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SUMMARY

Maps of disease rates (and other quantities) often must contend with variance associated with variable pop-
ulation sizes and low incidence within spatial units. These characteristics can lead to substantial statistical
noise that can mask underlying spatial variation. As Gelman and Price illustrated, most conventional mapping
methods fail to address this problem, and in fact can introduce statistical artefacts; mapped quantities can
show spatial patterns even when there are no spatial patterns in the underlying parameter of interest. Kafadar
evaluated the performance of the headbanging algorithm for spatial smoothing (Tukey and Tukey, Hansen)
for eliminating small scale variation and preserving edge structure. Here we perform a simulation study to
investigate the artefacts of maps smoothed by unweighted and weighted headbanging. We �nd substantial
artefacts that depend on the spatial structure of the statistical variation (for example, the spatial pattern of
sample sizes) and on the details of the spatial distribution of geographic units. The methods used here could
readily be adapted to study other spatial smoothers; we choose headbanging because (i) it is an important
method used in practice, and (ii) its heavily computational nature is naturally studied using simulation (in
contrast to the analytical methods used by Gelman and Price). Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Maps are frequently used to display spatially varying quantities such as disease rates and pollutant
concentrations. A general di�culty occurs when sparse sampling within geographical regions masks
underlying spatial trends by introducing large uncertainties. Various smoothing techniques have
been proposed to reduce this uncertainty and thus to decipher possible spatial trends by taking
some kind of average (linear or non-linear) of geographically neighbouring data values.
Kafadar [1] compared some two-dimensional smoothers (disk and weighted average, empirical

Bayes, loess, headbanging, resmoothed medians and median polish) by using statistics related to
mean squared error and the amount of putative structure captured by the smoothers, and concluded
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that weighted local mean and median polish tended to oversmooth edge structure whereas the
median-based headbanging algorithm preserved steep spatial structure.
It is obviously desirable for a statistical method to preserve real spatial structure. In addition,

however, we do not want a method to introduce spatial structure where none is actually present.
Gelman and Price [2] examined this problem by considering the statistical behaviour of estimates
by geographic area when the underlying parameter has no spatial structure. They found that es-
sentially all mapping methods generate statistical artefacts, in that the probability that a given
county’s parameter estimate will be in the top x per cent of all counties is generally a function of
sample size, and thus the mapped estimates show patterns due to spatial structure in the sample
sizes even if the underlying parameter of interest is patternless (see Conlon and Louis [3] for
related work).
The present paper extends this work by examining the artefacts in maps smoothed using the

unweighted and weighted headbanging algorithms; namely, in what way do the sample size and
geographic location of a district a�ect the probability that its local estimate is in the top x per cent
of all districts? The methods used in this paper are quite straightforward – setting up a simple
spatial model and running simulations to study the probabilities of di�erent sorts of outcomes for
the smoothed maps. The purpose of this paper is both to study headbanging and to demonstrate
how a simulation approach can be used to study mapping artefacts in a setting in which analytical
studies are limited.

2. THE HEADBANGING ALGORITHM

The headbanging algorithm is de�ned in terms of data yi observed on points i on the plane, with
the goal of estimating underlying quantities �i. When working with data in geographical districts,
we identify the points with the centroids of the districts. Headbanging proceeds in two steps:
�rst, the identi�cation of triples of points that are used in a median smoother, and, second, an
iterative smoothing algorithm that starts with the data points yi and produces successive estimates
�̂i, sequentially updating these estimates to convergence. The smoothing makes use of weights wi,
which might be the sample size of the data at point i. Before describing our study, we brie
y
outline the motivation and steps of the headbanging algorithm.

