjugate prior distributions. These



examples are important, but there is a much wider variety of models for which exact ana-
lytic Bayesian inference is impossible. These include generalized linear models (e.g., Zeger
and Karim, 1991, Karim and Zeger, 1992, and Dellaportas and Smith, 1993), hierarchi-
cal models (e.g., Longford, 1993), longitudinal models (e.g., Cowles, Carlin, and Connett,
1993), mixture models (e.g., West, 1992), and specific models for problems such as AIDS
incidence (e.g., Lange, Carlin, and Gelfand, 1992, and Bacchetti, Segal, and Jewell, 1993),
genetic sequencing (e.g., Baldi et al., 1994), epidemiology (e.g., Clayton and Bernardinelli,
1992, and Gilks and Richardson, 1993), and survival analysis (e.g., Kuo and Smith, 1992).
Until recently, these problems were handled either in a partially Bayesian manner (which
typically meant that some aspects of uncertainty in the models were ignored, as occurs
when unknown parameters are replaced by point estimates), or else approximations were
used to allow analytic solutions (for example, using a linear approximation to a generalized
linear model). Both these approaches can be improved because simplified techniques were
used for reasons of computational convenience.

This article surveys methods of iterative simulation, most notably Markov chain Monte
Carlo methods, that allow essentially exact Bayesian computation using simulation draws
from the posterior distribution. These methods can be applied to a wide range of prob-
ability distributions, including those that arise in all of the standard Bayesian models in
biostatistics. We discuss the following steps: constructing an approximation to the pos-
terior distribution, constructing a Markov chain Monte Carlo simulation algorithm, and
monitoring the convergence of the simulations. After the simulations have essentially con-
verged, the collection of simulated values is used as a discrete approximation to the posterior

distribution.



1.2 Posterior simulation

Before delving into any details of Markov chain simulation, we discuss some general points
about Bayesian inference using simulation. Given a set of posterior simulation draws,
6',62,...,0N of a vector parameter § (where each # represents a draw from the posterior
distribution of ), one can estimate the posterior distribution of any quantity of interest.
For example, with N = 1000 simulation draws, one can estimate a 95% posterior interval for
any function ¢(6,y) of parameters and data by the 25th-largest and 975th-largest simulated

values of ¢(6',y), 1 =1,...,1000.

Direct simulation. In some simple problems, such as the normal linear regression model,
random draws can be obtained from the posterior distribution directly in one step, using
standard computer programs (e.g., Gelman et al., 1995, ch. 8). In other somewhat more
complicated cases, such as the normal linear regression model with unknown variance,
the parameter vector can be partitioned into two sub-vectors, 8 = (61,6,), such that the
posterior distribution of 6,1, p(6:|y), and the conditional posterior distribution of 6y given
01, p(62/61,y), are both standard distributions from which simulations can be easily drawn.
Then the simplest and best approach to drawing a posterior simulation is to sample the
subvectors in order by performing the following two steps: first draw 6y from its marginal
posterior density, p(f|y); then draw 05 from its posterior density, p(62|01,y), conditional on
the drawn value of #,. For example, in a normal linear regression with unknown variance
(and a noninformative or conjugate prior distribution), one can draw o%|y from an inverse-
x? distribution and then (|02, y from a normal distribution (see, e.g., Gelman et al., 1995,

ch. 8). To obtain N simulated draws, simply repeat the process N times.

Iterative simulation. Unfortunately, for many problems, such as generalized linear mod-

els and hierarchical models, direct simulation is not possible, even in two or more steps.



Until recently, these problems have been attacked by approximating the desired posterior
distributions by normal or transformed normal distributions, from which direct simulations
can be drawn. In recent years, however, iterative simulation methods have been developed
to draw from general distributions without any direct need for normal approximations.
Markov chain Monte Carlo methods have a long history in computational physics, with
the first general presentation in Metropolis et al., 1953, and were more recently introduced
for statistical and biostatistical problems by Geman and Geman (1984), Tanner and Wong
(1987), and Gelfand and Smith (1990). Recent review articles on the topic include Gelfand
et al. (1990), Smith and Roberts (1993), Besag and Green (1993), and Gilks et al. (1993).
The recent book edited by Gilks, Richardson, and Spiegelhalter (1996) is a nice practical
overview of Markov chain Monte Carlo methods in statistics. More general treatments of
Bayesian methods and computation appear in the books by Tanner (1993), Gelman et al.
(1995), and Carlin and Louis (1996).

