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IntroductionThe 1990's have witnessed a burst of activity in applying Bayesian methods. Most of theseapplications have used Markov chain Monte Carlo (MCMC) methods to simulate posterior distri-butions. The simulation algorithm is, in its basic form, quite simple and is becoming standard inmany Bayesian applications (see e.g. Gilks, Richardson, and Spiegelhalter, 1996). Furthermore, ithas been around for a long time (dating at least to Metropolis et al., 1953), and the essential theoryis in place (see Tierney, 1994, for a review). Nonetheless, newcomers often run into substantial dif-�culties. For this reason we felt it would be worthwhile to discuss some of the most pressing issuesat the 1996 Joint Statistical Meetings in Chicago. Here we o�er a recreation of that discussion.Before launching into our discussion, a quick review of some terminology and standard notationwill be helpful. The problem is to simulate observations from a posterior distribution, obtained viaBayes' Rule as p(�jy) = p(yj�)p(�)R p(yj�)p(�) d� ;where p(yj�) denotes the likelihood and p(�) the prior density for the vector of k model parameters�. The practical virtue of simulation methods in general, including MCMC, is that, given a setof random draws �(1);�(2); : : : ;�(G) from the posterior distribution, one can estimate virtually allsummaries of interest from the posterior distribution directly from the simulations. For example,means, variances, and posterior intervals for a quantity of interest h(�) can be estimated usingthe sample mean, variance, and central intervals of the values h(�(1)); h(�(2)); : : : ; h(�(G)). MCMCmethods have been successful because they allow one to draw simulations from a wide range ofdistributions, including many that arise in statistical work, for which simulation methods werepreviously much more di�cult to implement.For statistical users, there are two basic methods of MCMC. The Gibbs sampler sequentially2



samples from the collection of full (or complete) conditional distributions p(�ij�j 6=i;y); i = 1; : : : ; k,and it does, under fairly broad conditions, produce a Markov chain with the joint posterior densityp(�jy) as its stationary distribution. The algorithm was named by Geman and Geman (1984);Gelfand and Smith (1990) showed how the method could be applied to a wide variety of Bayesianinference problems. An excellent recent tutorial was given by Casella and George (1992).The second method applies when it is di�cult to simulate from the full conditionals. In thiscase, one may instead simulate from a di�erent Markov chain, having some other stationary dis-tribution, but then modify it in such a way so that a new Markov chain is constructed that hasthe posterior as its stationary distribution. This magic is performed by the Metropolis-Hastingsalgorithm. It samples from a prespeci�ed candidate distribution for each parameter (or group ofparameters), and subsequently uses an accept-reject step. A key feature is that it involves only theunnormalized posterior density p(yj�)p(�) in the sampling chain. Here the seminal references areMetropolis et al. (1953) and Hastings (1970); Chib and Greenberg (1995) o�er a �ne tutorial. Therequired selection of an appropriate candidate density makes the Metropolis-Hastings algorithmmore involved than the Gibbs sampler, but it has the advantage of being more general, and isparticularly helpful for sampling parameters that lack closed, easily-recognizable forms for theirfull conditional distributions.A properly derived and implemented MCMC method will produce draws from the joint posteriordensity p(�jy) once it has converged to stationarity. As a result, a primary concern in applying sucha method is determining that it has in fact essentially converged, i.e., that after an initial burn-inperiod (designed to remove dependence of the simulated chain on its starting location), all furthersamples may be safely thought of as coming from the stationary distribution. This determinationis complicated by two factors. First, since what is produced at convergence is not a single valuebut a random sample of values, we must somehow distinguish between the natural variability in3



