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Abstract

The Gibbs sampler, Metropolis’ algorithm, and simi-
lar iterative simulation methods are related to rejection
sampling and importance sampling, two methods which
have been traditionally thought of as non-iterative. We
explore connections between importance sampling, iter-
ative simulation, and importance-weighted resampling
(SIR), and present new algorithms that combine aspects
of importance sampling, Metropolis’ algorithm, and the
Gibbs sampler.

1. Introduction

Currently, one of the most active topics in statistical
computation is inference from iterative simulation, espe-
cially the Metropolis algorithm and the Gibbs sampler
(Metropolis and Ulam, 1949; Metropolis et al., 1953;
Hastings, 1970; Geman and Geman, 1984; Gelfand et
al., 1990). (The Gibbs sampler is in fact a special case
of the generalized Metropolis algorithm; see Section 4.3
below.) The essential idea of iterative simulation is to
draw values of a random variable x from a sequence of
distributions that converge, as iterations continue, to
the desired target distribution of x. For inference about
x, iterative simulation is typically less efficient than di-
rect simulation, which is simply drawing from the tar-
get distribution, but iterative simulation is applicable
in a much wider range of cases, as current statistical
literature makes abundantly clear (see, e.g., Smith and
Roberts, 1993, Besag and Green, 1993, and Gilks et al.,
1993).

This paper presents iterative simulation methods as
an outgrowth of the non-iterative methods of rejection
and importance sampling, both of which use simulation
to correct an approximation of the target distribution.’
The connection between iterative and non-iterative sim-
ulation is of interest for three reasons. First, a unified
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1 Another related and important topic, which we will not dis-
cuss here, is analytic approximations to integrals; see Tierney and
Kadane (1986) and Morris (1988).

treatment is appealing, and highlights the similar prob-
lems faced by users of all of these methods. Second,
the general formulation suggests potentially useful new
methods, such as the iterative importance resampling of
Section 3.3 and the Metropolis-approximate Gibbs sam-
pler of Section 4.4. Third, noniterative simulation can
be important for obtaining starting distributions for it-
erative algorithms, as discussed in Gelman and Rubin
(1993).

2. Normal-based Inference

2.1. Modes, Standard Errors, and the Normal
Approximation

A point estimate and its associated standard error (or,
more generally, its variance-covariance matrix), are mo-
tivated, explicitly or implicitly, by the normal approxi-
mation. Typically, the mean of the normal approxima-
tion is set equal to the mode (i.e., the maximum likeli-
hood estimate or the posterior mode), and the inverse
variance matrix is approximated by the negative of the
second derivative matrix of the log posterior distribution
at the mode. Computing these can be difficult in highly
multivariate problems. Just finding the mode can re-
quire iteration, with Newton’s method and EM (Demp-
ster, Laird, and Rubin, 1977) being popular choices for
common statistical models. Estimates of the “variance
matrix” can be computed by analytic differentiation, nu-
merical differention, or combined methods such as SEM
(Meng and Rubin, 1991).

2.2. Approximation Using a Mixture of Nor-
mals

When the distribution is multimodal, it is necessary to
run an iterative mode-finder several times, starting from
different points, in an attempt to find all the modes.
This strategy is also sensible and commonly used if the
distribution is complicated enough that it may be mul-
timodal. Once all the modes are found (possibly a diffi-
cult task) and the second derivative matrix calculated at
each mode, the target distribution can be approximated
by a mixture of £ multivariate normals, each with its



own mode ui and variance matrix Yj; that is, the tar-
get density P(z) is approximated by
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where K is the number of modes, d is the dimension of
x, and wy is the mass of the k-th component of the mul-
tivariate normal mixture. The masses wy can be calcu-
lated by equating the approximate density P to the exact
density P at the k modes, so that P(us) = P(ug), for
k=1,..., K. Assuming the modes are well-separated,
this implies that for each k, the mass wy is roughly pro-
portional to |Xg |2 P (us).