The advantage of these iterative methods is that they can be set up with virtually any
model that can be set up in statistics; their disadvantage is that they currently require
extensive programming and even more extensive debugging. For this reason and others, the
earlier methods of approximation are still important, both for setting up starting points
and for providing checks on the answers obtained from the Markov chain methods. Section
2 of this article discusses methods of roughly approximating the posterior distribution of
f as a preliminary to iterative simulation for 6. Section 3 gives a cursory outline of the
mathematics of Markov chain simulation, Section 4 discusses implementation, and Section

5 gives an example from an analysis of an experiment involving schizophrenics.



2 What to do before doing Markov chain simulation

2.1 General advice

It is generally a mistake to attempt to run a Markov chain simulation program without
knowing roughly where the posterior distribution is located in parameter space. Existing
methods and software for parameter estimation are important as starting points for more
complicated simulation procedures. For example, suppose one would like to fit a hierarchical
generalized linear model in the presence of censoring and missing data. Then it would make
sense to use existing computer packages to fit parts of the model (for example, a hierarchical
linear model ignoring the missing data with a simple approximation for the censored data;
a non-hierarchical generalized linear model using a similar approximation; an off-the-shelf
model for analysis with censored data; an off-the-shelf model for imputing the missing data).
These separate analyses will not capture all the features of the model and data, but they
can be natural, low-effort starting points.

In Sections 2.2 2.4, we describe some basic estimation and approximation strategies;
more details appear in Tanner (1993), Gelman and Rubin (1992b), and Gelman et al.
(1995, ch. 9-10). These methods will not work for all problems; the point of these section
is not to recommend one particular set of algorithms, but rather to explain the principles
behind some often-effective methods. We shall see that many of these principles are useful

for iterative simulation as well.

2.2 DPoint estimation and normal or Student-f approximations for uni-
modal posterior distributions

A point estimate of § and its associated standard error (or, more generally, its variance-
covariance matrix, X), are motivated, explicitly or implicitly, by the normal approximation
to the posterior distribution, |y ~ N(u, ). Typically, the mean, u, of the normal approx-

imation is set equal to the mode (i.e., the maximum likelihood estimate or the posterior



mode), and the inverse variance matrix, X!, is approximated by the negative of the second
derivative (with respect to ) matrix of the log posterior distribution calculated at 6 = p.
Approximating u and ¥ can be difficult in highly multivariate problems. Just finding the
mode can require iteration, with Newton’s method and EM (Dempster, Laird, and Rubin,
1977) being popular choices for common statistical models. Estimates of ¥ can be com-
puted by analytic differentiation, numerical differentiation, or combined methods such as
SEM (Meng and Rubin, 1991). Of course, in many problems (for example, generalized
linear models), values for p and ¥ can be computed using available software packages.

Because we are creating point estimates only as a way to start iterative simulations, it
is usually adequate to be rough in the initial estimation procedure. For example, various
methods for approximate EM algorithms in generalized linear models (e.g., Laird and Louis,
1982, and Breslow and Clayton, 1993) often work fine. However, some methods for variance
estimation, such as SEM, require an accurate estimate of a local mode.

It can often be useful to replace the normal approximation by a multivariate ¢, with
the same center and scale, but thicker tails corresponding to its degrees of freedom, v. If
z is a draw from a multivariate N(0,Y) distribution, and z is an independent draw from
a X% distribution, then § = p + zy/n/z is a random draw from the multivariate #,(y, X)
distribution. Because of its thicker tails (and because it can be easily simulated and its
density function is easy to calculate), the multivariate ¢ turns out to be useful as a starting

distribution for the iterative simulation methods described below.

2.3 Approximation using a mixture of multivariate normal or Student-¢
densities for multimodal posterior distributions

When the posterior distribution of 6 is multimodal, it is necessary to run an iterative mode-
finder several times, starting from different points, in an attempt to find all the modes. This
strategy is also sensible and commonly used if the distribution is complicated enough that it

may be multimodal. Once all K modes are found (possibly a difficult task) and the second



derivative matrix estimated at each mode, the target distribution can be approximated by
a mixture of K multivariate normals, each with its own mode p; and variance matrix Yg;

that is, the target density p(f|y) can be approximated by

K
_ Wi Lty —
Papprox(0) = kgl (2m) /2|5, |12 eXP( 2(9 1) %, (0 Mk)>=
where d is the dimension of # and wy, is the mass of the k-th component of the multivariate

normal mixture, which can be approximated by setting wj; proportional to \Ek\l/Qp(uk|y),

where p(ug|y) is the posterior density of 6 evaluated at 6 = puy.

