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simulation of posterior distributions. None of these methods are speci�c algorithms withautomatic computer programs; rather, they are approaches to computation that, at thispoint, require special programming for each new application. General computer programsfor these methods are being developed (see Spiegelhalter et al., 1994), but at this point,individual programming is needed because it is generally necessary to develop a new modelfor each new statistical problem.We anticipate that some readers of this article are already experienced in programmingfor statistical tasks such as computing point estimates and standard errors for classicalmodels in biostatistics. These readers can use this article as an introduction to the ways inwhich Markov chain Monte Carlo simulation generalizes earlier, deterministic calculations,and as a source of references to more thorough treatments of particular simulation methods.For readers who are not experienced in statistical computation, an important role of thissurvey is to explain the continuity between the earlier methods of point estimation andthe Markov chain Monte Carlo methods that are becoming standard for computing fullyBayesian analyses in complicated models.1.1 Bayesian models and computation in biostatisticsIn Bayesian inference, all unknowns are treated as random variables, which follow theposterior distribution, p(�jy) / p(�)p(yj�), after collection of data y. In this notation, �includes all parameters and uncertain quantities in the model, including (in the terminologyof regression) �xed e�ects, random e�ects, hierarchical parameters, unobserved indicatorvariables, and missing data; p(�) is the prior or marginal distribution of �, and p(yj�) is thesampling distribution for y, given �.Only in a very few simple examples can the posterior distribution be written in a stan-dard analytic form; the most important of these examples are the normal, binomial, Poisson,exponential, and normal linear regression models with conjugate prior distributions. These2



examples are important, but there is a much wider variety of models for which exact ana-lytic Bayesian inference is impossible. These include generalized linear models (e.g., Zegerand Karim, 1991, Karim and Zeger, 1992, and Dellaportas and Smith, 1993), hierarchi-cal models (e.g., Longford, 1993), longitudinal models (e.g., Cowles, Carlin, and Connett,1993), mixture models (e.g., West, 1992), and speci�c models for problems such as AIDSincidence (e.g., Lange, Carlin, and Gelfand, 1992, and Bacchetti, Segal, and Jewell, 1993),genetic sequencing (e.g., Baldi et al., 1994), epidemiology (e.g., Clayton and Bernardinelli,1992, and Gilks and Richardson, 1993), and survival analysis (e.g., Kuo and Smith, 1992).Until recently, these problems were handled either in a partially Bayesian manner (whichtypically meant that some aspects of uncertainty in the models were ignored, as occurswhen unknown parameters are replaced by point estimates), or else approximations wereused to allow analytic solutions (for example, using a linear approximation to a generalizedlinear model). Both these approaches can be improved because simpli�ed techniques wereused for reasons of computational convenience.This article surveys methods of iterative simulation, most notably Markov chain MonteCarlo methods, that allow essentially exact Bayesian computation using simulation drawsfrom the posterior distribution. These methods can be applied to a wide range of prob-ability distributions, including those that arise in all of the standard Bayesian models inbiostatistics. We discuss the following steps: constructing an approximation to the pos-terior distribution, constructing a Markov chain Monte Carlo simulation algorithm, andmonitoring the convergence of the simulations. After the simulations have essentially con-verged, the collection of simulated values is used as a discrete approximation to the posteriordistribution.
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1.2 Posterior simulationBefore delving into any details of Markov chain simulation, we discuss some general pointsabout Bayesian inference using simulation. Given a set of posterior simulation draws,�1; �2; : : : ; �N of a vector parameter � (where each �l represents a draw from the posteriordistribution of �), one can estimate the posterior distribution of any quantity of interest.For example, with N = 1000 simulation draws, one can estimate a 95% posterior interval forany function �(�; y) of parameters and data by the 25th-largest and 975th-largest simulatedvalues of �(�l; y), l = 1; : : : ; 1000.Direct simulation. In some simple problems, such as the normal linear regression model,random draws can be obtained from the posterior distribution directly in one step, usingstandard computer programs (e.g., Gelman et al., 1995, ch. 8). In other somewhat morecomplicated cases, such as the normal linear regression model with unknown variance,the parameter vector can be partitioned into two sub-vectors, � = (�1; �2), such that theposterior distribution of �1, p(�1jy), and the conditional posterior distribution of �2 given�1, p(�2j�1; y), are both standard distributions from which simulations can be easily drawn.Then the simplest and best approach to drawing a posterior simulation is to sample thesubvectors in order by performing the following two steps: �rst draw �1 from its marginalposterior density, p(�1jy); then draw �2 from its posterior density, p(�2j�1; y), conditional onthe drawn value of �1. For example, in a normal linear regression with unknown variance(and a noninformative or conjugate prior distribution), one can draw �2jy from an inverse-�2 distribution and then �j�2; y from a normal distribution (see, e.g., Gelman et al., 1995,ch. 8). To obtain N simulated draws, simply repeat the process N times.Iterative simulation. Unfortunately, for many problems, such as generalized linear mod-els and hierarchical models, direct simulation is not possible, even in two or more steps.4