2.1. Background and motivation

Median-based smoothers were designed to remove spikes and prevent erosion in time series studies
(see Goodall [4]). Tukey and Tukey [5] proposed headbanging as an extension of these algorithms
to non-gridded spatial data. Hansen [6] implemented that idea on oil �eld and thermal gradient
data. Mungiole et al. [7] expanded this idea to the weighted headbanging algorithm (which we
use in this paper) to allow for di�erential weighting of the values to be smoothed.
The central idea behind headbanging is that certain kinds of spatial variation are likely to be

due to small-sample variation or other statistical noise, while others are likely to represent genuine
spatial variation in the underlying parameters. Speci�cally, a ‘spike’ – a single elevated value
surrounded by lower values – is assumed to be unlikely to represent a real spatial feature and thus
is smoothed out, whereas a ridge or clump of contiguous high values is assumed more likely to
be real and thus is preserved.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2309–2320
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2.2. Identi�cation of triples of points

To implement the idea that contiguous spatial features should be preserved, each point for which a
parameter estimate is to be obtained is determined to be at the centre of some number of triples of
points. A triple of points is de�ned as a set of three points that (a) are nearly collinear, as de�ned
by the angle � at the centre, which must exceed a prespeci�ed �∗, and (b) have two endpoints
that are among the N nearest neighbours of the centre point. The smoothing algorithm (described
below) generates a predicted parameter value for each point by using a median smoother that
operates on some or all of the triples of which the point is in the centre. The maximum number
of triples used is determined by a prespeci�ed parameter, NTRIP; if the point is at the centre
of more than NTRIP triples, then only the NTRIP ‘thinnest’ triples are used, where thinness is
de�ned in terms of the perpendicular distance from the centre point of a triple to the line segment
joining the two endpoints.
A point on the plane is classi�ed as an inner point if it is the centre of two or more triples, as

an edge if it is a centre point exactly once, and as a corner if it is never a centre point.
So-called edge or boundary e�ects are a fundamental di�culty in smoothing due mostly to

the fact that fewer data are available near the boundaries, but also because of properties of the
particular smoother being used. The headbanging algorithm creates ‘arti�cial’ triples for edge or
corner points i by linearly extrapolating the trend from points j and k, both among the N nearest
neighbours of i, to a point lying along the line determined by points j and k, and such that point i
is equidistant from point j and the extrapolated point, e. For this triple centred at i to be formed,
the angle �j at point j should exceed 90◦ + �∗=2. Given the current estimates �̂i, the extrapolated
value at point e is �̂e= �̂j + 2(�̂k − �̂j)dij=djk cos(�j), where the notation d indicates the distance
between two points.

2.3. Smoothing procedure

Weighted headbanging proceeds as follows:

1. Initialize by setting the estimate �̂ to the data vector y.
2. At each point i, apply the following smoothing procedure:
(a) Convert each triple with point i as the centre into a pair (lowl; highl) where lowl and

highl are the lower and higher of the present �̂ estimates at the end points of the lth
triple.

(b) Compute (high screen)i, the weighted median of the highl values, and (low screen)i, the
weighted median of the lowl values, for the triples l that include point i as centre.

(c) Take, for the new estimate �̂
new
i at point i, the weighted median of the following three

numbers: (low screen)i, (high screen)i, and the current estimate �̂i, with weights equal
to the average weight of the units in the low screen, the average weights of the units in
the high screen, and the weight of point i.

3. Repeat the above steps 2–4 for a �xed number of iterations, or until no further change
takes place. (We know of no theoretical results on the convergence of this algorithm, but
convergence has not been a problem in our experience.)

Unweighted headbanging is equivalent to weighted headbanging with all weights set to 1.
To avoid introducing a dependence on the order in which the data points are smoothed, the

vector �̂ is replaced by the updated �̂
new

only at the end of each iteration. Parameters N , the

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2309–2320
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Figure 1. Tennessee with its 95 counties; the number of dots in each county indicates the hypothetical
sample size, which is set to the county population divided by 5000.

number of nearest neighbours of a point that may be used in smoothing that point, and NTRIP,
the maximum number of triples that may be used for smoothing at any point, must be set. Hansen
[6] suggests setting �=135◦.