2.4 Nonidentified parameters and informative prior distributions

Bayesian methods can be applied to models in which one or more parameters are poorly
identified by the data, so that point estimates (such as maximum likelihood) are difficult or
impossible to obtain. In these situations, it is often useful to transform the parameter space
to separate the identified and non-identified parts of the model; to handle the uncertainty
in the latter, perhaps using straightforward Bayesian methods, it is necessary to assign an
informative prior distribution to these parameters.

Even if the parameters in a problem appear to be well identified, one must be careful
when using noninformative prior distributions, especially for hierarchical models. For ex-
ample, assigning an improper uniform prior distribution to the logarithm of a hierarchical
variance parameter (such as o2 in the example of Section 5) yields an improper posterior
distribution (Hill, 1965); in this context, “improper” refers to any probability density that
does not have a finite integral. An improper posterior distribution is unacceptable because
it is cannot be used to create posterior probability statements. In contrast, assigning a uni-
form prior distribution to the hierarchical variance itself or its square root leads to proper

posterior distributions (see, e.g., Exercise 5.8 of Gelman et al., 1995).



3 Methods of iterative simulation

The essential idea of iterative simulation is to draw values of a random variable 6 from a
sequence of distributions that converge, as iterations continue, to the desired target distri-
bution of 0. For inference about 6, iterative simulation is typically less efficient than direct
simulation, which is simply drawing from the target distribution, but iterative simulation is
applicable across a much wider range of cases, as current statistical literature makes abun-
dantly clear (see, e.g., Smith and Roberts, 1993, Besag and Green, 1993, and Gilks et al.,

1993).

3.1 Rejection sampling

A simple way to draw samples from a target distribution p(6|y), called rejection sampling,
uses an approximate starting distribution pg(#), with two requirements. First, one must be
able to calculate p(6|y)/po(0), up to a proportionality constant, for all §; w(6) o p(0|y)/po(0)
is called the importance ratio of 6. Second, rejection sampling requires a known constant

M that is no less than supw(f). The algorithm proceeds in two steps:

1. Sample 6 at random from pg(6).

2. With probability %, reject 6 and return to step 1; otherwise, keep 6.

An accepted 6 has the correct distribution p(f|y); that is, the conditional distribution of
drawn 6, given it is accepted, is p(f|y).

The above steps can be repeated to obtain additional independent samples from p =
p(-|y). Rejection sampling cannot be used if no finite value of M exists, which will happen
when pg = pg(+) has lighter tails than p, as when the support of pg is smaller than the support
of p. (Hence the use of a multivariate ¢, instead of a normal, for a starting distribution, in
Section 2.) In practice, when pg is not a good approximation to p, the required M will be

so large that almost all samples obtained in step 1 will be rejected in step 2. The virtue



of rejection sampling as an iterative simulation method is that it is self-monitoring if the
simulation is not effective, you will know it, because essentially no simulated draws will be
accepted.

A related method is importance resampling (SIR, sampling-importance resampling, see
Rubin, 1987, and Gelman et al., 1995, sec. 10.5). Here a large number of draws are made
from py(f) and a small number are redrawn from this initial set without replacement with
probability proportional to w(#). No value of M need be selected, and the redrawn values
are closer than the initial draws to being a sample from p(f|y), but the method is only
approximate unless such an M exists and the number of initial draws is infinite. Importance
resampling is especially useful for creating a few draws from an approximate distribution
to be used as starting points for Markov chain simulation.

Markov chain methods are especially desirable when no starting distribution is avail-
able that is accurate enough to produce useful importance weights for rejection sampling
or related methods such as importance resampling. With any starting distribution that
even loosely covers the target distribution, the steps of a Markov chain simulation directly
improve the approximate distributions from which samples are drawn. Thus, the distri-
butions used for taking each draw, themselves converge to p. In a wide range of practical
cases, it turns out that the iterations of a Markov chain simulation allow accurate infer-
ence from starting distributions that are much too vague for useful results from rejection

or importance resampling.