Until recently, these problems have been attacked by approximating the desired posteriordistributions by normal or transformed normal distributions, from which direct simulationscan be drawn. In recent years, however, iterative simulation methods have been developedto draw from general distributions without any direct need for normal approximations.Markov chain Monte Carlo methods have a long history in computational physics, withthe �rst general presentation in Metropolis et al., 1953, and were more recently introducedfor statistical and biostatistical problems by Geman and Geman (1984), Tanner and Wong(1987), and Gelfand and Smith (1990). Recent review articles on the topic include Gelfandet al. (1990), Smith and Roberts (1993), Besag and Green (1993), and Gilks et al. (1993).The recent book edited by Gilks, Richardson, and Spiegelhalter (1996) is a nice practicaloverview of Markov chain Monte Carlo methods in statistics. More general treatments ofBayesian methods and computation appear in the books by Tanner (1993), Gelman et al.(1995), and Carlin and Louis (1996).The advantage of these iterative methods is that they can be set up with virtually anymodel that can be set up in statistics; their disadvantage is that they currently requireextensive programming and even more extensive debugging. For this reason and others, theearlier methods of approximation are still important, both for setting up starting pointsand for providing checks on the answers obtained from the Markov chain methods. Section2 of this article discusses methods of roughly approximating the posterior distribution of� as a preliminary to iterative simulation for �. Section 3 gives a cursory outline of themathematics of Markov chain simulation, Section 4 discusses implementation, and Section5 gives an example from an analysis of an experiment involving schizophrenics.
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2 What to do before doing Markov chain simulation2.1 General adviceIt is generally a mistake to attempt to run a Markov chain simulation program withoutknowing roughly where the posterior distribution is located in parameter space. Existingmethods and software for parameter estimation are important as starting points for morecomplicated simulation procedures. For example, suppose one would like to �t a hierarchicalgeneralized linear model in the presence of censoring and missing data. Then it would makesense to use existing computer packages to �t parts of the model (for example, a hierarchicallinear model ignoring the missing data with a simple approximation for the censored data;a non-hierarchical generalized linear model using a similar approximation; an o�-the-shelfmodel for analysis with censored data; an o�-the-shelf model for imputing the missing data).These separate analyses will not capture all the features of the model and data, but theycan be natural, low-e�ort starting points.In Sections 2.2{2.4, we describe some basic estimation and approximation strategies;more details appear in Tanner (1993), Gelman and Rubin (1992b), and Gelman et al.(1995, ch. 9{10). These methods will not work for all problems; the point of these sectionis not to recommend one particular set of algorithms, but rather to explain the principlesbehind some often-e�ective methods. We shall see that many of these principles are usefulfor iterative simulation as well.2.2 Point estimation and normal or Student-t approximations for uni-modal posterior distributionsA point estimate of � and its associated standard error (or, more generally, its variance-covariance matrix, �), are motivated, explicitly or implicitly, by the normal approximationto the posterior distribution, �jy � N(�;�). Typically, the mean, �, of the normal approx-imation is set equal to the mode (i.e., the maximum likelihood estimate or the posterior6



mode), and the inverse variance matrix, ��1, is approximated by the negative of the secondderivative (with respect to �) matrix of the log posterior distribution calculated at � = �.Approximating � and � can be di�cult in highly multivariate problems. Just �nding themode can require iteration, with Newton's method and EM (Dempster, Laird, and Rubin,1977) being popular choices for common statistical models. Estimates of � can be com-puted by analytic di�erentiation, numerical di�erentiation, or combined methods such asSEM (Meng and Rubin, 1991). Of course, in many problems (for example, generalizedlinear models), values for � and � can be computed using available software packages.Because we are creating point estimates only as a way to start iterative simulations, itis usually adequate to be rough in the initial estimation procedure. For example, variousmethods for approximate EM algorithms in generalized linear models (e.g., Laird and Louis,1982, and Breslow and Clayton, 1993) often work �ne. However, some methods for varianceestimation, such as SEM, require an accurate estimate of a local mode.It can often be useful to replace the normal approximation by a multivariate t, withthe same center and scale, but thicker tails corresponding to its degrees of freedom, �. Ifz is a draw from a multivariate N(0;�) distribution, and x is an independent draw froma �2� distribution, then � = � + zp�=x is a random draw from the multivariate t�(�;�)distribution. Because of its thicker tails (and because it can be easily simulated and itsdensity function is easy to calculate), the multivariate t turns out to be useful as a startingdistribution for the iterative simulation methods described below.2.3 Approximation using a mixture of multivariate normal or Student-tdensities for multimodal posterior distributionsWhen the posterior distribution of � is multimodal, it is necessary to run an iterative mode-�nder several times, starting from di�erent points, in an attempt to �nd all the modes. Thisstrategy is also sensible and commonly used if the distribution is complicated enough that itmay be multimodal. Once all K modes are found (possibly a di�cult task) and the second7