the converged chain and the (typically greater) variability in the pre-convergence samples. Second,since the sampled results come from a Markov chain, they will typically be serially correlated.Early MCMC attempts often retained only every kth value from the chain, where k is an estimateof the lag at which the sample autocorrelation function \dies out," in an attempt to produce anapproximately independent sample. Very high autocorrelations will lead to little movement inthe full observed chain, perhaps making a sampler operating far from its stationary distributionappear as if it has converged. Various diagnostics (the most common of which are trace plots ofthe sampled MCMC values versus iteration) are often used to estimate the degree of mixing in asimulation, which is the extent to which a simulated chain traverses the entire parameter space.Analogous to the use of multiple starting points for traditional optimization algorithms, manyMCMC convergence diagnostics involve the use of multiple sampling chains, started at disparatepoints in the parameter space.Panel discussionRoutine MCMCKass: This roundtable was organized largely because, on the one hand, MCMC methods are ofteneasy to apply while, on the other, there remain a number of subtleties. In many situations it's eitherhard to get them working well or, worse yet, it may be hard to know how well they're working.Can we begin by identifying some classes of models where MCMC is easy to use { e.g., via standardsoftware such as BUGS (Gilks et al., 1994) { and is very likely to give reliable answers?Gelman: Hierarchical linear regression models and GLM's work pretty well. Of course, nonhierar-chical models are even easier, but if the data make it possible to �t hierarchical models, I'll almostalways do so (see Carlin and Louis, 1996, and Gelman et al., 1995, for much more elaboration on4



this point). Mixture models (including Student t's) are tougher because the posterior distributionstypically have multiple modes.Carlin: Certainly the simpler the model is, the better. I like the approach taken by the BUGS peopleto o�er not just a manual (Spiegelhalter et al., 1995a), but also a book of examples (Spiegelhalteret al., 1995b) that can serve as prototypes for users. This book currently covers the usual range ofGLM's, as well as a surprising number of nonstandard models and special cases of interest (spatialmodels for disease mapping, conditional inference in case-control studies, etc.). This approach bythe way is reminiscent of that used by most SAS programmers I know: you don't read the manual;instead, you �nd the example that most nearly matches your situation, copy it, and modify it.Neal: I'd like to inject a bit of doubt into this discussion. Even in fairly simple cases (e.g., simplerandom e�ects models), it is possible for the posterior to be multimodal, which could cause theunwary user to get the wrong answer. There may be classes of models where some MCMC methodcan be shown to work reliably (either theoretically or empirically), but I'm not aware of any gooddemonstrations of this sort. Even if a model has worked well in the past, it is possible that it willwork much less well on a new dataset.This isn't meant to be excessively discouraging { after all, it's also hard to guarantee that amaximum likelihood procedure is really �nding all the modes { but some caution is almost alwaysprudent.Kass: It's certainly good to be reminded that problems with maximization as well as simulationcan arise whenever a posterior is not log-concave, which is to say in nearly every data analysisproblem to which posterior sampling methods are going to be applied. However, this isn't verysatisfying to the novice user. Let me go on to my next question and return later to this moredi�cult issue. 5



Assessing convergenceKass: Together with Kate Cowles, Brad has written a nice review of convergence diagnostics(Cowles and Carlin, 1996). But it left me thinking that knowledge about this topic is not as greatas the number of papers that have been written about it might lead one to believe. Indeed, someexperienced users simply examine the trace plots (for some collection of parameters) informally.So, what do each of you do to assess convergence?Gelman: I automatically monitor bR (Gelman and Rubin, 1992) for all parameters in the modeland anything else that might be of interest. For any given parameter, bR is the estimated posteriorvariance of the parameter, based on the mixture of all the simulated sequences, divided by theaverage of the variances within each sequence. Thus bR = 1 means that the sequences have mixed,at least according to this criterion. I try to start the di�erent simulations overdispersed, with theintention that the sequences will not all be stuck in some unrepresentative small region of parameterspace. I don't stop until bR is at some low value (e.g., less than 1.2) for all the parameters. If I getto that point in a reasonably short time, I don't look at any simulation trails (the trace plots withseveral parallel simulations overlaid) at all.Carlin: I like Andrew's idea of using a few (say, 3 or 5) initially overdispersed sampling chains,but my experience with convergence diagnostics makes me wary of relying on only one. Insteadof monitoring bR for every parameter, I actually plot the sample traces of my chains for a \repre-sentative subset" of the parameter space. For a standard hierarchical model, this might includemost of the �xed e�ects, some of the variance components, and a few well-chosen random e�ects {say, corresponding to two individuals who are at opposite extremes relative to the population (andwho are thus likely to have random e�ects distributions not concentrated near zero). I decoratethese plots with a few very simple convergence diagnostics { typically bR, and the lag-1 sample6