3.2 Data augmentation

Data augmentation is an application of iterative simulation to missing data problems, due
to Tanner and Wong (1987), that includes an approximation of the target distribution as a
mixture that is updated iteratively. The data augmentation algorithm has two steps: the

imputation step, drawing values from a mixture of the posterior distributions of the vector of
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missing data, ymis, conditional on observed data y and a set of current draws of the vector of
model parameters, 6; and the posterior step, obtaining draws from a mixture of the posterior
distribution of the model parameters, 6, given the observed data and a set of current draws
of imputed data, ymis (a complete data set). This algorithm bears a strong resemblance
to the EM algorithm and can be viewed as a stochastic version of it. Obviously, the data
augmentation algorithm requires the ability to draw from the two conditional distributions,
P(Ymis|0, y) and p(0|ymis,y). The draws from data augmentation converge to draws from
the target distribution, p(6, ymis|y) as the iterations continue. Data augmentation can also
be viewed as a special case of Gibbs sampling, if only one draw of ypnis and one draw of
is made at each iteration. Recent developments in data augmentation include sequential
imputation (Kong, Liu, and Wong, 1994). In this context, it is notationally useful to label

0 as 01 and ynis as 0y, with 6 = (01,65) the random variable whose distribution is sought.

3.3 Gibbs sampling

Geman and Geman (1984) introduced “Gibbs sampling,” a procedure for simulating p(6|y)
by performing a random walk on the vector 8 = (61, ...,60), altering one component 6; at a
time. Note that each 6; can itself be a vector, meaning that the parameters can be updated
in blocks. At iteration ¢, an ordering of the d components of 8 is chosen and, in turn, each

Hl(t) is sampled from the conditional distribution given all the other components:
t—1
P66 ),

where 0 ; = (61,...,6; 1,0;41,...,64). When d = 2, we have the special case of data
augmentation where the approximate distributions are not mixtures. The Gibbs sampler
too converges to draws from the target distribution, p(6|y).

The optimal scenario for the Gibbs sampler is if the components 61, ..., 6, are indepen-
dent in the target distribution; in this case, each iteration produces a new independent draw

of f. If the components are highly correlated, the Gibbs sampler can be slow to converge,
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and it is often helpful to transform the parameter space so as to draw from conditional
distributions that are more approximately independent.

Obviously, as described, the Gibbs sampler requires the ability to draw from the condi-
tional distributions derived from the target distribution; when this is not possible, the more

general Metropolis-Hastings algorithm can be used.

3.4 The Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings, 1970) is a general

Markov chain Monte Carlo algorithm that includes Gibbs sampling as a special case. The

algorithm proceeds as follows:

1. Draw a starting point 8(9), for which p(#(®)|y) > 0, from the starting distribution,

po(6).
2. Fort=1,2,...

(a) At iteration ¢, take as input the point (1),
(b) Sample a candidate point 6 from a proposal distribution at time ¢, Jt(é\ﬁ(t*”).
(c) Calculate the ratio of importance ratios,

__ p@y/p0" Vly)
T(610¢=1)/ 7 (8¢=1)(6)

(r is always defined, because a jump from 0(~1 to 6 can only occur if both

p(g(t*1)|y) and Jt(§|0(t’1)) are nonzero.)
(d) Set

o0 7 with probability min(r, 1)
] 04D otherwise.

This method requires the calculation of the relative importance ratios p(6|y)/.J;(0]6") for all

6,0', and an ability to draw € from the proposal distribution .J;(6]6') for all " and t.
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The proof that the iteration converges to the target distribution has two steps: first,
it is shown that the simulated sequence (G(t)) is a Markov chain with a unique stationary
distribution, and second, it is shown that the stationary distribution equals the target dis-
tribution. A mathematical discussion of the conditions for convergence appears in Tierney
(1995), and a discussion of the relation between the Metropolis-Hastings algorithm and
Gibbs sampling appears in Gelman (1992). Each iteration of a d-step Gibbs sampling algo-
rithm can be viewed as d iterations of a Metropolis-Hastings algorithm for which r =1, so

that every jump is accepted.

4 Implementing iterative simulation

4.1 Setting up an iterative simulation algorithm

For some relatively simple models such as hierarchical normal regressions, computations
can be performed using data augmentation or Gibbs sampling, drawing each parameter
or set of parameters conditional on all the others. More generally, some version of the
Metropolis-Hastings algorithm can be used; see Gilks, Richardson, and Spiegelhalter (1996)
for many examples. In many cases, setting up a reasonable Metropolis-Hastings algorithm
takes substantial programming effort.

