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“A weight is assigned to each sample record, and MUST be used for all tabulations.’

— codebook for the CBS News / New York Times Poll, 1988

1 Introduction
1.1 Overview

Poststratification and weighting are used to adjust for known or expected discrepancies between
sample and population. In this chapter, we aim to review current methods for using these techniques
in survey analysis, and to critically examine the methods in the context of new ideas for extending
model-based (Bayesian) methods to handle some of the more difficult problems that arise in practice.
In particular, we distinguish among several different types of weights that are commonly used and
clarify the relationship between poststratification and weighting. Difficulties that arise with these
concepts motivate further development of the model-based poststratification approach (Holt and
Smith, 1979; Little, 1991, 1993), which is usefully linked to the more traditional approaches via
what we call the basic poststratification identity. Some progress is illustrated with examples, and
the need for further development of these ideas is emphasized.

We focus most of our discussion on the problem of estimating the population mean of a univariate
survey response in a one-stage sampling design. Section 4 briefly considers more complex estimators
(ratios and regression coeflicients) and multistage designs, and Section 5 illustrates the potential
advantages of a model-based poststratification approach with an example. We conclude in Section
6.

The goal of this chapter is not to make recommendations but rather to lay out the key choices

and assumptions that must be made when using weighting and poststratification to correct for non-
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response. Similarly, we do not attempt a thorough literature review; more comprehensive references
on weighting and sample survey analysis appear in books such as Lohr (1999), and a companion
chapter in this volume (Bethlehem, 2000) provides a broad review of the design-based approach to

these issues.

2 Weighting and poststratification: current practices

2.1 Weights

The essential idea of weights in sample survey estimation is that weighted averages over the sample
should provide good estimates of the corresponding averages in the target population. The usual
way of explaining this is that the weighted estimator will be unbiased for the population mean
under repeated sampling that uses the same sampling plan (although poststratification weights
cannot be justified in quite this way). The intuitive appeal of weighting seems to be based on
a more fundamental notion of creating estimates that correct for differences between sample and
population, whether these discrepancies arise from sampling fluctuation, nonresponse, frame errors,
or other sources.

Weighted estimation is not something that many non-survey statisticians are familiar with. In
fact, most mainstream statistics packages do not provide for inferences (that is, standard errors
as well as point estimates) using so-called sampling or “probability” weights. One exception is
Stata (StataCorp, 1999) which carefully distinguishes between these sampling weights and so-called
“analytic” weights. The latter are weights used in standard regression estimation where the data
values themselves each have different (known) variances; in contrast, sampling weights are used for
estimating a finite population quantity about which auxiliary information is known. Some similar

capabilities are available in the latest release of SAS (An and Watts, 1998).

2.1.1 Where do the weights come from?

Different survey organizations use different weighting schemes, even when using similar methods,
asking similar questions to the same populations. The general principle is clearly to do enough
weighting to correct for any dramatic discrepancies between sample and population, but just how
much is “enough” is not easy to define. For example, Voss, Gelman, and King (1985) report on
weights for national political polls by news organizations in the 1988 U.S. general election campaign.
At one extreme, some of the ABC News / Washington Post polls weighted only for sex (and in fact
these weights were fairly minor, for example, 1.04 for men and 0.96 for women). In contrast, the
CBS News / New York Times polls included weights proportional to number of adults in household
(see Section 3.3.3) divided by the number of telephone lines, then used ratio weights to match the



sample to the population for sex x ethnicity and age x education.

As pointed out by Voss, Gelman, and King (1995), the weighted average estimates for population
quantities of interest turned out to be similar for the different survey organizations, which is no
surprise since each survey organization used the weighting it deemed necessary to match sample to
population.

The CBS example may be used to illustrate an important distinction between two types of
weights: inverse-probability and poststratification. The basic difference is that the former are known
at the time the survey is designed whereas the latter can only be estimated after the data have
been collected. A further distinction among types of inverse-probability weights is that sometimes
these are created by the survey designer, for example using probability-proportional-to-size sampling
schemes, and sometimes they are a byproduct of a multistage structure, as with the household size
weights in the CBS polls.

Poststratification weights are calculated after the data are collected, with the weight (multiplier)
for each stratum proportional to the number of units in the stratum in the population, divided
by the number of units in the sample in this stratum. In the CBS polls, the final weight for each
individual was the product of four factors: two approximate inverse-probability weights and two
poststratification weights. Although both kinds of weights have the same intuitive interpretation,
they have a different statistical standing, with potential implications for the estimation of standard

errors, whether design or model-based; see Section 3.3.