autocorrelation in the middle chain. A collection of pictures is slower to look at (and of course,impossible to automate), but much more reliable and can even reduce run times in situations wheresummary diagnostics are arti�cially in
ated (e.g., bR will always be large for a bimodal posterior ifat least one chain is visiting each mode).Neal: I don't use any formal convergence diagnostics, other than to compute autocorrelationestimates now and then. I just look at trace plots of various quantities that seem to be of centralimportance, such as crucial hyperparameters, and almost always, the log of the posterior probabilitydensity of the current state. If the log posterior density is going up and up, you haven't reachedthe main mode yet; if it's going down and down, you started near a mode that was tall but narrow,containing little probability mass, and are working your way to a more representative part of thedistribution.Looking at a few chains is usually a good idea, as it can certainly reveal problems that youcan't see by looking at only one chain. If convergence is very slow, however, I sometimes run justone chain, as this can often be better than running several chains for correspondingly less time. Iwouldn't really trust results found with a single chain, though.If you start your chains at points that aren't typical of the posterior distribution, you willcertainly need to discard early states, from the \burn-in" period. These atypical states will oftenbe obvious from the trace plots. If you are using only one chain, the amount you discard shouldbe at least as large as your estimate of the maximum lag at which any of the quantities that youare monitoring have a substantial amount of autocorrelation. With a few chains, the same ruleshould probably apply, even though with many chains you could in theory diagnose convergencebefore this. If after discarding \burn-in" states, you are left with less than half the run, you clearlyhaven't run for long enough. Typically, one would discard only a small fraction of the run.7



Kass: What about the case in which marginals of some parameters seem to converge but othersdon't?Gelman: Start by setting the parameters that are not converging to reasonable �xed values; thendo the inference for the others conditional on them. I think it's necessary to do serious thinkingin these situations to understand why the problem is occurring and whether it is a real statisticalproblem or just slow convergence.Carlin: Yes, the usual acceleration tricks apply, such as reparametrizations, blocking (updatingparameters in medium-dimensional groups), collapsing (generating from partially marginalized dis-tributions), and using cycles or mixtures of MCMC algorithms (Tierney, 1994; Gelfand and Carlin,1995). But careful thought is required. It's easy to create examples where the \parameters ofinterest" appear to have converged, but in fact have not due to slowly converging nuisance param-eters. For instance, suppose Y has a Normal distribution with mean �1 + �2 and variance 1, andthe parameter of interest is � = �1 + �2. If we put proper priors on �1 and �2, these parametersbecome identi�ed, but if these priors have large variances the parameters are \just barely" iden-ti�ed. (See the exercise on p.203 of Carlin and Louis, 1996.) The resulting slow convergence for�1 and �2 causes a correspondingly slow convergence for �, but the problem is apparent only fromthe � output; no plot or diagnostic for � suggests any convergence failure. So simply stopping thesampler when the parameters of interest appear to have settled down is a terrible idea.Neal: That's a nice example. Unless you are very sure you know what's going on (and o�handI can't see how you could be), you should never use a chain to estimate the expectation of onefunction of the parameters if another function has clearly not converged.
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How useful are transformations?Kass: Brad mentioned transformations. How important are they and what general guidelines arethere for choosing them?Gelman: Very important. Two kinds of transformations I like are: (a) setting nonidenti�ed orpoorly identi�ed parameters to �xed values (a special case of introducing general constraints), and(b) rotating/scaling to get approximate posterior independence.Carlin: Even simple transformations, such as taking the log of a parameter with a heavily right-skewed marginal distribution, can be surprisingly helpful. Also, hierarchical centering (Gelfand,Sahu and Carlin, 1995, 1996), which involves centering random e�ects around their means inhierarchical models, can be very e�ective. These transformations don't even involve a Jacobian,and can lead to surprising reductions in parameter correlation, hence accelerating convergence.Neal: Transformations can be very bene�cial. In high-dimensional problems, they can also be hardto �nd, and possibly hard to apply even if you can �nd them. Doing a general rotation in orderto decorrelate parameters is out of the question if you have hundreds or thousands of parameters.Finding problem-speci�c transformations such as Brad mentioned may be more promising thantrying to apply some general technique.Gelman: Once again, I think Radford is the skeptic here because he works with more complicatedmodels. For the relatively simple problem of hierarchical linear regression models, Boscardin (1996)shows rotation to be e�ective (reducing computation time by a factor of 10 to 40) even with hundredsof parameters.
9