derivative matrix estimated at each mode, the target distribution can be approximated bya mixture of K multivariate normals, each with its own mode �k and variance matrix �k;that is, the target density p(�jy) can be approximated bypapprox(�) = KXk=1 !k(2�)d=2j�kj1=2 exp��12(� � �k)t��1k (� � �k)�;where d is the dimension of � and !k is the mass of the k-th component of the multivariatenormal mixture, which can be approximated by setting !k proportional to j�kj1=2p(�kjy),where p(�kjy) is the posterior density of � evaluated at � = �k.2.4 Nonidenti�ed parameters and informative prior distributionsBayesian methods can be applied to models in which one or more parameters are poorlyidenti�ed by the data, so that point estimates (such as maximum likelihood) are di�cult orimpossible to obtain. In these situations, it is often useful to transform the parameter spaceto separate the identi�ed and non-identi�ed parts of the model; to handle the uncertaintyin the latter, perhaps using straightforward Bayesian methods, it is necessary to assign aninformative prior distribution to these parameters.Even if the parameters in a problem appear to be well identi�ed, one must be carefulwhen using noninformative prior distributions, especially for hierarchical models. For ex-ample, assigning an improper uniform prior distribution to the logarithm of a hierarchicalvariance parameter (such as �2� in the example of Section 5) yields an improper posteriordistribution (Hill, 1965); in this context, \improper" refers to any probability density thatdoes not have a �nite integral. An improper posterior distribution is unacceptable becauseit is cannot be used to create posterior probability statements. In contrast, assigning a uni-form prior distribution to the hierarchical variance itself or its square root leads to properposterior distributions (see, e.g., Exercise 5.8 of Gelman et al., 1995).
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3 Methods of iterative simulationThe essential idea of iterative simulation is to draw values of a random variable � from asequence of distributions that converge, as iterations continue, to the desired target distri-bution of �. For inference about �, iterative simulation is typically less e�cient than directsimulation, which is simply drawing from the target distribution, but iterative simulation isapplicable across a much wider range of cases, as current statistical literature makes abun-dantly clear (see, e.g., Smith and Roberts, 1993, Besag and Green, 1993, and Gilks et al.,1993).3.1 Rejection samplingA simple way to draw samples from a target distribution p(�jy), called rejection sampling,uses an approximate starting distribution p0(�), with two requirements. First, one must beable to calculate p(�jy)=p0(�), up to a proportionality constant, for all �; w(�) / p(�jy)=p0(�)is called the importance ratio of �. Second, rejection sampling requires a known constantM that is no less than supw(�). The algorithm proceeds in two steps:1. Sample � at random from p0(�).2. With probability w(�)M , reject � and return to step 1; otherwise, keep �.An accepted � has the correct distribution p(�jy); that is, the conditional distribution ofdrawn �, given it is accepted, is p(�jy).The above steps can be repeated to obtain additional independent samples from p =p(�jy). Rejection sampling cannot be used if no �nite value of M exists, which will happenwhen p0 = p0(�) has lighter tails than p, as when the support of p0 is smaller than the supportof p. (Hence the use of a multivariate t, instead of a normal, for a starting distribution, inSection 2.) In practice, when p0 is not a good approximation to p, the required M will beso large that almost all samples obtained in step 1 will be rejected in step 2. The virtue9