Although varieties of Metropolis’ algorithm, especially the Gibbs sampler, are becoming
popular, they can be easily misused relative to direct simulation: in practice, a finite number
of iterations must be used to estimate the target distribution, and thus the simulated
random variables are, in general, never from the desired target distribution. It is well known
(e.g., Gelman and Rubin, 1992a) that inference from a single sequence of a Markov chain
simulation can be quite unreliable. Iterative simulation designs using multiple sequences
date back at least to Fosdick (1959); Gelman and Rubin (1992b) discuss multiple sequences
in a statistical context, which includes incorporating the uncertainty about 6 due to the

finiteness of the simulation along with the uncertainty about € in p(6|y) due to the finiteness
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of the sample data, y.

When applied to a Bayesian posterior distribution, the goal of iterative simulation is
typically inference about the target distribution and not merely some moments of the target
distribution. The method of Gelman and Rubin (1992b) and later refinements (Liu and Ru-
bin, 1996) use the variances within and between multiple independent sequences of iterative
simulations to obtain approximate conservative inference for the target distribution at any
point in the simulation. The method is most effective when the simulations are started
from an overdispersed starting distribution—one that is at least as spread out as the target
distribution itself. A critical point for applications is that a crude approximate distribution
that is too spread out to be an effective approximation for importance sampling can be
acceptable as an overdispersed starting distribution.

We have always found it useful to simulate at least two parallel sequences, typically four
or more. If the computations are implemented on a network of workstations or a parallel
machine, it makes sense to run as many parallel simulations as there are free workstations
or machine processors. The recommendation to always simulate multiple sequences is not
new in the iterative simulation literature (e.g., Fosdick, 1959) but is somewhat controversial
(see the discussion of Gelman and Rubin, 1992b, and Geyer, 1992). In our experience with
Bayesian posterior simulation, however, we have found that the added information obtained
from replication in terms of confidence in simulation results and protection from falsely-
precise inferences (see, for example, the figures in Gelman and Rubin, 1992a, and Gelman,
1996) outweighs any additional costs in computer time required for multiple rather than
single simulations.

It is desirable to choose starting points that are widely dispersed in the target distribu-
tion. Overdispersed starting points are an important design feature for two major reasons.
First, starting far apart can make lack of convergence apparent. Second, for purposes of

inference, starting overdispersed can ensure that all major regions of the target distribution
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are represented in the simulations. For many problems, especially those with discrete or
bounded parameter spaces, it is possible to pick several starting points that are far apart by
inspecting the parameter space and the form of the distribution. For example, the propor-
tions in a two-component mixture model can be started at values of (0.1,0.9) and (0.9,0.1)
in two parallel sequences.

In more complicated situations, more work may be be needed to find a range of dispersed
starting values. In practice, we have found that the additional effort spent on approximating
the target density is useful for understanding the problem and for debugging software: after
the Markov chain simulations have been completed, the final estimates can be compared
to the earlier approximations. In complicated applied statistical problems, it is standard
practice to improve models gradually as more information becomes available, and the es-
timates from each model can be used to obtain starting points for the computation in the

next stage.

4.2 Monitoring convergence and debugging

Markov chain simulation is a powerful tool—so easy to apply, in fact, that there is the risk

of serious error, including:

1. Inappropriate modeling: the assumed model may not be realistic from a substantive

standpoint or may not fit the data.

2. Errors in calculation or programming: the stationary distribution of the simulation
process may not be the same as the desired target distribution, or the algorithm, as

programmed, may not converge to any proper distribution.

3. Slow convergence: the simulation can remain for many iterations in a region heav-
ily influenced by the starting distribution, so that the iterations do not accurately

summarize the target distribution and yield inappropriate inferences.
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The first two errors can occur with other statistical methods (such as maximum likelihood),
but the combination of the complexity of Markov chain simulation makes mistakes more
common. In particular, it is possible to program a method of computation such as the Gibbs
sampler or Metropolis’ algorithm that only depends on local properties of the model without
ever understanding the large-scale features of the joint distribution. For a discussion of this
issue in the context of probability models for images, see Besag (1986).

Much has been written about monitoring the convergence of Markov chain simulations
in recent years; recent reviews of the topic and many references appear in Cowles and Carlin
(1996) and Brooks and Roberts (1995). Our recommended general approach is based on de-
tecting when the Markov chains have “forgotten” their starting points by comparing several

sequences drawn from different starting points and checking that they are indistinguishable.