3. SIMULATION STUDY

3.1. Simulated data

To examine the artefacts that can appear in maps smoothed by headbanging, we perform simulation
studies based on a Gaussian process with either independent or spatially correlated variances. For
these simulations we use the locations of the 95 counties in Tennessee; see Figure 1.
We assume that each county i has an underlying parameter �i (for example, a disease rate, or

the average concentration of a pollutant) drawn from a Gaussian distribution, and that the data
from a county allow estimation of this underlying parameter with an uncertainty that varies with
sample size. We model � as either independent (Var(�)= �2I) or spatially correlated with a simple
distance-dependent covariance (cov(�i; �j)= �2 exp[−(dij=(50 km))2]).
The data vector y is modelled as independent, conditional on �, with Gaussian errors

y= �+ � (1)

with var(�i)= �2=ni. For each county i, we set the ni to the county population divided by 5000,
rounded to the nearest integer; these ni’s vary from 1 to 174, with a median of 6 and a mean of
11.3 (see Figure 1). We set the variance parameters to �=1:0 and �=0:7, which were chosen
to be consistent with the levels of variation in logarithms of measurements of home radon levels
within counties, a topic that motivated some of this research (see Gelman and Price [2]).

3.2. Smoothed estimates

For both the spatially independent and autocorrelated models, we simulate 1000 data vectors y and,
to each simulation, apply the unweighted and weighted headbanging algorithms with �∗=135◦ and
the following three choices of (N;NTRIP)= (8; 10); (6; 8); (4; 6). (These values appeared reason-
able in the sense that they performed well in recovering the mean structure in some exploratory
simulations.) For the weighted algorithm, we use the county sample sizes as weights.
We evaluate headbanging in terms of the properties of the simulated smoothed estimates. Of

particular interest is whether counties with certain characteristics are more likely to be highlighted
than others, in a map in which the top 10 per cent of counties are highlighted. For each simulation
study and each of the three sets of headbanging parameters (N , NTRIP), we examine the probability
that a county will be highlighted – that is, the fraction of the 1000 simulations for which its
parameter estimate is in the highest 10 per cent – as a function of the number of triples used for
smoothing and the county location (in particular, if it is an inner, edge or corner point).

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2309–2320



QUANTIFYING ARTEFACTS IN MAPPING METHODS 2313

Figure 2. The counties of Tennessee with the number of triples used to smooth each county value under three
di�erent settings of the headbanging parameters. Inner points tend to have more sets of triples than edge points,
and the number of triples possessed by a corner point depends on its neighbouring condition for extrapolation.

Even before simulating any data, we can examine the spatial information that will be used by
the headbanging algorithm. Figure 2 displays the number of triples used to estimate each county’s
parameter value, for the three choices of the smoothing parameters N and NTRIP. Inner points tend
to have most triples whereas corner points have the least, but some corner points are associated
with large numbers of triples when the extrapolation conditions work out just right; for example,
one of the counties in the northeast corner of the state is a corner point that has 9 triples when
N =8 and NTRIP=10.
In examining artefacts of mapping, we also compare headbanging to three other estimates: (a)

the raw data; (b) a non-spatial Bayes estimate (shrinking each county’s data yi toward the mean
by multiplying by �2=(�2 + �2=ni)); and (c) a spatial Bayes estimate (shrinking the data vector
y toward the mean by multiplying by the matrix (T−1 + �−1)−1�−1, where T is the spatially-
correlated covariance matrix given in Section 3.1 and � is the diagonal matrix with elements
�ii= �2=ni). The non-spatial and spatial Bayes models exactly match the simulation methods for
the non-spatial and spatial simulated data, so they represent a sort of best case; there is no model
misspeci�cation, so the variation between underlying parameters and their estimates is purely due
to sampling variation. (Even when the model is known, however, we should expect artefacts, as
in Gelman and Price [2].)
We might expect headbanging to perform poorly with respect to the non-spatial simulated data.