of rejection sampling as an iterative simulation method is that it is self-monitoring|if thesimulation is not e�ective, you will know it, because essentially no simulated draws will beaccepted.A related method is importance resampling (SIR, sampling-importance resampling, seeRubin, 1987, and Gelman et al., 1995, sec. 10.5). Here a large number of draws are madefrom p0(�) and a small number are redrawn from this initial set without replacement withprobability proportional to w(�). No value of M need be selected, and the redrawn valuesare closer than the initial draws to being a sample from p(�jy), but the method is onlyapproximate unless such anM exists and the number of initial draws is in�nite. Importanceresampling is especially useful for creating a few draws from an approximate distributionto be used as starting points for Markov chain simulation.Markov chain methods are especially desirable when no starting distribution is avail-able that is accurate enough to produce useful importance weights for rejection samplingor related methods such as importance resampling. With any starting distribution thateven loosely covers the target distribution, the steps of a Markov chain simulation directlyimprove the approximate distributions from which samples are drawn. Thus, the distri-butions used for taking each draw, themselves converge to p. In a wide range of practicalcases, it turns out that the iterations of a Markov chain simulation allow accurate infer-ence from starting distributions that are much too vague for useful results from rejectionor importance resampling.3.2 Data augmentationData augmentation is an application of iterative simulation to missing data problems, dueto Tanner and Wong (1987), that includes an approximation of the target distribution as amixture that is updated iteratively. The data augmentation algorithm has two steps: theimputation step, drawing values from a mixture of the posterior distributions of the vector of10



missing data, ymis, conditional on observed data y and a set of current draws of the vector ofmodel parameters, �; and the posterior step, obtaining draws from a mixture of the posteriordistribution of the model parameters, �, given the observed data and a set of current drawsof imputed data, ymis (a complete data set). This algorithm bears a strong resemblanceto the EM algorithm and can be viewed as a stochastic version of it. Obviously, the dataaugmentation algorithm requires the ability to draw from the two conditional distributions,p(ymisj�; y) and p(�jymis; y). The draws from data augmentation converge to draws fromthe target distribution, p(�; ymisjy) as the iterations continue. Data augmentation can alsobe viewed as a special case of Gibbs sampling, if only one draw of ymis and one draw of �is made at each iteration. Recent developments in data augmentation include sequentialimputation (Kong, Liu, and Wong, 1994). In this context, it is notationally useful to label� as �1 and ymis as �2, with � = (�1; �2) the random variable whose distribution is sought.3.3 Gibbs samplingGeman and Geman (1984) introduced \Gibbs sampling," a procedure for simulating p(�jy)by performing a random walk on the vector � = (�1; : : : ; �d), altering one component �i at atime. Note that each �i can itself be a vector, meaning that the parameters can be updatedin blocks. At iteration t, an ordering of the d components of � is chosen and, in turn, each�(t)i is sampled from the conditional distribution given all the other components:p(�ij�(t�1)�i ; y);where ��i = (�1; : : : ; �i�1; �i+1; : : : ; �d). When d = 2, we have the special case of dataaugmentation where the approximate distributions are not mixtures. The Gibbs samplertoo converges to draws from the target distribution, p(�jy).The optimal scenario for the Gibbs sampler is if the components �1; : : : ; �d are indepen-dent in the target distribution; in this case, each iteration produces a new independent drawof �. If the components are highly correlated, the Gibbs sampler can be slow to converge,11



and it is often helpful to transform the parameter space so as to draw from conditionaldistributions that are more approximately independent.Obviously, as described, the Gibbs sampler requires the ability to draw from the condi-tional distributions derived from the target distribution; when this is not possible, the moregeneral Metropolis-Hastings algorithm can be used.3.4 The Metropolis-Hastings algorithmThe Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings, 1970) is a generalMarkov chain Monte Carlo algorithm that includes Gibbs sampling as a special case. Thealgorithm proceeds as follows:1. Draw a starting point �(0), for which p(�(0)jy) > 0, from the starting distribution,p0(�).2. For t = 1; 2; : : ::(a) At iteration t, take as input the point �(t�1).(b) Sample a candidate point ~� from a proposal distribution at time t, Jt(~�j�(t�1)).(c) Calculate the ratio of importance ratios,r = p(~�jy)=p(�(t�1)jy)Jt(~�j�(t�1))=Jt(�(t�1)j~�) :(r is always de�ned, because a jump from �(t�1) to ~� can only occur if bothp(�(t�1)jy) and Jt(~�j�(t�1)) are nonzero.)(d) Set �(t) = ( ~� with probability min(r; 1)�(t�1) otherwise:This method requires the calculation of the relative importance ratios p(�jy)=Jt(�j�0) for all�; �0, and an ability to draw � from the proposal distribution Jt(�j�0) for all �0 and t.12