Starting valuesKass: What general guidelines are there on �nding good starting values?Gelman: I use estimates from simpler models (e.g., setting hyperparameters to �xed values),estimates using less information (e.g., discarding missing data), or simpler methods (e.g., maximumlikelihood). With Gibbs sampling, you often only have to specify either the main parameters orthe hyperparameters { the others automatically get updated in the �rst step. I try to make surethe chain is overdispersed (this is easiest when the prior distribution is informative).Carlin: I typically use prior distributions that are vague but not arbitrarily so, and centered neara value that I feel the data could logically support. So a very simple rule for initializing 5 parallelchains for �i is to start chain j at �i + (j � 3)�i; j = 1; : : : ; 5, where �i and �i are the prior meanand standard deviation of �i. Note that this doesn't really create much \overdispersion," sincethe 5 starting values lie on a single ray in the full parameter space, rather than being randomlydistributed throughout it. But it seems to work well in most practical settings.Kass: When you say \work well" you mean that you are sometimes able to detect multiple modes?Carlin: Yes, though in the posterior surfaces I see, ridges seem to be more common than multiplemodes. Even more commonly, this crude initialization procedure allows me to detect convergencefailure.Gelman: Let me echo Brad here. I've encountered slow convergence in distributions that areessentially unimodal but are full of ridges in high dimensions. I've also found obvious programmingand modeling bugs using multiple starting points (see, e.g., p. 134 of Gelman, 1996).Neal: The problems I usually work with (e.g., neural network models, mixture models) may be abit di�erent from those that Andrew and Brad work with. The maximum likelihood estimates for10



these models are often ridiculous. For example, maximum likelihood for a mixture of normals willplace components having zero variance right on the data points. Accordingly, I often just start allthe chains in the same place, perhaps the prior mode. I also often use a di�erent Markov chain forthe �rst few iterations than I use later; in this chain, I sometimes �x some of the hyperparameters,in order to prevent them from taking on strange values in the period before the other parametershave adopted reasonable values.Poor behavior of the chainKass: What do you usually do when you have di�culties with convergence?Gelman: Here are four problems that can lead to MCMC convergence di�culties, listed in in-creasing order of di�culty of diagnosis and repair:1. Problem: poor convergence (slow, too slow, or really too slow). Method of checking: multiplestarting points, check bR, examine sequences if bR remains far from 1. Potential solutions: (a)if slow, run longer; (b) if too slow, tune algorithm (e.g., reparameterize Gibbs, alter scalesof Metropolis jumps, etc.); (c) if really too slow, alter algorithm in a serious way, e.g., byputting in jumps between modes, using auxiliary variables (Swendsen and Wang, 1987; Besagand Green, 1993), simulated tempering (Geyer and Thompson, 1995; Neal, 1996b), and soon.2. Problem: mistake in implementation of MCMC or coding the model. Methods of checking:(a) rerun with simulated data; (b) work up from a simpler model; (c) try to �t a smaller, orbetter-behaved, data set. Potential solution: debug the code!3. Problem: nonidenti�ed/underidenti�ed model (includes improper posterior distribution) orpoorly-understood model (can occur when allowing parameters that were previously �xed to11