2.3. Student-{ Approximation

In general, one can replace the normal approximation
by a multivariate ¢, with the same center and scale, but
wider tails. A mixture of Student-t densities with 1 de-
grees of freedom has density

Z |E |1/2 + (2
(2.1)

and can be simulated by first drawing from the normal
mixture of Section 2.2 and then dividing the sampled
vector by a x% random deviate, divided by n. Because of
its wide tails (and that it can be easily simulated and its
density function is easy to calculate), the multivariate ¢
will turn out to be useful as a starting distribution for
the exact simulation methods described below.
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3. Using Analytic Approximations and
Importance Weights to Obtain Exact
Simulations

3.1. Rejection Sampling

A simple way to draw samples from a target distribu-
tion P, using an approximate starting distribution Py, is
rejection sampling, which requires the ability to calculate
P(z)/Py(z), up to a proportionality constant, for all .
We will label w(z) < P(x)/Py(z), the importance ratio
of z. In addition, rejection sampling requires a known
constant M that is no less than sup w(z). The algorithm
proceeds in two steps:

1. Sample x at random from Py(x).
2. With probability %, reject x and return to step
1; otherwise, keep .

An accepted z has the correct distribution P(z); that
is, the conditional distribution of drawn x, given it is
accepted, is P(x).

The above steps can be repeated to obtain additional
independent samples from P. Rejection sampling cannot
be used if no finite value of M exists, which will happen
when P, has lighter tails than P, as when the support
of Py is smaller than the support of P. (Hence the use
of a multivariate ¢, instead of a normal, for a starting
ditsribution.) In practice, when Py is not a good ap-
proximation to P, the required M will be so large that
almost all samples obtained in step 1 will be rejected in
step 2. The virtue of rejection sampling as an iterative
simulation method is that it is self-monitoring—if the
simulation is not working, you will know it, because no
simulated draws will be accepted.

3.2. Approximate Rejection Sampling Using
Importance Ratios

When no bound on w(z) is known, rejection sam-
pling is impossible. However, one can still draw sam-
ples (M ... 2WN) from Py(z), and calculate their im-
portance ratios, w(z("), for = 1,..., N, known only up
to a proportionality constant. The method of importance
weighting seeks to adjust the sampling by using w(ac(l))
to weight each random sample, z(Y. Instead of discard-
ing samples, those values (Y with low importance ratios
are just downweighted.

For any finite N, importance weighting gives only ap-
proximate results; it can thus be thought of as an itera-
tive simulation method, improving as N increases. For
importance weighting to be effective, the starting distri-
bution Py should cover the target distribution P, in the
sense that the importance ratios should not get too high.
Even if importance ratios are unbounded, the method
can still be useful—in contrast to rejection sampling—
but the large values should be rare with respect to the
target distribution.

Importance weights can be used to get a sequence of
draws that approximately follow the target distribution
by using the method of importance resampling (called
SIR for “sampling-importance resampling” in Rubin,
1987, 1988). If N draws from the approximate starting
distribution Py have been created, a sample of n < N
draws from a better approximation can be simulated as
follows.

1. Sample a value z from the set {z(), ... (")},
where the probability of sampling each () is pro-
portional to the weight, w(z(®).

2. Sample a second value using the same procedure,
but excluding the already-sampled value from the
set.

3. Repeatedly sample without replacement n — 2 more
times.



3.3. Iterative Importance Resampling

For any fixed N, importance resampling yields draws
from an approximation to the target distribution. We
can allow the approximation to improve in a smooth way
as n — oo by simply increasing N as n increases, that is,
by expanding the pool of candidates (:C(l), . ,:E(N)) as
more values are subsampled (without replacement) with
probabilities proportional to their importance ratios; for
example, N could increase as the square of n.

The simulation procedure thus becomes iterative: at

each time t = 1,2, ..., a single draw z; is taken from the
set (x(l), . 7:10(1\[)), with probabilities of sampling pro-
portional to importance weights. The set (:C(l), . 7:10(1\[))

is created by supplementing the set of previously unsam-
pled draws at time ¢ — 1 with new independent draws
from the approximate distribution Py. (We use the no-
tation ¢ for samples taken in succession, as opposed to
n, the number of values in the final sample.)

If the importance ratios Py(x)/P(x) are bounded, the
distribution of the samples x; converge to the target dis-
tribution as t — 00.2 The importance ratios will be
bounded if the starting distribution Py has support at
all the modes of interest in the target distribution P and
has at least as heavy tails. We then say that the starting
distribution is overdispersed, which is desirable.