2.1.2 How should the weights be used?

In using sampling weights, it is widely agreed that for obtaining point estimates of population
means and ratios, weighted averages are appropriate. The weighted estimate of a mean Y is
S wiyi/ > i, w;, and the weighted estimate of a ratio Y /X is > i wiyi/ Y| wid;.

If the aim of analysis is to estimate something more complicated, such as regression coefficients, or
if standard errors are required, current practices and textbook recommendations vary. For estimating
the coefficients of the regression of y on X, the most commonly used option among most survey
analysts is probably to run a weighted regression using the survey weights. The basic weighted
average notion is applied to the estimation of regression coefficients by applying the weights to
“estimating equations” or pseudo-score statistics, which also take the form of a (weighted) average
over the sample (Binder, 1983; Carlin et al., 1999).

Alternatively, statisticians with a stronger model-based persuasion might decide to ignore the
weights, on the basis that regression relationships should be validly estimable even from a non-

equally weighted sample as long as the model is adequate. Concerns about robustness to model



assumptions tend to lead many away from this approach, and an alternative is to try to capture
the information in the weighting by including in the model a further set of covariates that contain
all the information used in the survey weighting. One then performs an unweighted regression of y
on the augmented X matrix, and interprets the regression coefficients in the context of the larger
model (see DuMouchel and Duncan, 1983, and Pfeffermann, 1993). In a more complicated scenario,
interest lies in the regression of y on a subset of the variables in X; a problem we briefly discuss at

the end of Section 4.1.

2.2 Poststratification

Poststratification may be defined simply as the use of stratified sample estimators for unstratified
designs. Its use is traditionally motivated by the considerable gains in precision that can be made
by using information about population structure that is predictive of the survey outcome. However,
a more important reason to use poststratification is often as a means of correcting for differential
nonresponse between cells. For example, the well-educated are much more likely than the poorly-
educated to respond to national telephone opinion polls (see, e.g., Little, 1996).

We use a general definition of poststratification that includes all methods of adjusting the sample
to fit known aspects of the population. For example, one can examine the sample averages of some
demographic variables and compare them to the population averages (e.g., estimated from the Census
or Current Population Survey). If the sample and population differ dramatically on some variables,
one can reweight the sample to match the population. Considered from the poststratification per-
spective, one can consider the survey as giving separate estimates for each demographic category or
poststratum, and then these estimates are combined using population totals. We elaborate on this
perspective below.

When adjusting for many variables, a standard approach, called raking, is to use ratio weights,
adjusting for one variable or set of variables at a time. In iterative proportional fitting, this weighting
procedure is followed several times, looping thorough all of the variables until the weights stabilize

(Deming and Stephan, 1940).

3 A unifying framework
3.1 Notation for weighting and poststratification

We have found it useful to develop a unified notation, derived from Little (1991, 1993), for weighting
and poststratification of sample surveys. We shall follow standard practice and focus on a single

survey response at a time, labeling the values on unit ¢ in the population as Y;, i = 1,..., N, and



in the sample as y;, ¢ = 1,...,n. To start with, we assume the goal is to estimate the population
mean § =Y = ZZI\LI Y;/N.

We suppose a population is divided into J stratification/poststratification cells, with population
N; and sample size nj ineach cell j =1,...,J, with NV = Z'J.Izl Njandn = ijl n;. For example,
if the population of U.S. adults is classified by sex, ethnicity (white or nonwhite), 4 categories of
education, 4 categories of age, and 50 states, then J = 2 x 2 x 4 x 4 x 50 = 3200, and the cell
populations N; would be (approximately) known from the public-use subset of the long form of the
U.S. Census.

We define m; as the probability that a unit in cell j in the population will be included in the
sample. For some designs, 7; is known but, in general, when nonresponse is present, it can only
be estimated. The ratio n;/N; is an obvious estimate but this does not take account of unequal-
probability sampling designs. Moreover, smoothed estimates can perform better if cell sample sizes
are small.

We label the population mean within cell j as 6; = Yj and the sample mean within cell j as ;.

The overall mean in the population is then

J
Zj:l N;b;

=Y = =, (1)

which we refer to as the basic poststratification identity. We focus on weighted estimates of the form
J

=" w;b;, (2)
j=1

where the cell weights W; sum to 1. So far, equation (2) has no restrictions: the W;’s and the ;s
can depend in any way on the design and the data.

We use (1) and (2) as a way of unifying a variety of existing estimation procedures. Classical
weighting methods generally avoid any modeling of the responses and restrict themselves to un-
smoothed estimates é]- = g; and weights W, that depend only on the n;’s and N;’s (as well as
inverse-probability weights, where present), but not on the y;’s, thus yielding population estimates

of the form,

>
E
Il

J
Z W;y;
Jj=1

where w; = W) /nje) is the unit weight of the items 4 in cell j. Strictly speaking, the denominator
in (3) is unnecessary since, as we have defined them, the w;’s sum to 1, but the general ratio formula

is useful when considering arbitrary unnormalized unit weights. The usual challenge for design-based



methods is for the unit weights w; to capture the unequal sampling fractions in the different cells
without being so variable as to lead to an unstable estimate of 6.