be estimated from data). Methods of checking: (a) rerun with simulated data (altering priordistribution to be proper, if necessary); (b) �tting the model with one or two parameters(those believed to be nonidenti�ed) held �xed at reasonable values. Potential solutions:(a) sensitivity analysis (perform inference conditional on the poorly identi�ed/understoodparameters rather than averaging over them, as in full Bayes); (b) more realistic joint priordistribution on all the parameters in the model. (Adding an informative prior distribution canmake sense statistically and also make the computation easier, as Brad mentioned earlier.)4. Problem: poor �t of model to data. Methods of checking: posterior predictive checks, cross-validation, and so on. Potential solution: �t a di�erent model!It is not always possible to distinguish among these problems at �rst. For example, supposeyou run the simulations, and bR is stuck at a high value (i.e., your Markov chain sequences are notmixing). This could be caused by any of the problems above. So it is generally necessary to do allthese sorts of checks to have con�dence in the model and simulation results.An analogous situation arises in traditional statistical analysis via maximum likelihood. Forexample, in regression analysis, the four problems mentioned above translate to (1) numericalinstability, (2) mistake in implementation, (3) ill-posed problem (multicollinearity), and (4) poor�t (perhaps because there are important nonlinear terms or interactions not included in the model).Nowadays, diagnosing (1) and (3) are automatic with a good computer program, and regressionsoftware is standard enough that (2) almost never occurs. Thus the user can concentrate on (4), forwhich we have standard tools, such as residual plots. Things are more complicated with GLM's,but we're getting there. Problems (1) and (3) are rare (although there are some tricky points with,e.g., identi�ability in multinomial probits); (2) is becoming much less of a problem with softwaresuch as SAS and the modeling notation in S; and lots of research has gone into automatic diagnostics12



for (4), though of course a common approach nowadays seems to be to examine numerous highdimensional models, with the consequent converse problem of over�tting the data.With MCMC for Bayes posterior distributions, I think we're in pretty good shape on (1), andlots of work is going on with (4), of course (see e.g. Gelman, Meng, and Stern, 1996). I thinkthat the good MCMC programs in the future will have automatic features to increase e�ciency,fake data simulation, sensitivity analysis (�xing hard-to-�t parameters rather than automaticallyaveraging over everything), �tting simpler models or the same model with less data, posteriorpredictive checks, and cross-validation.Neal: This is a good categorization of problems, and Andrew is right that you can't assume at thestart that you know the source of a problem. The problems aren't even exclusive: poor convergencecould be due to an implementation mistake that makes things slower, while still delivering thecorrect answer if you wait long enough (e.g., using a Metropolis proposal distribution that wasn'twhat you meant to use, but which had the symmetry required for correctness).Andrew lists poor convergence as the easiest problem to diagnose. This is often the case, butperhaps the most worrying aspect of MCMC is that poor convergence can be present without anysigns of it being evident | for instance, if a mode with substantial probability has never beenvisited by any of the chains. To really check for this, you need to run many chains with an initialstate distribution that you somehow know is adequate to �nd all modes. Alternatively, you canuse one of the tempering schemes that Andrew mentioned, which are the only methods currentlyavailable for getting the chain to move between modes when you don't know where the modes arelocated.I do a lot of work on methods for speeding up convergence, so I might well view poor convergenceas an opportunity. For users more interested in getting an actual answer, a judicious transformation13



could be the solution, as could use of a di�erent MCMC method. There are several methods thatare not well known in the statistics community that can speed up convergence by huge factorsin some problems, by suppressing the random walk that Gibbs sampling and simple forms of theMetropolis algorithm take; see my review (Neal, 1993), a recent technical report of mine (Neal,1995), and for an example involving neural network models, my book (Neal, 1996a).In addition to Andrew's suggestions for detecting implementation mistakes, I would add another:Compare with a completely di�erent implementation, preferably a simpler one. One implementationthat is often easy to get right is rejection sampling from the prior. Of course, this is hopelesslyslow for real problems, but it can be adequately fast for a small data set, with a fairly narrow priorin the vicinity of the true parameter values. The idea is to check that the MCMC method gets thesame answer in such an easy situation. Using standard software, one would hope that such checksare not usually necessary, though the possibility of bugs should always be kept in mind.Kass: It sounds like you are all in agreement on this issue: the more checking you do, thebetter. Multiple chains, multiple models, and multiple algorithms are all valuable. Let's returnto the problem of non-identi�ability, or near-non-identi�ability, which Brad illustrated with theN(�1+ �2; 1) example. Although in this simple case the problem is obvious, it is often encounteredin more subtle forms, correct?Gelman: Yes, there are lots of cases where you run into non-identi�ability or near-non-identi�ability.Neal: But provided the posterior is proper, this is not a problem for MCMC methods | assumingyou've determined that the nonidenti�ability isn't due to a bug. It might be a statistical problem,but in my opinion, concern over this is often misplaced. In mixture models, for example, there is anatural nonidenti�ability involving re-labelings of the mixture components. This is harmless, sincethis sort of multimodality is just due to relabelling the various components; the modes all have the14