The sequence z1, 2, ... can be thought of as (depen-
dent) draws from successively improving approximate
distributions Py, P»,... that form a transition from the
starting distribution Py toward the target distribution P.
This is a conceptual improvement upon the basic attack
of importance resampling, which provided no intermedi-
ate steps between the starting and target distributions.
An obvious limitation, however, is that for all ¢, the sup-
plemental draws are from Py, which may be a much less
accurate approximation to P than that afforded by P;_;.
Section 4 reviews Markov chain methods, which modify
the drawing distribution as ¢ increases. Related ideas
connecting importance weighting to iterative simulation
appear in Tanner and Wong (1987), Gelfand and Smith
(1990), and Kong, Liu, and Wong (1991).

2With unbounded importance ratios, the simulations may still
converge to the target distribution. In general, the distributions
of the resampled draws depends on the rate of increase of the pop-
ulation sample size N. Determining the necessary and sufficient
conditions for convergence of importance resampling is a difficult
problem not addressed in this paper.

4. A Review of Markov Chain Methods
for Exact Simulation

4.1. Why is Markov Chain Simulation Needed?

Markov chain methods are especially desirable when
no starting distribution is available that is accurate
enough to produce useful importance weights. If the
starting distribution is not close, the importance weights
will be so variable that, for reasonable values of n and N,
the set of draws from importance resampling will be a
poor approximation to the target distribution. In order
to correct the defects of the drawing distribution, Py, we
must rely on a very large N.

In contrast, with any starting distribution that even
loosely covers the target distribution, the steps of a
Markov chain simulation directly improve the approxi-
mate distributions from which samples are drawn. Thus,
the distributions, used for taking each draw, themselves
converge to P as t increases. In a wide range of prac-
tical cases, it turns out that the iterations of a Markov
chain simulation allow accurate inference from starting
distributions that are much too vague for useful results
from rejection or importance resampling. See Tierney
(1991) for a unifying overview of many Markov simu-
lation methods and Gelfand and Smith (1990) for an
example in which importance resampling compares un-
favorably to the Gibbs sampler.

4.2. The Method of Metropolis and its Gener-
alizations

Given a target distribution P(z), the generalized
Metropolis algorithm (Hastings, 1970) draws a sequence
of random points (z(M), (). ..) whose distributions con-
verge to the target distribution. The sequence (z(Y)) may
be considered a random walk whose stationary distribu-
tion is P(x). The algorithm proceeds as follows:

1. Draw a starting point 2(°), for which P(z(®) > 0,
from a starting distribution Py(z).

2. Fort=1,2,...

(a) At iteration ¢, take as input the point z(*=1.

(b) Sample a candidate point & from a jumping dis-
tribution at time t, Jy(&|z(*1).

(c) Calculate the ratio of importance ratios,

__P@) LKD)
— P(z(=D) Jy(3|2D)

(r is always defined, because a jump from 2(*~1)
to

& can only occur if both P(z(*~1) and
Ji(#|z*=1) are nonzero.)
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This method requires the calculation of the relative im-
portance ratios P(z)/J:(x|z") for all ,2’, and an ability
to draw x from the jumping distribution Ji(x|z") for all
2’ and t.

The proof that the iteration converges to the tar-
get distribution has two steps: first, it is shown that
the simulated sequence (z(*)) is a Markov chain with a
unique stationary distribution, and second, it is shown
that the stationary distribution equals the target distri-
bution. The first step of the proof holds if the Markov
chain is irreducible, aperiodic, and not transient (see,
e.g., Feller, 1968). Except for trivial exceptions, the lat-
ter two conditions hold for a random walk on any proper
distribution, and irreducibility holds as long as the ran-
dom walk has a positive probability of eventually reach-
ing any state from any other state; that is, the jumping
distributions J; must be able to eventually jump to all
states with positive probability.

To see that the target distribution is the stationary
distribution of the Markov chain generated by the gen-
eralized Metropolis algorithm, consider starting the al-
gorithm at time ¢t — 1 with a draw z(*~1) from the tar-
get distribution P(z). Now consider any two points y
and z with positive probability under P, labeled so that
P(z)Ji(y|z) > P(y)Je(z]y). The unconditional probabil-
ity of a transition from y to z is

with probability min(r, 1)
otherwise.

