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There are many advantages to analyzing data from large-scale social surveys.The data are usually extensive in content and coverage of the target popula-tion. Sample sizes are often very large and the data are often easily obtainedfrom the sponsoring agency on CD-ROM or from the internet, in many cases atno cost to the researcher. Moreover, these surveys are typically conducted bylarge government agencies or private survey organizations that have experiencedinterviewers, well-designed and tested survey instruments, and the expertise todesign e�cient sampling plans. As a result, the response rates are typically high(e.g., 75%{90%) and sophisticated nonresponse adjustments are often incorpo-rated into the data to try to reduce nonresponse bias that results from systematicdi�erences between respondents and nonrespondents. The sample data are alsooften reweighted, using poststrati�cation, to agree with known population dis-tributions of characteristics such as age, sex, and race. Finally, many surveyscontain panel (longitudinal) components in which the same sample units are in-terviewed repeatedly over time, allowing researchers to follow individual changesover time.The analysis of large-scale social survey data also presents several di�culties.One of the greatest technical challenges arises because sampling in these surveysis usually carried out according to complex multistage designs that combine strat-i�cation, cluster sampling, and unequal probability sampling. Many surveys thatare repeated on a regular basis also rotate respondents in and out of the sam-ple. Often point estimates of simple estimands such as population means andproportions can be calculated using a minimal amount of information about thesampling design, but standard error calculations must incorporate the key sam-pling design elements explicitly. Survey weights, provided along with the surveydata, contain important sampling design information. Correct interpretation anduse of these weights is key to the analysis of large-scale social survey data, andparticularly key to standard error estimation. Analysts must also be aware ofthe impact of nonresponse adjustments|such as weighting class adjustments forunit nonresponse and imputation for item nonresponse|on standard error esti-mates. Complex multistage sampling must also be taken into consideration whencalculating con�dence intervals for population parameters. In particular, the de-grees of freedom used when calculating con�dence intervals using a t-distributiondepends on the sampling design, not solely on the sample size. Methods of in-corporating survey weights into estimates of simple population parameters suchas means, totals, and proportions are well established; however the appropriateapproach is less obvious when �tting more complex statistical models such aslinear regression models and loglinear models. We address each of these issues inthe following sections.
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2 Complex Sample DesignsAlthough simple random samples are the easiest to design and analyze, large-scale social surveys often take advantage of complex multistage sampling designsto increase the precision of the resulting estimates. These designs typically involvemultiple stages of sampling. For example, the �rst stage of sampling may selecta sample of counties; the second stage may select a sample of subregions withineach sampled county; the third stage may select a certain number of sample units(e.g., individuals, households, or hospitals) within each sampled subregion. Unitsselected at the �rst stage of sampling are called primary sampling units (PSUs).Units selected at the �nal stage are called ultimate sampling units. One reasonfor multistage sampling is to minimize the travel costs of interviewers in face-to-face surveys. Another reason is that a sampling frame (a list of all the ultimatesampling units in the population) may not exist for the target population, butmay be constructed sequentially as needed. For example, a list of all school-agechildren in a state may not be readily available, but a list of all school districtsin a state may be available; then for a sample of school districts, a list of all theschools in those districts may be obtained; then for a sample of schools, a list ofchildren may be obtained.Multistage designs often involve cluster sampling in which groups of samplingunits are selected, rather than individual units. Examples of cluster samplinginclude selecting several students in a class, several households in a city-block, orseveral patients in a hospital. Cluster sampling tends to increase the variability ofsurvey estimates compared with a simple random sample of the same size. Thisoccurs because units in the same cluster tend to be correlated and, as a result,each additional unit sampled within the same cluster provides less additionalinformation about the overall population parameters than an element selected atrandom from the population. However, due to travel costs, frame constructioncosts, and other overhead costs associated with each sampled cluster, a simplerandom