The proof that the iteration converges to the target distribution has two steps: �rst,it is shown that the simulated sequence (�(t)) is a Markov chain with a unique stationarydistribution, and second, it is shown that the stationary distribution equals the target dis-tribution. A mathematical discussion of the conditions for convergence appears in Tierney(1995), and a discussion of the relation between the Metropolis-Hastings algorithm andGibbs sampling appears in Gelman (1992). Each iteration of a d-step Gibbs sampling algo-rithm can be viewed as d iterations of a Metropolis-Hastings algorithm for which r = 1, sothat every jump is accepted.4 Implementing iterative simulation4.1 Setting up an iterative simulation algorithmFor some relatively simple models such as hierarchical normal regressions, computationscan be performed using data augmentation or Gibbs sampling, drawing each parameteror set of parameters conditional on all the others. More generally, some version of theMetropolis-Hastings algorithm can be used; see Gilks, Richardson, and Spiegelhalter (1996)for many examples. In many cases, setting up a reasonable Metropolis-Hastings algorithmtakes substantial programming e�ort.Although varieties of Metropolis' algorithm, especially the Gibbs sampler, are becomingpopular, they can be easily misused relative to direct simulation: in practice, a �nite numberof iterations must be used to estimate the target distribution, and thus the simulatedrandom variables are, in general, never from the desired target distribution. It is well known(e.g., Gelman and Rubin, 1992a) that inference from a single sequence of a Markov chainsimulation can be quite unreliable. Iterative simulation designs using multiple sequencesdate back at least to Fosdick (1959); Gelman and Rubin (1992b) discuss multiple sequencesin a statistical context, which includes incorporating the uncertainty about � due to the�niteness of the simulation along with the uncertainty about � in p(�jy) due to the �niteness13



of the sample data, y.When applied to a Bayesian posterior distribution, the goal of iterative simulation istypically inference about the target distribution and not merely some moments of the targetdistribution. The method of Gelman and Rubin (1992b) and later re�nements (Liu and Ru-bin, 1996) use the variances within and between multiple independent sequences of iterativesimulations to obtain approximate conservative inference for the target distribution at anypoint in the simulation. The method is most e�ective when the simulations are startedfrom an overdispersed starting distribution|one that is at least as spread out as the targetdistribution itself. A critical point for applications is that a crude approximate distributionthat is too spread out to be an e�ective approximation for importance sampling can beacceptable as an overdispersed starting distribution.We have always found it useful to simulate at least two parallel sequences, typically fouror more. If the computations are implemented on a network of workstations or a parallelmachine, it makes sense to run as many parallel simulations as there are free workstationsor machine processors. The recommendation to always simulate multiple sequences is notnew in the iterative simulation literature (e.g., Fosdick, 1959) but is somewhat controversial(see the discussion of Gelman and Rubin, 1992b, and Geyer, 1992). In our experience withBayesian posterior simulation, however, we have found that the added information obtainedfrom replication in terms of con�dence in simulation results and protection from falsely-precise inferences (see, for example, the �gures in Gelman and Rubin, 1992a, and Gelman,1996) outweighs any additional costs in computer time required for multiple rather thansingle simulations.It is desirable to choose starting points that are widely dispersed in the target distribu-tion. Overdispersed starting points are an important design feature for two major reasons.First, starting far apart can make lack of convergence apparent. Second, for purposes ofinference, starting overdispersed can ensure that all major regions of the target distribution14



are represented in the simulations. For many problems, especially those with discrete orbounded parameter spaces, it is possible to pick several starting points that are far apart byinspecting the parameter space and the form of the distribution. For example, the propor-tions in a two-component mixture model can be started at values of (0:1; 0:9) and (0:9; 0:1)in two parallel sequences.In more complicated situations, more work may be be needed to �nd a range of dispersedstarting values. In practice, we have found that the additional e�ort spent on approximatingthe target density is useful for understanding the problem and for debugging software: afterthe Markov chain simulations have been completed, the �nal estimates can be comparedto the earlier approximations. In complicated applied statistical problems, it is standardpractice to improve models gradually as more information becomes available, and the es-timates from each model can be used to obtain starting points for the computation in thenext stage.4.2 Monitoring convergence and debuggingMarkov chain simulation is a powerful tool|so easy to apply, in fact, that there is the riskof serious error, including:1. Inappropriate modeling: the assumed model may not be realistic from a substantivestandpoint or may not �t the data.2. Errors in calculation or programming: the stationary distribution of the simulationprocess may not be the same as the desired target distribution, or the algorithm, asprogrammed, may not converge to any proper distribution.3. Slow convergence: the simulation can remain for many iterations in a region heav-ily in
uenced by the starting distribution, so that the iterations do not accuratelysummarize the target distribution and yield inappropriate inferences.15