For instance, in the non-spatial data, high parameter values have no tendency to clump together
spatially, and thus will often occur as ‘spikes’ that headbanging will tend to smooth out. One
would hope, though, that headbanging would perform better with the spatially correlated data,
since that is at least the sort of data for which the method was designed, although still not optimal
in that headbanging is designed to preserve linear features of elevated (or depressed) values, which
will not be preferentially produced by our assumed isotropic Gaussian process.
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Figure 3. The probability that each county is highlighted (that is, in the top 10 per cent) of head-
banging-smoothed maps with data from the independent and correlated models. Area of each circle
is proportional to the probability that the county is highlighted. (Results are shown for unweighted
headbanging with N =4 and NTRIP=6.) Counties on the border of the state are more likely to be

highlighted, especially with data from the independent model.

3.3. Results

As an illustration of potential spatial artefacts, Figure 3 displays, for each county in Tennessee, the
probability that it is highlighted (that is, in the top 9 of Tennessee’s 95 counties) after unweighted
headbanging (for one choice of the headbanging parameters N , NTRIP), based on simulations from
the independent and correlated models. Edge and corner counties are more likely to be highlighted
than are inner counties, with this e�ect being larger for the independent data than for the spatially
correlated data. Similar plots for other settings of the headbanging parameters and for weighted
headbanging show other patterns, which we shall explore systematically by examining what factors
a�ect the probability that a county is highlighted under the di�erent mapping methods.
We begin by plotting the probability of each county being highlighted versus the logarithm

of the sample size in the county, as displayed in Figures 4, 5 and 6 for unweighted headbang-
ing, weighted headbanging, and the comparison methods (described at the end of the previous
section), respectively. In each �gure, the top row of plots shows results based on simulations
from the spatially independent model, while the bottom row concerns the spatially correlated
model.
Figure 4 shows that, for unweighted headbanging, for all three settings of the headbanging

parameters, there is quite a bit of variation in the probability of being highlighted (by comparison,
if there were no artefacts, the probability of being highlighted would be 10 per cent for all
counties). This is true for both the spatially uncorrelated and spatially correlated simulated data.
There is a slight negative correlation with sample size in the plots, meaning that counties with
smaller samples are more likely to be highlighted, but this e�ect is weak.
In Figure 5, we see that the pattern is reversed for weighted headbanging, where counties with

high sample sizes (and thus high weights, since we set weights equal to sample sizes) are more
likely to be highlighted. For both the weighted and unweighted algorithms, corner and edge points
are more likely to be shaded than inner points, which makes sense since inner points tend to have
more neighbours and thus are smoothed more in the headbanging algorithm.
By comparison, Figure 6 shows the probability of being highlighted versus log sample size

for the raw data and the Bayes algorithms. Just as using an intrinsically spatial method such as
headbanging to analyse data without spatial correlation might be expected to yield poor results,
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Figure 4. Probability of a county being highlighted versus log sample size, for maps
smoothed using unweighted headbanging, for three settings of the headbanging parameters:
(N;NTRIP)= (8; 10); (6; 8), and (4; 6). The top and bottom row are based on simulations
from the spatially independent and autocorrelated models, respectively. Within each plot,
each symbol represents a county in Tennessee, with ◦; ∗ and # indicating inner, edge and

corner points, respectively. Horizontal jitter has been added to separate the points.

we might also expect that �tting the spatial Bayes model to the non-spatial data (or vice versa)
would be unsatisfactory.
For both the raw data and the non-spatial Bayes estimates, the vertical scatter at a given sample

size is due to the �nite number of simulations (1000); there is nothing in the simulated data or
in the statistical methods that systematically treats two counties di�erently if their sample sizes ni
are the same. For the spatial Bayes estimate, though, as for the headbanging estimate, this is no
longer the case; the sample sizes of the surrounding counties (and, in the case of headbanging,
their angular distribution) can also have an in
uence. Thus, if the number of simulations were
greatly increased, the plots in the left and centre columns of Figure 6 would approach smooth
curves, while the rightmost would not.
For both the independent and spatially correlated models, we mostly �nd the patterns identi�ed