sample may be much more expensive than a cluster sample of the samesize. Therefore, for given a �xed budget, a cluster sample may provide the moste�cient estimates.Another common design element used in large-scale multistage surveys isstrati�cation, which involves dividing the population into nonoverlapping seg-ments, called strata, and sampling independently within each stratum. Typicalstratifying factors include region of the country and urbanicity (urban, suburban,rural). If the variable of interest tends to take on di�erent values, on average, ineach stratum, then strati�ed sampling can lead to more e�cient estimates. In par-ticular, the sample can be optimally allocated so that a larger sample is obtainedin strata where there is larger variability in the variable of interest. Another rea-son for strati�cation is to ensure adequate representation of all segments of thepopulation, avoiding the possibility of a simple random sample that, by chance,3



omits part of the population. Often certain strata, such as those containing alarge proportion of racial minorities or elderly people, are oversampled (sampledat a rate greater than their prevalence in the population) in order to ensure an ad-equate sample size for research hypotheses that involve these groups. Sometimesa census is conducted in some strata, called self-representing or take-all strata.This type of strati�cation is particularly useful for very skewed populations thatcontain a few large units and many small units (e.g., Hidiroglou 1986). Strati�-cation can also be combined with cluster sampling. For example, neighborhoodsmay be strati�ed by geographic region and then a sample of households withinneighborhoods may be selected; or schools may be strati�ed by size and then asample of classes may be selected from each school.Unequal probability sampling is often used when sampling clusters. In par-ticular, clusters are usually selected with probabilities proportional to their size(PPS sampling), with larger clusters having greater probabilities of selection. Thesize measure used will depend on the survey but, as examples, a school can bemeasured in terms of the number of students enrolled, a company can be mea-sured in terms of the numbers of employees, a farm can be measured in terms ofacreage, and a city block can be measured in terms of the number of households.PPS sampling will lead to more e�cient estimates whenever cluster totals are pro-portional to the size of the cluster, which is often the case. For example, largerschools tend to have more students with learning disabilities, larger companiestend to have larger revenue, larger farms tend to have larger crop yield, largercity blocks tend to have more single parents. Unequal probability sampling isalso sometimes used for convenience. For example, random-digit-dial telephonesurveys actually select households with probabilities proportional to the numberof voice telephone lines in the household. Selecting a simple random sample ofhouseholds would require a list of the individual households, rather than a list oftelephone numbers, and this may be much more di�cult to obtain or constructthan a list of telephone numbers.Finally, many large surveys that are repeated on an ongoing basis (e.g.,monthly) use rotation groups. Rather than select new nonoverlapping sampleseach month, rotation groups remain in the sample for several months in a row(Fienberg and Tanur 1983; Iachan and Jones 1987). Every month a new rotationgroup enters the survey and an old one drops out so that each month only afraction of the sample units are new. This reduces costs by not having to draw anew sample each month (there are administrative costs with drawing a new sam-ple, locating the new sample members, explaining the survey to them, etc.) andalso provides some longitudinal information. Rotation groups present no com-plication to cross-sectional analysis of a single wave of data but can complicateanalyses that combine several months of data since the same sample units mayappear multiple times in these combined datasets. Analysis should then accountfor correlations between repeated measurements on some sample units. In con-4



trast, some surveys, called rolling surveys (Kish 1990; 1997; 1998), are speci�callydesigned with nonoverlapping samples each month so that the resulting data canbe analyzed for a single month or combined over several months to form largerdatasets.3 Survey WeightsThe simplest analysis of survey data assumes that all elements in the populationare equally likely to be included in the sample. Unfortunately, this is not generallytrue for two reasons. First, complex sampling designs often lead to unequalselection probabilities, as discussed in the previous section. Second, even if unitsare equally likely to be selected, they generally have di�erent probabilities ofnonresponse; for example, in household surveys, women are usually easier toreach and more likely to cooperate than men.Survey weights are used for correcting for known or expected di�erences be-tween sample and population: each unit i is given a weight, wi, and the populationmean �Y of any variable y is estimated by the