The �rst two errors can occur with other statistical methods (such as maximum likelihood),but the combination of the complexity of Markov chain simulation makes mistakes morecommon. In particular, it is possible to program a method of computation such as the Gibbssampler or Metropolis' algorithm that only depends on local properties of the model withoutever understanding the large-scale features of the joint distribution. For a discussion of thisissue in the context of probability models for images, see Besag (1986).Much has been written about monitoring the convergence of Markov chain simulationsin recent years; recent reviews of the topic and many references appear in Cowles and Carlin(1996) and Brooks and Roberts (1995). Our recommended general approach is based on de-tecting when the Markov chains have \forgotten" their starting points by comparing severalsequences drawn from di�erent starting points and checking that they are indistinguishable.The potential scale reduction factor. For each scalar summary of interest (that is,all parameters and predictions of interest in the model), Gelman and Rubin (1992b) andGelman (1996) recommend the following strategy: �rst discarding the �rst half of thesimulated sequences to reduce the in
uence of the starting points; and then computingthe \potential scale reduction factor," labeled p bR, which is essentially the square root ofthe variances of the values of the scalar summary for all the simulated sequences mixedtogether, divided by the average of the variances within the separate sequences. (Minorcorrections to the variance ratio are made to account for sampling variability.) In the limitas the number of iterations in the Markov chain simulation approach in�nity, the potentialscale reductions pbR approach 1, but if the sequences are far from convergence, pbR can bemuch larger. It is recommended to continue simulations until pbR is close to 1 (below 1.1or 1.2, say) for all scalar summaries of interest.As an example, Figure 1 illustrates the convergence of one of the 122 parameters ina hierarchical nonlinear toxicokinetic model (see Gelman, Bois, and Jiang, 1996, for de-16
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Figure 1: Results of �ve parallel simulations of a Metropolis algorithm after 2000 iterationsand 80;000 iterations for a single parameter of interest (Pct liv A, the mass of the liveras a percent of lean body mass for subject A) for a hierarchical nonlinear toxicokineticsmodel. After 2000 iterations, lack of convergence is apparent; after 80;000, convergence ishard to judge visually. Using the numerical summary given by the potential scale reduction,p bR : after 2000 iterations, p bR (computed from the last half of the simulations; that is,�ve sequences, each of length 1000) is 1.38; after 80;000 iterations, p bR (computed from�ve sequences, each of length 40;000) decreases to 1.04. (To save memory, only every 20thiteration of the algorithm was recorded.) In practice, the convergence was monitored byrunning the simulations until p bR < 1:2 for all 122 parameters in the model. See Gelman,Bois, and Jiang (1996) for details on the model and the simulation.tails). Five parallel Metropolis-Hastings sequences were simulated (due to the nonlinearityin the model, the conditional posterior distributions did not have closed forms, and so theGibbs sampler was not possible). Figure 1 displays the results after 2000 and 80;000 itera-tions, during which the potential scale reduction, pbR, decreases from 1.38 to 1.04 and thesequences reach approximate convergence.4.3 Slow convergenceBy monitoring convergence of actual simulation runs, it becomes apparent that an MCMCalgorithm can be unacceptably slow for many applications, even though it is quite fast andthus acceptable for others. We and others have noticed slowness occurring for three reasons,alone or in combination: (1) the Markov chain moves very slowly through the target distri-bution, or through bottlenecks of the target distribution (that is, a low \conductance"; seeApplegate, Kannan, and Polson, 1990, and Sinclair and Jerrum, 1988); (2) the conditionaldistributions cannot be directly sampled from, so that each simulation step of the MCMC17



algorithm takes substantial computational e�ort; (3) the function evaluations required tocompute the conditional posterior distributions themselves are so slow that an iterativesimulation algorithm that is fairly e�cient in number of iterations is prohibitively slow incomputer time.A variety of theoretical arguments suggest methods of constructing e�cient simulationalgorithms or improving the e�ciency of existing algorithms. This is an area of much currentresearch; suggested methods in the literature include adaptive rejection sampling (Gilksand Wild, 1992; Gilks, Best, and Tan, 1993), adaptively altering a Metropolis jumping rule(Gelman, Roberts, and Gilks, 1996), reparameterization (Hills and Smith, 1992), addingauxiliary variables and auxiliary distributions to the model (Geyer and Thompson, 1993,Besag et al., 1993), and using early analysis of multiple series to restart the simulations(Liu and Rubin, 1995).5 ExampleWe illustrate the methods described here with an application of a mixture model to datafrom an experiment in psychology. This example is complicated enough that Markov chainsimulation methods are the most e�ective tool for exploring the posterior distribution, butrelatively simple in that the model is based on the normal distribution, meaning that all theconditional distributions have simple forms, and computations can be performed using onlythe Gibbs sampler. The point of this example is not to show the most general variationsin computing but rather to illustrate the application of Bayesian computational methodsfrom beginning to end of a problem.5.1 A study of schizophrenics and non-schizophrenicsIn the experiment under study, each of 17 subjects|11 nonschizophrenics and 6 schizophrenics|had their reaction times measured 30 times. We present the data in Figure 2 and brie
y18