same e�ect. You should not try to get rid of it by imposing constraints on the parameters values,as this can do serious harm to the convergence of your Markov chain.Carlin: I agree that certain types of nonidenti�ability are harmless, but correctly implementingsamplers under such models is certainly more di�cult, since it requires a �rm understanding ofwhich parametric functions are well-identi�ed, and which are not. While some types of noniden-ti�ability will be immediately apparent, in more complicated settings (e.g., hierarchical randome�ects models), failures in identi�ability can be very subtle, muddying convergence diagnosis.Gelman: In the Bayesian framework, one way to look at identi�ability is a parameter is notidenti�ed if its posterior distribution is the same as its prior. This just puts the burden back uponus to understand our models.Improper or very di�use posteriorsKass: In a couple of places already we've touched on the possibility that the posterior is improper.Sometimes a proper prior is used, but it is so widely dispersed that the posterior e�ectively (fornumerical purposes) becomes improper even though it is mathematically proper. What can bedone to check for or avoid these situations?Gelman: A basic way to check is to play around with informative prior distributions. For example,in a toxicokinetic modeling problem (Gelman, Bois, and Jiang, 1996), we had prior distributionscut o� at �3�, where � was the prior standard deviation. Then if the simulations converged to theboundary (which could be caused by slow convergence, programming error, model mis�t, or justbecause the prior bounds were not appropriate), we'd see the problem (not a foolproof method, butit actually revealed a problem to us in this case). Then we checked things by changing the cut-o�to �2� and �4� to see if anything changed. Seems like a lot of work but maybe much of it could15



be automated.Carlin: It's important to remember that improper posteriors are sometimes created deliberately tomake the sampling process easier (see e.g. Besag et al., 1995, for several examples). The unidenti�edparameters will of course never converge, but the identi�able ones (say, contrasts in an ANOVA-type model) may be very well behaved. Of course, it's critically important that the user understandthe precise nature of the unidenti�ability, before he or she ignores the former sort of \convergencefailure" and proceeds with the analysis. (The very recent paper by Gelfand and Sahu, 1996, containsa nice discussion of this issue.) So the beginner may be well-advised to avoid such models, alwaysstarting with one that ought to be well-identi�ed by the data, and using some of the remedies wehave mentioned if the MCMC output suggests it is not.Neal: I like to use informative proper priors, since then I can be sure that the posterior is proper,though I might sometimes use an improper prior if I had a proof that the posterior will neverthelessbe proper. I can't see o�hand why one would want to live dangerously by sampling from an improperposterior, nor would I be comfortable if I wasn't sure whether or not the posterior was proper.Gelman: I agree that you don't want to be simulating from a posterior distribution when youdon't know if it's proper. But it can be okay to have an improper posterior distribution foran auxiliary parameter that has been added solely for computational purposes. For example,consider the mixed e�ects model, y � glm(X� +W�); � � N(0; �2I). This can be rewritten asy � glm(X�+�W�); � � N(0; �2I), where � = ��. Using the new parameterization, Gibbs can goa lot faster (see the discussions of Meng and Van Dyk, 1997), even if both � and � have improperposterior distributions.
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Checking resultsKass: How can you check results? I presume you think it wise to compare with maximum likelihoodwhen possible, for example.Gelman: Yes. Compare with anything and everything. Of course, if they disagree, you thenhave to decide whether it's worth putting in the e�ort to understand why. Usually it is. Di�erentcomputational methods are complementary, not competitive.Carlin: I agree completely. Applied Bayesians love the maximum likelihood estimate; after all,it's often nothing but the posterior mode under a 
at prior! Also, we should keep in mind thatfor low-dimensional problems, alternative methods often serve as good checks and may be moree�cient. Traditional quadrature methods (even newer adaptive ones) have been almost forgottenin the recent rush to MCMC; Evans and Swartz (1995) provide a nice recent summary focusing onsuch methods.Kass: Along these lines let me mention my colleague Alan Genz's collection of Fortran routinesfor numerical integration and importance sampling, which he calls BAYESPACK. Based on methodsdescribed in Genz and Kass (1997), this collection is available from the websitehttp://www.math.wsu.edu/math/faculty/genz/homepage.SoftwareKass: I want to turn to software for MCMC, but as a lead-in let me try to rephrase the questionwith which we began this discussion. In standard situations, such as generalized linear modelsor generalized mixed models, if all appears to have gone well with the simulation, that is, if theMarkov chain appears to have converged satisfactorily, how much more do you worry?
17