weighted sample average,bY = Pni=1 wiyiPni=1 wi :As the formula indicates, only the relative values of the weights are relevant.The weights are usually calculated by the survey producers and provided alongwith the survey data. An informal interpretation of these weights is that wi isproportional to the number of units in the population represented by respondenti. Estimates of population proportions are calculated using the same formula,where yi is a variable taking on values of 0 and 1.Survey weights in large-scale surveys are often constructed so that sampleestimates agree with current census estimates of key variables such as age, sex,and race, through processes called poststrati�cation and raking (Oh and Scheuren1983; Gelman and Carlin 2001). Voss, Gelman, and King (1995) detail the variousdesign and weightings strategies used by various national polling organizations forpre-election surveys. Survey weights are also often adjusted to account for non-response, through a process called weighting class adjustment (Oh and Scheuren1983; Kalton and Kasprzyk 1986; Bethlehem 2001).In most complex multistage samples, sampled units have di�erent surveyweights. However, it is possible to design these samples so that all sampledunits have the same weight. These designs are called self-weighting (Cochran1977, p. 91) because the usual unweighted estimators, the same ones used forsimple random samples, will produce unbiased estimates of population param-eters such as means and proportions. However, the usual unweighted standarderror estimation formulas are not necessarily appropriate in these designs. There-5



fore, although self-weighting designs may simplify point estimation calculations,they do not simplify standard error estimation calculations.Finally, many surveys produce separate sets of weights for di�erent types ofanalyses. For example, the General Social Survey (GSS) (Davis and Smith 1992)provides separate weights for household-level estimates and for individual-levelestimates. The GSS is designed to give each household an equal probability ofinclusion in the sample so that the sample is self-weighting for household-levelvariables. However, since only one individual in each household is interviewed,people living in large households are less likely to be interviewed than people insmaller households. Therefore, even though each household has an equal chanceof being selected, individuals have di�erent chances of being selected depend-ing on the size of their households, with these inclusion probabilities varyingby the type of survey (Gelman and Little 1998). Longitudinal studies may alsohave separate cross-sectional and longitudinal weights. For example, the 1993Panel Study on Income Dynamics (PSID) provides both \cross-sectional analysisweights" and \longitudinal analysis weights" (Hill 1992). Cross-sectional anal-ysis weights can be used to obtain unbiased estimates of population statisticsfor a given year. Longitudinal analysis weights, on the other hand, can be usedto estimate models of changes over interval. In particular, the 1993 PSID lon-gitudinal analysis weights assign non-zero weights only to individuals who wererespondents during each of the preceding �ve years. When using surveys withmultiple sets of weights, consult survey documentation for advice on appropriatechoice of survey weight.4 Standard ErrorsAlthough estimates of simple population parameters such as means and propor-tions can easily be constructed as weighted averages using survey weights, thecorresponding standard error estimation procedures are not included in moststandard statistical packages. When the data have been collected from a sur-vey with a complex sample design, standard error estimates of survey statisticsderived under simple random sampling assumptions generally underestimate thetrue standard error, resulting in con�dence intervals that are too narrow andhypothesis tests that are too likely to reject the null hypothesis. In particular,most standard statistical packages can handle \analytic" weights that are usedin regression estimation when the data values themselves each have di�erent(known) variances, and \frequency" weights that are used to store data conciselyby recording the number of times an observation is duplicated in the datasetrather than recording each observation individually, but these weights should notbe confused with survey weights. Incorrectly treating survey weights as analyticweights or frequency weights will generally result in unbiased point estimates butunderestimated standard errors. Moreover, ignoring the weights altogether and6



