
INSIGHTS   |   PERSPECTIVES

584    10 FEBRUARY 2017 • VOL 355 ISSUE 6325 sciencemag.org  SCIENCE

What can we expect of MINFLUX, and 

more broadly, superresolution and single-

molecule imaging? Because MINFLUX can 

now reach a resolution less than 5 nm, sin-

gle-molecule fluorescence resonance-energy 

transfer, which can determine distances of 

up to ~7 nm at 0.3-nm resolution with only 

about 100 photons (11), may be combined 

to obtain dynamic structural information 

continuously covering from the length scale 

of single amino acids to the cellular scale 

or larger. A considerable challenge would be 

to extend the molecular resolution to three-

dimensional imaging, which most certainly 

would require interferometric methods 

(12). Moving toward multicolor imaging is 

likely to be more straightforward because 

the precision in position determination is 

largely wavelength-independent in MIN-

FLUX and because more fluorescent report-

ers become eligible because of the reduced 

photon budget. 

Ultimately, the true spatial resolution 

of an image is going to be limited by how 

densely the sample can be labeled, How-

ever,  the greater resolving power achieved 

at molecular distances that has been en-

abled by MINFLUX is likely to stimulate 

further developments in probe and label-

ing technologies. MINFLUX also requires 

more hardware engineering as compared 

with other localization-based nanoscopy. 

Nevertheless, rapid commercialization, 

pending further developments necessary 

for cellular imaging, may make it available 

to biologists in the not-too-distant future.  j
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“The minimal photon flux…

is particularly advantageous 

for single-molecule tracking 

experiments...”

By Eric Loken

1

 and Andrew Gelman

2

M
easurement error adds noise to 

predictions, increases uncertainty 

in parameter estimates, and makes 

it more difficult to discover new 

phenomena or to distinguish 

among competing theories. A com-

mon view is that any study finding an effect 

under noisy conditions provides evidence 

that the underlying effect is particularly 

strong and robust. Yet, statistical signifi-

cance conveys very little information when 

measurements are noisy. In noisy research 

settings, poor measurement can contribute 

to exaggerated estimates of effect size. This 

problem and related misunderstandings are 

key components in a feedback loop that per-

petuates the replication crisis in science.

It seems intuitive that producing a result 

under challenging circumstances makes it 

all the more impressive. If you learned that 

a friend had run a mile in 5 minutes, you 

would be respectful; if you learned she had 

done it while carrying a heavy backpack, 

you would be awed. The obvious inference 

is that she would have been even faster 

without the backpack. But should the same 

intuition always be applied to research 

findings? Should we assume that if statis-

tical significance is achieved in the pres-

ence of measurement error, the associated 

effects would have been stronger without 

noise? We caution against the fallacy of as-

suming that that which does not kill statis-

tical significance makes it stronger.

Measurement error can be defined as 

random variation, of some distributional 

form, that produces a difference between 

observed and true values (1). Measurement 

error and other sources of uncontrolled 

variation in scientific research therefore 

add noise. The latter is typically an at-

tenuating factor, as acknowledged in vari-

ous scientific disciplines. Spearman (2) 

famously derived a formula for the attenu-

ation of observed correlations due to un-

reliable measurement. In epidemiology, it 

is textbook knowledge that nondifferential 

misclassification tends to bias relative risk 

estimates toward the null (3). According to 

Hausman’s “iron law” of econometrics, ef-

fect sizes in simple regression models are 

underestimated when the predictors con-

tain error variance (4).

It is understandable, then, that many 

researchers have the intuition that if they 

manage to achieve statistical significance 

under noisy conditions, the observed effect 

would have been even larger in the absence 

of noise. As with the runner, they assume 

that without the burden—that is, uncon-

trolled variation—their effects would have 

been even larger (5�7). 

The reasoning about the runner with the 

backpack fails in noisy research for two 

reasons. First, researchers typically have so 

many “researcher degrees of freedom”—un-

acknowledged choices in how they prepare, 

analyze, and report their data—that statis-

tical significance is easily found even in the 

absence of underlying effects (8) and even 

without multiple hypothesis testing by re-

searchers (9). In settings with uncontrolled 

researcher degrees of freedom, the attain-

ment of statistical significance in the pres-

ence of noise is not an impressive feat.