Pr(zV =y, 2 =2) = P(y)Ji(z|y),

and the unconditional probability of a transition from z
to y is

Pr(zV =2z 20 =y)

P(y)Ji(z]y),

which is the same as the probability of a transition from
y to z. Since their joint distribution is exchangeable, z:(*)
and z(!~1 have the same marginal distributions, and so
P is the stationary distribution of the Markov chain.

The method of Metropolis et al. (1953) is the same
as that described above, with the restrictions that the
jumping distribution be symmetric and not depend on
t: Ji(ylz) = Ju(zly) = Jo(zly) for any y, 2.2

3Barker (1965) suggests a method identical to Metropolis’,
except that the switching probability at each step is changed
from min(r,1) to —— = S i) N—
’ 1+r P(@)+P(xz(t-1D)"

method may be considered a generalized Metropolis algorithm in

Alternatively, Barker’s

4.3. Gibbs Sampling

Geman and Geman (1984) introduced “Gibbs sam-
pling,” a procedure for simulating a multivariate proba-
bility distribution P(x) = P(x1,...,z4), by performing
a random walk on the vector z = (z1,...,z4), alter-
ing one, possibly vector, component z; at a time. At
iteration ¢, an ordering of the d components of x is cho-
sen and, in turn, each ZCl(-t) is sampled from the condi-
tional distribution given that all the other components
remained fixed:

PailaY),

where z_; = (21,...,2i—1,Zit1,...,24). Each of these
d steps can be interpreted as one iteration of the gener-
alized Metropolis algorithm, with the following jumping
distribution, which only jumps along the i-th compo-
nent, and doe(s so) with the conditional probability of x;
t—1
—1

givenx_; = x obtained from the target distribution:

P |y it =alY

Jit[Gibbs](Z[z~V) = { 0 otherwise

Under this jumping distribution, the ratio of importance
ratios is

P(z)  Ju(z®D|z)
P(x(t=1) Jy (2|x®1D)
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and so jumps always occur, as prescribed by the Gibbs
sampler. Obviously, as described, the Gibbs sampler re-
quires the ability to draw from the conditional distribu-
tions derived from the target distribution.

Usually, one iteration of the Gibbs sampler is defined
as above, to include all d Metropolis steps corresponding
to the d components of x, thereby updating all of = at
each iteration. It is possible, however, to define Gibbs
sampling without the restriction that each component
be updated in each iteration.

4.4. Gibbs Sampling with Approximations

For some problems, sampling from some, or all, of the
conditional distributions P(x;|z_;) is impossible, and
one must resort to approximations g(x;|x_;). Trying

which the jumping distribution J(y|z) is replaced by

P(y)
P(y) + P(2)

See also Hastings (1970) for further discussion of Barker’s,
Metropolis’, and related algorithms.

J[Barker](y|z) = J(y|z) for all y # z.



to perform the Gibbs sampler directly, using the condi-
tional distributions ¢ instead of P, will not work. The
generalized Metropolis algorithm, however, is suited for
the task. As in the Gibbs sampler, we must choose an
ordering for altering the d elements of z; the jumping
function at the i-th Metropolis step at iteration ¢ is then

T I (F )
Ju@latny - [ @) e =
(e ) 0 otherwise,

and the ratio of importance ratios is

P(#)  Ju(a®Y|3)
P(x(t=1) Jy(z|xt=1)
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which is identically equal to 1 only if g(z|z_;) =
P(z|z_;). If g is only an approximation, the Metropolis
step will have a positive probability of not jumping.

5. Discussion

A large and expanding family of iterative and non-
iterative simulation algorithms exist for approximating
a target distribution using samples from a starting distri-
bution. Despite the non-iterative appearance of rejection
and importance sampling, all the available methods (ex-
cept for direct simulation) yield exact simulations of the
target distribution only in the limit that the number of
samples n — co. (Rejection sampling, however, has the
advantage that once samples have been obtained, they
are known to follow the target distribution.) In every ap-
proach, the starting distribution is key; an overdispersed
start has long been recognized as necessary for rejection
and importance sampling, and more recently been advo-
cated for Markov chain simulation (Gelman and Rubin,
1992, 1993).

Monitoring convergence of all these methods (except
for rejection sampling) can be difficult for any of these al-
gorithms in practice. Gelman and Rubin (1993) present
one approach based on performing multiple independent
simulation runs which, while designed for iterative sim-
ulation methods such as the Gibbs sampler, might also
be useful for inference from importance sampling.
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