by Gelman and Price [2]; maps of raw data and Bayes estimates favour counties with small and
large sample sizes, respectively. The only exception is when the correct (spatial) Bayes estimate
is �t to the spatially correlated data; the correlation with sample size appears here too, but, on
the whole, the spatial artefacts are nearly non-existent, with the probability of being highlighted
close to a constant 10 per cent. This is interesting as a best-case scenario, though it is perhaps not
so realistic a comparison to the other methods, since it assumes exact knowledge of the spatial
autocorrelation matrix. (By comparison, the assumption that �=� is known in the non-spatial Bayes
estimate is less controversial, since this scalar parameter can be readily estimated from data.)

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2309–2320
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Figure 5. Probability of a county being highlighted versus log sample size, for maps smoothed using weighted
headbanging. See caption of Figure 3 for further explanation of these plots.

Figures 4–6 have shown us that headbanging has substantial artefacts; when the parameter of
interest has no underlying spatial structure (top row of each �gure), some counties are about
�ve times as likely to have estimates in the top 10 per cent as are others. The situation is only
slightly better when there is underlying spatial structure to the parameter (bottom row) – some
counties are still much more likely to be highlighted than are others. However, these artefacts
are only weakly associated with sample size. What other factors could be relevant here? The
most natural place to look is in the headbanging algorithm itself. Figures 7 and 8 display, for
the unweighted and weighted methods, the probability of being highlighted as a function of the
number of triples used in smoothing a county’s estimate. (The number of triples depends on the
spatial location of a county relative to its neighbours, and also on the parameters (N , NTRIP), as
illustrated in Figure 2.)
Figure 7 shows that, for unweighted headbanging, the probability of being highlighted is strongly

negatively correlated with the number of triples. For counties with the same number of triples,
corner points are favoured over edge points, which in turn are favoured over inner points. With
the correlated model and the high (N , NTRIP) settings, the dependence on number of triples is
weaker, indicating perhaps that the data from the spatial model are smooth enough that, once
averaging is done over four or more triples, the estimates are relatively stable.
Figure 8 shows the artefacts for weighted headbanging as a function of number of triples. Once

again, we see that counties with fewer triples are favoured, but this e�ect is relatively weak, with
the exception of the rightmost plots, where the number of triples is small. (In those counties with
no triples, the headbanging estimate is simply the raw data, and so these are the most likely to
be highlighted.)

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2309–2320
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Figure 6. Probability of a county being highlighted versus log sample size, for raw data and Bayes estimates
based on spatial and non-spatial models. See caption of Figure 3 for further explanation of these plots. In
the top row, the centre plot corresponds to the Bayes estimate under the correct model, and in the bottom

row, the rightmost plot is the correct Bayes estimate.

For the weighted headbanging plots (Figures 5 and 8), we see a clustering of some outlying
counties with high probabilities of being highlighted that are not explained by having particularly
high sample sizes, few triples, or being corner or edge points. In seeking a factor to explain this,
it is natural to look at the weights that go into the smoothing. In particular, for each of the settings
of (N , NTRIP) in the weighted headbanging algorithm, we calculate the relative weight for each
county; its weight divided by the total weights of itself and its neighbours. (For counties with no
neighbours – that is, at the centre of no triples – the relative weight is set to 1.) In Figure 9,
clusters are apparent in the upper right of each plot, indicating a set of counties that are more
likely to be highlighted because of their high weights relative to their neighbours. This is the
factor missing in Figures 5 and 8.
Because these plots are based on 1000 simulation draws, we can expect each point to have

simulation variability on the order of
√{(0:1)(0:9)=1000}=0:01; this is apparent in the left two

columns of Figure 6 where, in fact, sample size is the only factor in
uencing the probability
of being highlighted. We could, of course, reduce this variability by running more simulations,
but we choose not to for three reasons. First, the computer package that we used for this work
(S-plus) ran into memory problems when we tried to do more simulations. Second, the simulation
variability is minor and does not obscure the systematic variation we are studying. Third, and most
important, one of the goals of this paper is to illustrate the simulation approach as a method
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Figure 7. Probability of a county being highlighted versus number of triples used in the smoothing, for maps
smoothed using unweighted headbanging. See caption of Figure 3 for further explanation of these plots.