The potential scale reduction factor. For each scalar summary of interest (that is,
all parameters and predictions of interest in the model), Gelman and Rubin (1992b) and
Gelman (1996) recommend the following strategy: first discarding the first half of the
simulated sequences to reduce the influence of the starting points; and then computing
the “potential scale reduction factor,” labeled \/}_A?, which is essentially the square root of
the variances of the values of the scalar summary for all the simulated sequences mixed
together, divided by the average of the variances within the separate sequences. (Minor
corrections to the variance ratio are made to account for sampling variability.) In the limit
as the number of iterations in the Markov chain simulation approach infinity, the potential
scale reductions V'R approach 1, but if the sequences are far from convergence, V'R can be
much larger. It is recommended to continue simulations until VR is close to 1 (below 1.1
or 1.2, say) for all scalar summaries of interest.

As an example, Figure 1 illustrates the convergence of one of the 122 parameters in

a hierarchical nonlinear toxicokinetic model (see Gelman, Bois, and Jiang, 1996, for de-
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Figure 1: Results of five parallel simulations of a Metropolis algorithm after 2000 iterations
and 80,000 iterations for a single parameter of interest (Pct_liv_A, the mass of the liver
as a percent of lean body mass for subject A) for a hierarchical nonlinear toxicokinetics
model. After 2000 iterations, lack of convergence is apparent; after 80,000, convergence is
hard to judge visually. Using the numerical summary given by the potential scale reduction,
VR : after 2000 iterations, /R (computed from the last half of the simulations; that is,
five sequences, each of length 1000) is 1.38; after 80,000 iterations, /R (computed from
five sequences, each of length 40,000) decreases to 1.04. (To save memory, only every 20th
iteration of the algorithm was recorded.) In practice, the convergence was monitored by
running the simulations until /R < 1.2 for all 122 parameters in the model. See Gelman,
Bois, and Jiang (1996) for details on the model and the simulation.

tails). Five parallel Metropolis-Hastings sequences were simulated (due to the nonlinearity
in the model, the conditional posterior distributions did not have closed forms, and so the
Gibbs sampler was not possible). Figure 1 displays the results after 2000 and 80,000 itera-
tions, during which the potential scale reduction, \/}_A?, decreases from 1.38 to 1.04 and the

sequences reach approximate convergence.

4.3 Slow convergence

By monitoring convergence of actual simulation runs, it becomes apparent that an MCMC
algorithm can be unacceptably slow for many applications, even though it is quite fast and
thus acceptable for others. We and others have noticed slowness occurring for three reasons,
alone or in combination: (1) the Markov chain moves very slowly through the target distri-
bution, or through bottlenecks of the target distribution (that is, a low “conductance”; see
Applegate, Kannan, and Polson, 1990, and Sinclair and Jerrum, 1988); (2) the conditional

distributions cannot be directly sampled from, so that each simulation step of the MCMC
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algorithm takes substantial computational effort; (3) the function evaluations required to
compute the conditional posterior distributions themselves are so slow that an iterative
simulation algorithm that is fairly efficient in number of iterations is prohibitively slow in
computer time.

A variety of theoretical arguments suggest methods of constructing efficient simulation
algorithms or improving the efficiency of existing algorithms. This is an area of much current
research; suggested methods in the literature include adaptive rejection sampling (Gilks
and Wild, 1992; Gilks, Best, and Tan, 1993), adaptively altering a Metropolis jumping rule
(Gelman, Roberts, and Gilks, 1996), reparameterization (Hills and Smith, 1992), adding
auxiliary variables and auxiliary distributions to the model (Geyer and Thompson, 1993,
Besag et al., 1993), and using early analysis of multiple series to restart the simulations

(Liu and Rubin, 1995).
5 Example

We illustrate the methods described here with an application of a mixture model to data
from an experiment in psychology. This example is complicated enough that Markov chain
simulation methods are the most effective tool for exploring the posterior distribution, but
relatively simple in that the model is based on the normal distribution, meaning that all the
conditional distributions have simple forms, and computations can be performed using only
the Gibbs sampler. The point of this example is not to show the most general variations
in computing but rather to illustrate the application of Bayesian computational methods

from beginning to end of a problem.

