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This paper makes the interesting and important contribution of viewing the pseudo-data ex-pression of the hierarchical linear model as a unifying tool in model checking. (The analytical andcomputational use of the formulation for Bayesian inference is well known; see, e.g., Dempster,Rubin, and Tsutakawa, 1991, and Gelman et al., 1995, chapter 13.) More generally, the authornotes that hierarchical regression models are more di�cult to understand than we might imagine,especially if predictors appear at more than one level in the hierarchy. We would like to echo thatpoint with a statistical anecdote of our own (see Price, Nero, and Gelman, 1996).We �t a hierarchical linear model to the logarithms of home radon measurements in Minnesota,with random e�ects for the counties of measurement. The model thus had variance components atthe within- and between-county levels, which we examined to get an idea of the model's precision.We then added an individual-level predictor|an indicator for whether each house had a basement.Adding the predictor caused the estimated (posterior median) within-county variance to decrease(as expected; houses with basements tend to have higher radon levels), but the estimated between-county variance substantially increased, which was completely unexpected. What was going on?After some thought, we realized that the counties with more basements happened to have higherrandom e�ects (in the second model). In the �rst model, much of the variation in county radon1



levels was cancelled by an opposite variation in the proportion of basements. The increased between-county variance in the second model indicates true variation among counties that happened to bemasked by the �rst model.This sort of pattern, caused by correlation between individual-level variables and random e�ects,does not occur in non-hierarchical regression. We suspect that the tools developed in the paperunder discussion will be useful in understanding this sort of data structure, and we look forward tofuture work in this area.Finally, we disagree with the claim in Section 3.2.2 that \Bayesian diagnostics : : : place an extralayer of mathematics between the analyst and the data." Posterior predictive checks|comparisonsof observed data to their predictive distribution under an assumed model|can be performed graph-ically and, in fact, can be simpler to interpret than classical methods such as Studentized residualplots (see Rubin, 1984, and Gelman, Meng, and Stern, 1996).ReferencesDempster, A. P., Rubin, D. B., and Tsutakawa, R. K. (1981). Estimation in covariance componentsmodels. Journal of the American Statistical Association 76, 341{353.Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis. London:Chapman and Hall.Gelman, A., Meng, X. L., and Stern, H. S. (1996) Posterior predictive assessment of model �tnessvia realized discrepancies (with discussion). Statistica Sinica 6, 733{807.Price, P. N., Nero, A. V., and Gelman, A. (1996). Bayesian prediction of mean indoor radonconcentrations for Minnesota counties. Health Physics 71, 922{936.Rubin, D. B. (1984). Bayesianly justi�able and relevant frequency calculations for the appliedstatistician. Annals of Statistics 12, 1151{1172.
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