Corner and edge points with fewer triples tend to be more likely to be highlighted.

of studying mapping artefacts; for this purpose, it is important to see that 1000 simulations are
enough for us to clearly see the important patterns.

4. DISCUSSION

What would happen if you naively look at a map smoothed by headbanging with the 10 per cent
highest locations highlighted? Our simulations show that, even if the underlying parameters �i
come from a spatially stationary process, you should expect to see some artefacts. Corner points,
edge points and, with unweighted headbanging, points with fewer triples will be more likely to
be highlighted. These edge e�ects are particularly apparent in cases (as in the long, skinny state
of Tennessee) in which a large fraction of spatial units are on the boundary of the space being
considered. With weighted headbanging, points with high weights relative to their neighbours are
more likely to appear on the highlighted map. By comparison, the spatial artefacts of raw data
and Bayes estimates, although comparable in magnitude to those of headbanging, are determined
by sample size rather than spatial location.
One way to understand these results is in terms of random variation; plots (not displayed

here) show that, for all the mapping methods, the counties that have the highest probability of
being highlighted are those with the highest between-simulation standard deviation in their mapped
values. They are thus the most likely to be highest or lowest, and thus most prominent, in a map.
Spatial smoothing methods such as headbanging can equalize the variances somewhat, but there is
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Figure 8. Probability of a county being highlighted versus number of triples used in the
smoothing, for maps smoothed using weighted headbanging. See caption of Figure 3 for
further explanation of these plots. Corner and edge points with fewer triples tend to be more

likely to be highlighted, but this pattern is less strong than in Figure 7.

ultimately no way to avoid unequal variances given that data come with unequal sample sizes. As
a result, one must be aware of these sorts of artefacts when interpreting maps of raw or estimated values.
Once noted, all these patterns make sense and are no surprise. However, the simulation study

is valuable, not merely to alert us to these source of artefacts, but to indicate the magnitude of
the potential problems (in our simulations, the probability of a county being highlighted varies
between about 5 to 20 per cent). The simulation study also allows us to graphically investigate
the factors that contribute to the artefacts.
The spatial artefacts we are examining can be important because, without knowledge of them,

a map user can easily misinterpret patterns in a map (as discussed by Gelman and Price [2]). The
simulation study presented here illustrates the kind of analysis that can be done to systematically
study such artefacts in the context of a computational procedure such as headbanging.
We think an investigation of statistical artefacts should be a part of the development of any

new mapping method, since such artefacts, if substantial, can easily lead to incorrect inference. For
instance, if the Tennessee department of health made a map of a rare disease by county, smoothed
by headbanging, and noticed that many of the highest estimated rates occurred on the borders of
the state, we would suspect that they were seeing an artefact of the headbanging procedure rather
than some environmental in
uence related to di�erent pollution laws in adjacent states.
The simulation methods outlined in this paper allow artefacts to be investigated with minimal

e�ort: one can simply de�ne a statistical model, simulate from it, perform whatever smoothing
method is being investigated, and summarize the results. This approach can be used in combination

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2309–2320
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Figure 9. Probability of a county being highlighted versus relative weight of a point (its weight divided by the
total weights of that point and its neighbours), for maps smoothed using weighted headbanging. See caption
of Figure 3 for further explanation of these plots. Points with very high relative weight are more likely to

be highlighted, which explains the clusters of high points in Figures 4 and 7.

with studies such as Kafadar [1] that evaluate the performance of mapping methods based on
accuracy of estimates and ability to capture underlying spatial structure.
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