5.1 A study of schizophrenics and non-schizophrenics

In the experiment under study, each of 17 subjects 11 nonschizophrenics and 6 schizophrenics

had their reaction times measured 30 times. We present the data in Figure 2 and briefly
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review the basic statistical approach here. More detail on this example appears in Belin
and Rubin (1995) and Gelman et al. (1995, ch. 16).

It is clear from Figure 2 that the response times are higher on average for schizophren-
ics. In addition, the response times for at least some of the schizophrenic individuals
are considerably more variable than the response times for the nonschizophrenic individu-
als. Psychological theory from the last half century and before suggests a model in which
schizophrenics suffer from an attentional deficit on some trials, as well as a general motor
reflex retardation; both aspects lead to relatively slower responses for the schizophrenics,

with motor retardation affecting all trials and attentional deficiency only some.

Finite mixture likelihood model. To address the questions of scientific interest, the
following basic model was fit, basic in the sense of minimally addressing the scientific knowl-
edge underlying the data. Response times for nonschizophrenics are described by a normal
random-effects model, in which the responses y;; (i = 1,...,30) of person j =1,...,11 are
normally distributed with distinct person mean «; and common variance JZ. To reflect the
attentional deficiency, the response times for each schizophrenic individual 7 = 12,...,17
are modeled as a two-component mixture: with probability (1 — A) there is no delay, and
the response is normally distributed with mean «; and variance UZ, and with probability A
responses are delayed, with observations having a mean of «; + 7 and the same variance,
UZ. Because reaction times are all positive and their distributions are positively skewed,

even for nonschizophrenics, the above model was fitted to the logarithms of the reaction

time measurements.

Hierarchical population model. The comparison of the typical components of o =
(a1, ..., aq7) for schizophrenics versus nonschizophrenics addresses the magnitude of schizo-

phrenics’ motor reflex retardation. We include a hierarchical parameter 5 measuring this
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Figure 2: (a) Log response times (in milliseconds) for 11 nonschizophrenic individuals. (b)
Log response times for 6 schizophrenic individuals. All histograms are on a common scale,
and there are 30 measurements for each individual. From Gelman et al. (1995, ch. 16).
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motor retardation. Specifically, variation among individuals is modeled by having the means

a; follow a normal distribution with mean y for nonschizophrenics and i+ 3 for schizophren-

2
-

ics, with each distribution having variance o;,. That is, the mean of «; in the population
distribution is u + 35, where S; is an observed indicator variable that is 1 if person j is
schizophrenic and 0 otherwise.

We completed the Bayesian model with an improper uniform prior distribution on the
hyperparameters ¢ = (UZ,UZ, A, iy, 3,7). In the experiment at hand, there was adequate
information in the data and the hierarchical model to estimate these parameters well enough
so that this noninformative prior distribution was acceptable. (To put it another way,

posterior inferences would not be sensitive to moderate changes in the prior distribution.)

In probability notation, the full model can be written as:

17 30
plyle, ¢, ¢) =TI 11 Nwijley, +7¢ij. 07)
i=11=1
]17
plal¢,¢) = T N(ajlu+BS) 02)
=1
]17 30
p(¢le) = I IJ Bernoulli(¢i;|xS;)
j=12i=1
p(g) o« 1,

where we have introduced (, a matrix of indicator variables (;; for the schizophrenic obser-
vations that take on the value 1 if observation y;; is delayed and 0 otherwise.

The three parameters of primary interest are 3, which measures motor reflex retardation,
A, the proportion of schizophrenic responses that are delayed, and 7, the size of the delay

when an attentional lapse occurs.

5.2 Approximating the posterior distribution

Crude initial estimate. The first step in the computation is to obtain crude estimates of

the model parameters. For this example, each «; can be roughly estimated by the sample

21



mean of the observations on subject j, and UZ can be estimated by the average sample
variance within nonschizophrenic subjects. Given the estimates of a;, we can obtain a quick
estimate of the hyperparameters by dividing the «;’s into two groups, nonschizophrenics and
schizophrenics. We estimate 1 by the average of the estimated «a;’s for nonschizophrenics, 8
by the average difference between the two groups, and o2 by the variance of the estimated
a;’s within groups. We crudely estimate A= 1/3, and 7 = 1.0 based on a visual inspection

of the histograms of the schizophrenic responses in Figure 2b.