using a standard statistical package to perform an unweighted analysis of com-plex survey data will generally yield biased estimates of population parametersand underestimated standard errors. Furthermore, standard statistical packagesdo not account for strati�cation, cluster sampling, or adjustments such as post-strati�cation and raking. Brogan (1998) and Wang, Yu, and Lin (1997) illustratesome of the potential consequences of incorrectly analyzing survey data usingstandard statistical packages.As a measure of the e�ect of the sampling design on the variance of surveyestimates, some surveys report design e�ect estimates. The design e�ect (de�)(Kish 1965, p. 162; Lohr 1999, p. 239) measures the increase (or decrease) invariance obtained using the given sample design relative to the variance thatwould have been obtained if a simple random sample of the same size had beenused. For example, Davis and Smith (1992, p. 41) report that the average designe�ect for 60 variables in the General Social Survey is 1.76, with slightly largerdesign e�ects on average for demographic variables which tend to be have moreclustering and smaller design e�ects, on average, for attitude variables. Similarly,Hill (1992, p. 67) reports design e�ects for estimates from the Panel Study ofIncome Dynamics ranging from 0.95 to 2.53, with most in the range 1.1 to 2.2. Adesign e�ect of 1.76 indicates that the variance of an estimate from the currentdesign is 1.76 times greater than the variance that would have been obtainedusing a simple random sample. The design e�ect can be used to determine the\e�ective sample size" by dividing the actual sample size by the design e�ect.The e�ective sample size is the number of observations that would yield thesame level of precision from a simple random sample. For example, a designe�ect of 1.5 implies that the precision obtained by sampling 1500 units under thecurrent complex sampling design could be obtained by sampling only 1000 in asimple random sample design. The design e�ect does not, however, account fordi�erential costs of the two sampling designs.Several software packages are available to analyze data from complex multi-stage surveys. Summaries and reviews of these packages are provided by Lep-kowski and Bowles (1996), Cohen (1997), Carlson (1998), and Zaslavsky (2000).Stata (StataCorp 1999) and the latest release of SAS (An and Watts 1998) aremultipurpose statistical packages that include procedures for analyzing complexsurvey data. Because variance estimation calculations for sampling designs thatuse without-replacement unequal probability sampling are complex, most surveysoftware packages approximate these variances using formulae appropriate forunequal with-replacement sampling. This approximation is usually acceptablesince, for these survey designs, the resulting variance estimates will slightly over-estimate the true variance, resulting in slightly conservative con�dence intervalsand hypothesis tests. Finally, survey software packages generally use varianceformulae that are technically only appropriate when the survey weights representonly the sampling design and do not incorporate nonresponse or poststrati�cation7



adjustments. A few packages (WesVarPC and VPLX, see Lepkowski and Bowles1996) use a variance estimation method call replication or resampling (Wolter1985, ch. 2; Korn and Graubard 1999, p. 29) that can incorporate the impact ofnonresponse weighting adjustments and poststrati�cation adjustments. To takeadvantage of these capabilities, data producers must provide data users with both\replicate weights" (e.g., Korn and Graubard 1999, p. 34) and survey weights.For example, the U.S. Census Bureau currently releases replicate weights for the1996 Survey of Income and Program Participation.Finally, many large-scale surveys provide generalized variance functions (Kornand Graubard 1999, p. 218; Lohr 1999, p. 308{310) in summary reports of thesurvey data. To reduce publication costs and calculation e�ort, these surveys donot publish standard errors for every estimate in the summary report. Instead,generalized variance functions are provided to enable data users to calculate stan-dard errors for their estimates of interest. These functions estimate the standarderror of an estimate as a function of the estimate. These standard error estimatesare very approximate and their results should be interpreted with caution. Directcalculation of standard error estimates, using the raw data, survey weights, andother sampling design information is always preferable to using generalized vari-ance functions. However, generalized variance functions permit standard errorestimation when either the raw data or the sampling design information cannotbe released for con�dentiality reasons.5 Con�dence IntervalsWhen constructing con�dence intervals for population parameters using surveydata, it is usually assumed that survey estimates of means and proportions areapproximately normally distributed, so that the usual normal con�dence intervalsor, for small sample sizes n, t-distribution intervals with n�1 degrees of freedomare appropriate (Cochran 1977, p. 27). For complex multistage sampling, thedegrees of freedom for t-intervals is typically equal to the number of sampledprimary sampling units minus a correction, c, where c = 1 for unstrati�ed clustersampling and c equals the number of strata for strati�ed cluster sampling (Kornand Graubard 1999, p. 62). The normality approximation may break down forestimates of proportions that are very close to 0 or 1. In these situations, Kornand Graubard (1998; 1999, p. 65) provide approximations to exact binomial con-�dence intervals that can be used with data from complex multistage samplingschemes.