“Model-based” estimates tackle (2) from a different direction by setting the cell weights to the
population proportions—that is, W; = N; /N for each j—and using a probability model or smoothing

procedure to construct the estimates éj from the sample means y; and sample sizes n;. Thus,
J

fn=2

j=1

The implicit model underlying all these procedures, both design- and model-based, is of equal

i, (4)

2|

probability of inclusion in the sample within cells—where the probability encompasses both design
and nonresponse issues. This is why g; is considered a reasonable estimate for ;. It is also why, in
the presence of nonresponse, it is desirable to poststratify as finely as possible, so that the implicit
assumption of equal probability of inclusion is reasonable within each poststratification cell (with

these probabilities being allowed to vary between poststrata).

3.2 Standard errors and inference

An essential part of survey estimation is going beyond point estimates to provide credible measures
of uncertainty. We shall follow standard practice here and assume sample sizes are large enough
that normal-theory inferences are acceptable, so that we can base inferences on point estimates and
standard errors.

For standard survey problems, classical design-based and Bayesian model-based calculations tend
to give similar inferences, as long as (a) sample sizes are large enough that sampling distributions of
estimands of interest are approximately normal, (b) the inferences take into account design features
such as stratification and clustering, and (c) the model uses noninformative prior distributions (see,
e.g., Gelman et al., 1995, chapters 4 and 7). This similarity allows one to use model-based calcu-
lations to get reasonable repeated-sampling inference or, conversely, to use design-based standard
errors to make probability statements about unknown population quantities.

With complex weighting schemes, the design-based perspective can be used to derive variances
of weighted/poststratified estimates by accounting for the design factors by using the form (2) and
recognizing the sampling variability of the weights W;. To start with, in simple poststratification,
the weights W; are fixed (W; = N;/N) and the cell estimates are simply é]’ = §j, and so we can use
the simple variance formula for a stratified estimate:

J
for simple poststratification: var(f) = Z W?io? /n;, (5)
i=1



where o7 can be estimated from the within-stratum sample variance. (For expression (5), we ignore
the generally very minor correction arising from the randomness of the 1/n; factors.)

With inverse-probability weights, raking, or iterative proportional fitting, the cell weights W;
depend on the vector of data sample sizes n = (n1,...,ny). As a result, the sampling variance can
be decomposed as

var(f) = E(var(8)|n) + var(E(9|n)), (6)

the first term of which is essentially identical to (5) and the second term of which accounts for the
randomness in the cell weights. For a complex survey design, (6) can be estimated using linearization
or jackknife-type methods (Binder, 1983, Lu and Gelman, 2000).

Design and model-based inferences begin to differ when sample sizes become small or models
become more complicated, both of which happen when poststratification is applied with many cells.
In this case the sample size in each cell becomes small and design-based approaches may suffer
problems of excess variance. For such problems, model-based inferences may provide an attractive
alternative, with the assumption of informative, structurally based hierarchical prior distributions
(see Sections 3.4 and 3.5 for general discussion and Section 5 for an example). Standard errors
for model-based inferences such as 6 in (4) come directly from the posterior distribution of the
corresponding quantities of interest, such as 6 in (2), which would be computed from posterior

simulations of the parameter vector 6 in a Bayesian analysis (e.g., Gelman et al., 1995).

3.3 Three simple examples illustrating the distinction between inverse-
probability weights and poststratification weights

In classical sampling theory, unit weights can be defined in two ways. Inverse-probability weights
(from Horvitz and Thompson, 1952) are defined as w; o 1/m;(;) and poststratification weights are
defined for unit i in cell j as w; o< Nj(;)/nj;); in either case, the classical estimator is the weighted
ratio (3). Because the two kinds of weights use the same estimation formula, they are often confused.
However, the distinction between them is important (within the design-based perspective), especially
when considering more complex weighing adjustments. Here, we illustrate the differences between

inverse-probability and poststratification weights using three simple examples.
3.3.1 Unequal response probabilities for men and women: 1

For our first example, we consider a simple random sample (with no nonresponse) of adults with the
population divided into two poststrata—men and women—with equal numbers in the population,
N; = N> = 500,000, and a sample of n = 200 with n; = 90 men and ns = 110 women. For this

survey, we are assuming simple random sampling, so the inverse-probability weights are equal for



all the units, and the corresponding Horvitz-Thompson estimator, ignoring the poststratification
information, is gH-T — g (see, e.g., Lohr, 1999). The poststratification weights, however, are
proportional to 1/90 for the men and 1/110 for the women, and so the poststratified estimate is
§PsS — %gl + %ij-