Posterior modes using ECM. We draw 100 points at random from a simplified distri-
bution for ¢ and use each as a starting point for an ECM (expectation conditional maxi-
mization) algorithm to search for modes. (ECM is an extension of the EM algorithm; see
Meng and Rubin, 1994.) The simplified distribution is obtained by adding some random-
ness to the crude parameter estimates. Specifically, to obtain a sample from the simplified
distribution, we start by setting all the parameters («, ¢) at the crude point estimates and
then divide each parameter by an independent y? random variable in an attempt to ensure
that the 100 draws are sufficiently spread out so as to cover the modes of the parameter
space.

The ECM algorithm is performed by treating the unknown mixture component corre-
sponding to each schizophrenic observation as “missing data” and then averaging over the
resulting vector of 180 missing indicator variables, (;;. All steps of the ECM algorithm can
then be performed in closed form; see Gelman et al. (1995, ch. 16) for details.

After 100 iterations of ECM from each of 100 starting points, we found three local
maxima of (a, ¢): a major mode and two minor modes. The minor modes are substantively
uninteresting, corresponding to near-degenerate models with the mixture parameter A near
zero, and have little support in the data, with posterior density ratios less than e2° with

respect to the major mode. We conclude that the minor modes can be ignored and, to the
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best of our knowledge, the posterior distribution can be considered unimodal for practical

purposes.

Multivariate ¢ approximation. We approximate the posterior distribution by a mul-
tivariate t4, centered at the major mode found by ECM and with covariance matrix set
to the inverse of the negative of the numerically-computed second derivative matrix of the
log-posterior density. We use the ¢4 approximation as a starting distribution for importance
resampling (see Rubin, 1987, and Gelman et al., 1995, sec. 10.5) of the parameter vector ¢.
We draw 2000 independent samples of ¢ from the ¢4 distribution and importance-resample a
subset of 10, which we used as starting points for ten independent Gibbs sampler sequences.
This distribution is intended to approximate our ideal starting conditions: for each scalar
estimand of interest, the mean is close to the target mean and the variance is greater than

the target variance.

5.3 Implementing the Gibbs sampler

The Gibbs sampler is easy to apply for our model once we have performed the “data aug-
mentation” step of including the mixture indicators, ¢;;, in the model. The full conditional
posterior distributions have standard forms and can be easily sampled from. The required
steps are analogous to the ECM steps used to find the modes of the posterior distribution
(once again, details appear in Gelman et al., 1995, ch. 16).

We monitored the convergence of all the parameters in the model for the ten independent
sequences of the Gibbs sampler. Table 1 displays posterior inferences and potential scale
reduction factors for selected parameters after 20 iterations (still far from convergence, as
indicated by the high values of \/E) and 200 iterations. After 200 iterations, the potential

scale reduction factors were below 1.1 for all parameters in the model.
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Inference Inference
after 20 iterations after 200 iterations
Parameter | 25% median  97.5% VR |25% median 97.5% VR
A 0.05 0.15 0.36 1.9 |0.07 0.12 0.18 1.02
T 0.50 0.78 1.06 1.7 [ 0.74 0.85 0.96 1.02
1] 0.13 0.30 0.48 1.2 | 0.17 0.32 0.47 1.01

Table 1: Posterior quantiles and estimated potential scale reduction factors for some param-
eters of interest under the old and new mixture models for the reaction time experiment.
Ten parallel sequences of the Gibbs sampler were simulated. The table displays inference
and convergence monitoring after 20 and then 200 iterations. From Gelman and Rubin
(1992h).

5.4 Role of the Markov chain Monte Carlo simulation in the scientific
inference process

The Gibbs sampler results allowed us to obtain posterior intervals for all parameters of
interest in the model, and also to simulate hypothetical replications of the dataset that
could be compared to the observed data. In doing so, we found areas of lack of fit of the
model and proceeded to generalize it. It was straightforward to apply the Gibbs sampler to
the new model, which had two additional parameters, and then obtain posterior intervals
for all the parameters in the expanded model (details appear in Gelman et al., 1995, ch.
16).

The ability to fit increasingly complicated models with little additional programming
effort is, in fact, a key advantage of Markov chain Monte Carlo methods. We are no longer
limited to those models that we can fit analytically or through elaborate approximations.
However, we do not want to understate the effort required in programming these methods
for each new problem. As discussed in Sections 2.1 and 2.4, one typically should undertake
Markov chain Monte Carlo simulation after a problem has been approximated and explored

using simpler methods.
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