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6 Statistical Modeling with Survey DataMuch has been written on the use of the sample design and weights when �ttingstatistical models such as linear regression, logistic regression, loglinear models,and survival models to survey data (Fienberg 1980; Groves 1989, sec. 6.7; Little1991; Pfe�ermann 1993; Lohr and Liu 1994; Winship and Radbill 1994; Korn andGraubard 1995; Lemeshow et al. 1998). In general, it is recommended to include,as explanatory variables in any regression-type analysis, all variables that are usedin the design or the weighting of the survey. These variables include stratum in-dicators, cluster indicators, and demographics (such as age, sex, ethnicity, andeducation) that are used to construct the weights. It is thus important in suchan analysis to know how the weights were constructed, not just their numericalvalues. If all these variables are included, one can �t the model without surveyweights (see, e.g., DuMouchel and Duncan 1983; Korn and Graubard 1999, p.177). It may then be necessary to put the weighting information back into themodel|after having estimated the parameters|to estimate population quanti-ties of interest. For example, Gelman and Little (1997) present an example inwhich estimates are obtained for each of the states in the U.S., summing over de-mographic categories, which requires the use of Census demographic breakdownsfor each state. Di�culties can arise when the number of clusters or strata is largerelative to the sample size or when stratum or cluster indicators are not releasedin public-use data for con�dentiality reasons. It can also make sense to performboth weighted and unweighted analyses (DuMouchel and Duncan 1983; Groves1989, p. 290; Lohr 1999, p. 365). Large di�erences between the two analyses mayindicate model misspeci�cation.Modeling is also used for \small-area estimation" in which inferences are madeabout subsets of the population (e.g., small geographic regions or demographicsegments) whose sample sizes are so small that simple weighted mean estimatesare too variable to be useful. Hierarchical Bayes and related methods have beenuseful here (Fay and Herriot 1979; Dempster and Raghunathan 1997), and onearea of ongoing research is combining these methods with classical weightingadjustments (Gelman and Carlin 2001).7 Missing DataIn a sense, all sampling is about missing data, since the goal is to learn aboutthe entire population from a subset. Usually, however, missing data in samplesurveys refers to unit nonresponse, which occurs when some sampled units do notparticipate at all in the survey, either because they refuse or cannot be reachedfor interview, and item nonresponse, which occurs when a sampled unit respondsto some but not all questions in the survey. Survey organizations usually adjustfor unit nonresponse by weighting, as discussed earlier in this article.9



Item nonresponse is typically handled in one of three ways (Little and Ru-bin 1987). In \complete-case" analysis, one works only with the data from re-spondents who provided responses to all questions of interest. \Available-case"analysis is the other extreme, where, for each question, one uses all the responsesin the data. Both these approaches have the serious problem that item nonre-sponses do not generally occur completely at random, so it can be misleading tosimply ignore them (Rubin 1976). A more 
exible approach to item nonresponseis \imputation": �lling in values for missing responses.Imputation can be done in a number of ways, and for large-scale surveys,it is often performed by the survey organization itself. Missing values may beimputed using single or multiple imputation. In single imputation (Kalton andKasprzyk 1986; Little and Rubin 1987, sec. 4.5), a single value is imputed foreach missing value. In multiple imputation (Rubin 1987; Rubin 1996), m plausi-ble values are imputed for each missing value to re
ect the uncertainty about themissing data (usually m is between 5 and 10). These plausible values create mcompleted datasets that can each be analyzed separately as if they had completeresponse. Simple combining rules (Rubin 1987, p. 76) can be used to combine re-sults from each of these m separate analyses into one overall estimate along withits standard error. If data have been imputed using single imputation, specialvariance formulae (e.g., Rao and Shao 1992; Rao 1996) are needed to account forthe extra variability introduced into survey estimates due to the uncertainty inthe missing values. Most large-scale surveys are currently singly imputed, butmultiple imputation is becoming more popular because of the relative ease ofanalyzing multiply imputed datasets compared to singly imputed data. For ex-ample, the National Health and Nutritional Examination Survey plans to releasea multiply-imputed dataset (Schafer, Khare, and Ezzati-Rice 1993; Schafer et al.1996).Related to imputation are various data-adjustment and correction procedures.For example, survey questions such as income that have occasional very high,unreliable responses can be \topcoded"|that is, truncated at threshold values|as is done, for example, in the Survey of Income and Program Participation(U. S. Bureau of the Census 1999). Di�culties with analyzing topcoded data cansometimes be avoided by working with medians or quantiles (e.g., upper �fth,second �fth, etc.), as these are less sensitive than averages to extreme values.8 SummaryLarge-scale social surveys are an important source of information for a wide rangeof topics. In analyzing such surveys, it is important to be aware of the complex-ity of the sampling design and the data adjustments that are used by surveyorganizations, including weighting to adjust for di�erences between sample andpopulation and imputation to �ll in missing responses. For estimating population10



means and proportions, the analyst should calculate weighted averages, using sur-vey weights. In regression analysis, it is best to include, among the predictors,the variables that are used in the design and the weighting. Hierarchical modelscan be used to obtain inferences for small subpopulations.In general, simple standard error estimates, which assume simple randomsampling, are too small because of strati�cation, clustering, and weighting. Thesecalculations can often be adjusted reasonably well by using design e�ects reportedin the survey documentation or in previous analyses. For more involved analysis,it is advisable to use statistical packages that are speci�cally designed to correctlyhandle complex survey data.
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