Carlin: Assuming the results appear reasonable, not much more. Most of the MCMC convergence\horror stories" I've seen have either been the result of authors failing to check their answers(e.g., by running even one more sampling chain), or applying the technology to models certain tocause trouble (e.g., attempting to sample from the so-called \witch's hat" distribution, a mixtureof a bivariate uniform with an extremely highly peaked bivariate normal). Most of the modelsencountered in statistical practice are far less pathological, so if you've checked things out and theylook good, they probably are.Gelman: I agree.Kass: Fine. Then on software, certainly the most useful package so far for MCMC is BUGS. Whatsorts of things should a BUGS user keep in mind?Carlin: I think I'm the only one here with much BUGS experience, so I'll try this one. I'ma big fan of BUGS; indeed the U.S. mirror for the program's (U.K.) web site at the MedicalResearch Council Biostatistics Unit at Cambridge University is on my machine at Minnesota(http://www.biostat.umn.edu/mirror/methodology/bugs/). Initially, I think some people dis-missed the program as just another piece of freeware, since early versions of the program couldhandle mostly just \toy" problems, and were fairly buggy (making the program's name a doubleentendre!). However, the latest release (Version 0.5) is general and reliable enough to be used as atool for both teaching and research; more and more scholarly papers (including some of my own)list BUGS as their computational engine. Its S-like syntax is readily accessible to statisticians, andthere is certainly nothing else like it on the market, commercial or otherwise.When running the program, one thing to keep in mind is that its error messages occasionallyrefer to the line in the code where it �rst noticed the problem, not where the error actually occurred,so debugging BUGS code can be a challenge. Parallel chains are also still a bit awkward in BUGS,18



but I think the user should resist the temptation to give up and just run a single chain. WhileBUGS itself contains only crude convergence diagnosis abilities, the accompanying post-samplingmenu-driven S-plus function for this purpose, CODA (a musical analogy, and also an anagram ofConvergence Diagnosis and Output Analysis), provides a wealth of diagnostic and summarizationtools that are fully equipped to handle parallel chains (Best, Cowles and Vines, 1995). Finally, BUGSat present features no Metropolis-Hastings updating capability, so all full conditional distributionsthat are not log-concave must be discretized onto a grid and sampled by brute force, a somewhatinelegant (though often adequate) solution.Gelman: Although I'm also a fan of the BUGS project, whenever my collaborators and I have triedto use it for our applied problems, it's always turned out to be easier to write our own programsthan to get BUGS to work | but I expect that'll change in a few years.Kass: The BUGS writers emphasize directed acyclic graphs (DAGs) in formulating models. Do you�nd yourself using DAGs in your MCMC work?Gelman: No.Carlin: No, I still do it the old-fashioned way, using stacks of algebraic symbols like Yij�i �N(�i; �2). But I can certainly see why the DAG approach might be more attractive to a statisticianworking with a subject-matter specialist, who may have some idea about causation in the systembut no stomach for algebra. Of course, this is all modulo the usual worries about causation andcorrelation not being the same thing; in the speci�c context of using DAGs with the BUGS language,see the last paragraph of Fienberg (1996).Neal: Yes, I like DAGs. What else would you scribble on a blackboard?Kass: How do you make sure you've gotten the formulation set up correctly?19