The second, related issue is that in noisy 

research settings, statistical significance 

provides very weak evidence for either the 

sign or the magnitude of any underlying ef-

fect. Statistically significant estimates are, 

roughly speaking, at least two standard er-

rors from zero. In a study with noisy mea-

surements and small or moderate sample 

size, standard errors will be high and statis-

tically significant estimates will therefore 

be large, even if the underlying effects are 

small. This is known as the statistical sig-

nificance filter and can be a severe upward 

bias in the magnitude of effects; as one of 

us has shown, reported estimates can be an 

order-of-magnitude larger than any plau-

sible underlying effects (10).

In a low-noise setting, the theoretical re-

sults of Hausman and others correctly show 

that measurement error will attenuate co-

efficient estimates. But we can demonstrate 

with a simple exercise that the opposite oc-
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curs in the presence of high noise and se-

lection on statistical significance.

Suppose we measure x and y in a setting 

where the underlying truth is that there is 

a small effect of x on y. Imagine four condi-

tions based on changes in two factors. First, 

we might have either a high-powered study 

(sample size N = 3000) or a low-powered 

study (N = 50). Second, we might have mea-

surements on x and y that are high quality, 

or have some degree of additional measure-

ment error. In the large-N scenario, add-

ing measurement error will almost always 

reduce the observed correlation between 

x and y (see the figure, left panel). But in 

the small-N setting, this will not hold; the 

observed correlation can easily be larger in 

the presence of measurement error (see the 

figure, middle panel).

Take these scenarios and now add selection 

on statistical significance. We can track the 

proportion of studies, as a function of sample 

size, where the observed effect is larger than 

the original error-free effect. For the largest 

samples, the observed effect is always smaller 

than the original. But for smaller N, a frac-

tion of the observed effects exceeds the origi-

nal. If we were to condition on whether or 

not the observed effect was statistically sig-

nificant, then the fraction is even larger (see 

the figure, right panel).

Our concern is that researchers are 

sometimes tempted to use the “iron law” 

reasoning to defend or justify surprisingly 

large statistically significant effects from 

small studies. If it really were true that ef-

fect sizes were always attenuated by mea-

surement error, then it would be all the 

more impressive to have achieved signifi-

cance. But to acknowledge that there may 

have been a substantial amount of uncon-

trolled variation is to acknowledge that the 

study contained less information than was 

initially thought. If researchers focus on 

getting statistically significant estimates 

of small effects, using noisy measurements 

and small samples, then it is likely that the 

additional sources of variance are already 

making the t test look strong. Measurement 

error and selection bias thus can combine 

to exacerbate the replication crisis.

The situation becomes more complicated 

in problems with multiple predictors, or 

with nonindependent errors. Wacholder

et al. (11) discuss scenarios beyond simple 

two-group risk-exposure studies where 

misclassification can lead to exaggerated 

estimates. For the simpler setting, though, 

they conclude that while “the estimate may 

exceed the true value…it is more likely to 

fall below the true value.” We agree with 

Wacholder et al. for studies in which ef-

fects and sample sizes are large. But for 

noisier studies, especially combined with 

selective filtering on statistically signifi-

cant observed effects, we think that there is 

a greater chance that the effects are exag-

gerated rather than attenuated. Jurek et al. 

have also provided evidence that individual 

research studies can be biased away from 

the null (12).

A key point for practitioners is that sur-

prising results from small studies should not 

be defended by saying that they would have 

been even better with improved measure-

ment. Furthermore, the signal-to-noise ratio 

cannot in general be estimated merely from 

internal evidence. It is a common mistake 

to take a t-ratio as a measure of strength of 

evidence and conclude that just because an 

estimate is statistically significant, the signal-

to-noise level is high. It is also a mistake to 

assume that the observed effect size would 

have been even larger if not for the burden 

of measurement error. Intuitions that are ap-

propriate when measurements are precise 

are sometimes misapplied in noisy and more 

probabilistic settings.

The consequences for scientific replica-

tion are obvious. Many published effects 

are overstated and future studies, powered 

by the expectation that the effects can be 

replicated, might be destined to fail before 

they even begin. We would all run faster 

without a backpack on our backs. But when 

it comes to surprising research findings 

from small studies, measurement error (or 

other uncontrolled variation) should not be 

invoked automatically to suggest that ef-

fects are even larger.  j
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Estimate in “ideal” study Estimate in “ideal” study Sample size

Distribution of statistically significant estimates in the presence of added error 
To obtain the graphs, effect sizes from simulated studies were estimated in the “ideal” setting and after adding random error. For large-N studies, added error always reduces 
the effect. For small N, the reverse can be true. Of statistically significant effects observed after error, a majority could be greater than in the “ideal” setting when N is small.
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