review the basic statistical approach here. More detail on this example appears in Belinand Rubin (1995) and Gelman et al. (1995, ch. 16).It is clear from Figure 2 that the response times are higher on average for schizophren-ics. In addition, the response times for at least some of the schizophrenic individualsare considerably more variable than the response times for the nonschizophrenic individu-als. Psychological theory from the last half century and before suggests a model in whichschizophrenics su�er from an attentional de�cit on some trials, as well as a general motorre
ex retardation; both aspects lead to relatively slower responses for the schizophrenics,with motor retardation a�ecting all trials and attentional de�ciency only some.Finite mixture likelihood model. To address the questions of scienti�c interest, thefollowing basic model was �t, basic in the sense of minimally addressing the scienti�c knowl-edge underlying the data. Response times for nonschizophrenics are described by a normalrandom-e�ects model, in which the responses yij (i = 1; : : : ; 30) of person j = 1; : : : ; 11 arenormally distributed with distinct person mean �j and common variance �2y. To re
ect theattentional de�ciency, the response times for each schizophrenic individual j = 12; : : : ; 17are modeled as a two-component mixture: with probability (1 � �) there is no delay, andthe response is normally distributed with mean �j and variance �2y , and with probability �responses are delayed, with observations having a mean of �j + � and the same variance,�2y . Because reaction times are all positive and their distributions are positively skewed,even for nonschizophrenics, the above model was �tted to the logarithms of the reactiontime measurements.Hierarchical population model. The comparison of the typical components of � =(�1; : : : ; �17) for schizophrenics versus nonschizophrenics addresses the magnitude of schizo-phrenics' motor re
ex retardation. We include a hierarchical parameter � measuring this19
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Figure 2: (a) Log response times (in milliseconds) for 11 nonschizophrenic individuals. (b)Log response times for 6 schizophrenic individuals. All histograms are on a common scale,and there are 30 measurements for each individual. From Gelman et al. (1995, ch. 16).
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motor retardation. Speci�cally, variation among individuals is modeled by having the means�j follow a normal distribution with mean � for nonschizophrenics and �+� for schizophren-ics, with each distribution having variance �2�. That is, the mean of �j in the populationdistribution is � + �Sj, where Sj is an observed indicator variable that is 1 if person j isschizophrenic and 0 otherwise.We completed the Bayesian model with an improper uniform prior distribution on thehyperparameters � = (�2y ; �2�; �; �; �; �). In the experiment at hand, there was adequateinformation in the data and the hierarchical model to estimate these parameters well enoughso that this noninformative prior distribution was acceptable. (To put it another way,posterior inferences would not be sensitive to moderate changes in the prior distribution.)In probability notation, the full model can be written as:p(yj�; �; �) = 17Yj=1 30Yi=1N(yijj�j ;+��ij; �2y)p(�j�; �) = 17Yj=1N(�j j�+ �Sj ; �2�)p(�j�) = 17Yj=12 30Yi=1Bernoulli(�ij j�Sj)p(�) / 1;where we have introduced �, a matrix of indicator variables �ij for the schizophrenic obser-vations that take on the value 1 if observation yij is delayed and 0 otherwise.The three parameters of primary interest are �, which measures motor re
ex retardation,�, the proportion of schizophrenic responses that are delayed, and � , the size of the delaywhen an attentional lapse occurs.5.2 Approximating the posterior distributionCrude initial estimate. The �rst step in the computation is to obtain crude estimates ofthe model parameters. For this example, each �j can be roughly estimated by the sample21