Gelman: By expanding from previous models that I understand: starting simple (e.g., settinghyperparameters to reasonable values), getting that to work, then making the model more complexand realistic.Carlin: And by checking your code carefully at every step!Standard errorsKass: As Brad mentioned, one nice thing about importance sampling is that the observations areuncorrelated, so that simulation standard errors are easy to compute. There are a variety of waysto compute standard errors with MCMC. What method do you use?Gelman: For Bayesian inference, I never assess MCMC standard errors because I am interestedin inference about parameters and predictions, not functionals. For instance, suppose my 95%posterior inference for a parameter is [2.4,3.9], with bR = 1:05. Then if the simulation were runforever, I would expect the interval to shrink by as much as a factor of about 5%. There is noreason to compute MCMC standard errors here.Carlin: But there is still Monte Carlo error associated with your interval endpoints { how shallwe measure it, given that the samples are correlated? I think MCMC standard errors are relevantno matter what posterior feature you're interested in. For example, writing the post-convergencesamples from a single sampling chain for the ith parameter as �(g)i , we could certainly estimate theposterior mean as Ê(�ijy) = ��i = 1G PGg=1 �(g)i , the sample mean of all our MCMC samples. Butwe can't simply use the sample variance, s2i = 1G�1 PGg=1(�(g)i � ��i)2, divided by G as our estimateof the MCMC standard error of ��i, since it would very likely be an underestimate due to positiveautocorrelation in the samples (though this problem could be ameliorated by combining the drawsfrom a collection of initially overdispersed sampling chains, as discussed earlier). Relatedly, the20



sample variance s2i will be a slightly negatively biased estimate of the posterior variance of �i,though it should be a reasonably good estimate whenever the sample mean is a good estimate ofthe posterior mean.An early remedy suggested keeping only every kth sample to achieve approximate independence,but MacEachern and Berliner (1994) proved the intuitive result that this wasteful approach is alwayssuboptimal. A simple approach that seems to produce suitably conservative (larger) standard errorestimates is batching, described for example in Section 6.2 of Ripley (1987), or in a more speci�callyGibbs context on pp.194{5 of my book. Time series methods, as described for example by Ripley(1987, Sec 6.3) or Geyer (1992, Sec 3.1), seem a bit more complicated to implement but may wellproduce superior answers given the proper tuning.Neal: I usually compute standard errors for an estimate of a posterior expectation using estimatesfor the autocorrelations. Partly, this is because I often want to look at the autocorrelations anyway,just to see what's going on. The idea (see e.g. Ripley, 1987; Neal, 1993) is to base the standarderror on an \e�ective sample size", found by dividing the number of points used from the chain(G in Brad's comment) by the autocorrelation time, � , which is de�ned to be 1 + 2P1k=1 �(k),where �(k) is the autocorrelation at lag k for the parameter of interest, �i. The standard errorfor ��i is then qs2i =(G=�). Of course we have only estimates for the autocorrelations, and henceonly an estimate for � . It is necessary when estimating � to cut o� the sum at a value for k wherethe autocorrelations seem to have fallen to near zero, as including estimates for lots of higher lagsadds too much noise. Choosing this cut-o� may seem a bit subjective, but batching methods havesimilar fudge parameters.A remark on a comment by Brad: s2i = 1G�1 PGg=1(�(g)i � ��i)2 is actually a consistent estimatorfor the posterior variance of �i, even in the presence of correlations, though it would be better to21



divide by G�� rather than G�1.Gelman: There's an interesting distinction here between researchers and users of computationalmethods. All four of us are researchers in statistical computation, but then when we work onour applied problems, we become mere \users." As a researcher, I, like Radford, am interestedin autocorrelations and anything else that will help me understand the multivariate Markov chainthat I'm working with. But as a user, it's enough for me to know that the sequences are mixed andI don't need to run any more simulations. As a user, I'm wary of involved data-analytic methods ofestimating the autocorrelation time of simulations|if approximate convergence has been reached,the properties of the simulation process seem irrelevant.What I'm reacting to is the all-too-common practice of an MCMC user spending lots of time andingenuity in studying autocorrelations and so forth, but then spending no time actually checkingthe �t of the model to the data.Kass: So with all this technology you don't want people to forget about doing statistics. Perhapsthat's an appropriate thought on which to end this discussion.ReferencesBesag, J. and Green, P.J. (1993), \Spatial Statistics and Bayesian Computation" (with discussion),J. Roy. Statist. Soc., Ser. B, 55, 25{37.Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995), \Bayesian Computation and StochasticSystems" (with discussion), Statistical Science, 10, 3{66.Best, N.G., Cowles, M.K. and Vines, K. (1995), \CODA: Convergence Diagnosis and Output Anal-ysis Software for Gibbs Sampling Output, Version 0.30," Technical report, Medical Research22
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