mean of the observations on subject j, and �2y can be estimated by the average samplevariance within nonschizophrenic subjects. Given the estimates of �j , we can obtain a quickestimate of the hyperparameters by dividing the �j 's into two groups, nonschizophrenics andschizophrenics. We estimate � by the average of the estimated �j's for nonschizophrenics, �by the average di�erence between the two groups, and �2� by the variance of the estimated�j 's within groups. We crudely estimate �̂ = 1=3, and �̂ = 1:0 based on a visual inspectionof the histograms of the schizophrenic responses in Figure 2b.Posterior modes using ECM. We draw 100 points at random from a simpli�ed distri-bution for � and use each as a starting point for an ECM (expectation conditional maxi-mization) algorithm to search for modes. (ECM is an extension of the EM algorithm; seeMeng and Rubin, 1994.) The simpli�ed distribution is obtained by adding some random-ness to the crude parameter estimates. Speci�cally, to obtain a sample from the simpli�eddistribution, we start by setting all the parameters (�; �) at the crude point estimates andthen divide each parameter by an independent �21 random variable in an attempt to ensurethat the 100 draws are su�ciently spread out so as to cover the modes of the parameterspace.The ECM algorithm is performed by treating the unknown mixture component corre-sponding to each schizophrenic observation as \missing data" and then averaging over theresulting vector of 180 missing indicator variables, �ij. All steps of the ECM algorithm canthen be performed in closed form; see Gelman et al. (1995, ch. 16) for details.After 100 iterations of ECM from each of 100 starting points, we found three localmaxima of (�; �): a major mode and two minor modes. The minor modes are substantivelyuninteresting, corresponding to near-degenerate models with the mixture parameter � nearzero, and have little support in the data, with posterior density ratios less than e�20 withrespect to the major mode. We conclude that the minor modes can be ignored and, to the22



best of our knowledge, the posterior distribution can be considered unimodal for practicalpurposes.Multivariate t approximation. We approximate the posterior distribution by a mul-tivariate t4, centered at the major mode found by ECM and with covariance matrix setto the inverse of the negative of the numerically-computed second derivative matrix of thelog-posterior density. We use the t4 approximation as a starting distribution for importanceresampling (see Rubin, 1987, and Gelman et al., 1995, sec. 10.5) of the parameter vector �.We draw 2000 independent samples of � from the t4 distribution and importance-resample asubset of 10, which we used as starting points for ten independent Gibbs sampler sequences.This distribution is intended to approximate our ideal starting conditions: for each scalarestimand of interest, the mean is close to the target mean and the variance is greater thanthe target variance.5.3 Implementing the Gibbs samplerThe Gibbs sampler is easy to apply for our model once we have performed the \data aug-mentation" step of including the mixture indicators, �ij, in the model. The full conditionalposterior distributions have standard forms and can be easily sampled from. The requiredsteps are analogous to the ECM steps used to �nd the modes of the posterior distribution(once again, details appear in Gelman et al., 1995, ch. 16).We monitored the convergence of all the parameters in the model for the ten independentsequences of the Gibbs sampler. Table 1 displays posterior inferences and potential scalereduction factors for selected parameters after 20 iterations (still far from convergence, asindicated by the high values of p bR) and 200 iterations. After 200 iterations, the potentialscale reduction factors were below 1.1 for all parameters in the model.
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Inference Inferenceafter 20 iterations after 200 iterationsParameter 2.5% median 97.5% pbR 2.5% median 97.5% pbR� 0.05 0.15 0.36 1.9 0.07 0.12 0.18 1.02� 0.50 0.78 1.06 1.7 0.74 0.85 0.96 1.02� 0.13 0.30 0.48 1.2 0.17 0.32 0.47 1.01Table 1: Posterior quantiles and estimated potential scale reduction factors for some param-eters of interest under the old and new mixture models for the reaction time experiment.Ten parallel sequences of the Gibbs sampler were simulated. The table displays inferenceand convergence monitoring after 20 and then 200 iterations. From Gelman and Rubin(1992b).5.4 Role of the Markov chain Monte Carlo simulation in the scienti�cinference processThe Gibbs sampler results allowed us to obtain posterior intervals for all parameters ofinterest in the model, and also to simulate hypothetical replications of the dataset thatcould be compared to the observed data. In doing so, we found areas of lack of �t of themodel and proceeded to generalize it. It was straightforward to apply the Gibbs sampler tothe new model, which had two additional parameters, and then obtain posterior intervalsfor all the parameters in the expanded model (details appear in Gelman et al., 1995, ch.16).The ability to �t increasingly complicated models with little additional programminge�ort is, in fact, a key advantage of Markov chain Monte Carlo methods. We are no longerlimited to those models that we can �t analytically or through elaborate approximations.However, we do not want to understate the e�ort required in programming these methodsfor each new problem. As discussed in Sections 2.1 and 2.4, one typically should undertakeMarkov chain Monte Carlo simulation after a problem has been approximated and exploredusing simpler methods.
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