The two estimates also differ in their standard errors. The Horvitz-Thompson estimate in

this case is simply @, so its standard error is o/y/n, where o is the standard deviation of the

Y; values in the population. The poststratified estimate has an approximate standard error of

V/(N1/N)20% /ny + (N2/N)203 /ns, where oy and o2 are the within-stratum standard deviations in
the population, which are typically smaller than ¢ (since we tend to poststratify on variables that
are relevant for the survey responses of interest). For example, if 0 = 30 and 07 = 02 = 20, then the
Horvitz-Thompson estimate has standard error 2.1 and the poststratification estimate has standard
error of approximately! 1.4. These are design-based standard errors; normal-theory model-based
inferences would give essentially the same results.

Given the population proportions, poststratification is the standard weighting approach in this
sort, of problem, and it is not an inverse-probability weighting in this example; as noted above, the

two approaches give different estimates and different standard errors.

3.3.2 Unequal response probabilities for men and women: 2

Conversely, consider the same example—simple random sampling, n; = 90 and n, = 110—but this
time with N7 = 450,000 and N, = 550,000. In this case, the inverse-probability weights are still
equal and so the Horvitz-Thompson estimate is still g, but now the poststratification weights are
also equal (because 450,000/90 = 550,000/110) and so its corresponding estimate is also §.

However, in this case, even though the two estimates are the same for this particular sample,
they have different properties in repeated sampling. In particular, the poststratification estimate has
a lower standard error. In fact, the design-based (or normal-theory model-based) standard errors of
the two estimators are as given in Section 3.3.1.

The increased precision of the poststratification estimator in this simple example is due to the
conditioning on poststrata, not to any difference between the weighting (since of course there was
none). Although in this case the point estimate was the same from the two approaches, in general
the poststratification method will provide a better “fit” to the population. In practical terms, an
approximate poststratification inference would be obtained in standard survey analysis software by

specifying both the weights and the poststrata (as if they were in fact strata), whereas the Horvitz-

IThis is only the approximate sampling standard error because it conditions on nj,n2 rather than treating them
as random variables. In this case, however, a simple simulation calculation shows this approximation to be correct to
two significant figures.



Thompson estimate would only specify the weights.
This example illustrates the weakness—from a design- or model-based perspective—of trying to
obtain standard errors using only weights, without including the information used in constructing

the weights.
3.3.3 Adjusting for household size in a survey of individuals

Our second example comes from a real problem in household surveys described in Gelman and
Little (1998). In a survey in which households are sampled at random, and then a single individual
is sampled from each sampled household, individuals in larger households have a smaller probability
of being selected. If individuals within a household are selected with equal probability and there
is no nonresponse, then the probability of an individual being included in the survey is inversely
proportional to the size of the household. However, composition of the sample is also affected by
nonresponse. One source of nonresponse is nonavailability—no one answers the phone, or no one
receives the message on the answering machine. It seems reasonable to suppose that in a larger
household it is more likely that someone will be home to receive the phone call. Another source of
nonresponse is refusal to participate in the survey.

Gelman and Little (1998) compared the distribution of household sizes in the U.S. Census to
three series of national opinion polls (two sets of pre-election telephone polls conducted by CBS
News and the in-person National Election Study conducted by the University of Michigan) in order
to compute the poststratification weights for adults in different household sizes. Table 1 compares
these to the inverse-probability weights, which are simply proportional to the number of adults in
the household. The poststratification weights for the higher categories are lower than the inverse-
probability weights because the realized sample overrepresented the larger households, presumably
because adults in smaller households are harder to reach. The discrepancy between the two kinds of
weights is smallest with the in-person NES poll, which makes sense since it had the highest response
rate of all these surveys.

A simple use of inverse-probability weights in this example will give inferences that overly weight
the adults in larger households. Interestingly, Table 1 reveals that the poststratification weights are
also less variable than the inverse-probability weights in this example.

A key assumption of the poststratification weighting here is that the Census numbers represent
the target population of the survey. In general, this is not exactly the case; for example, the Census
includes people who are apathetic about politics, and one might argue that a political poll should
represent the people who plan to vote in the election. For this particular example, however, there is

no substantial correlation between number of adults in a household and the likelihood of voting. The



Number of adults | Inverse-probability | Poststratification weights for three surveys

in household weights early CBS late CBS NES
1 1 1.00 1.00 1.00

2 2 1.32 1.38 2.00

3 3 1.35 1.53 2.30

4+ 4.25 0.95 1.20 2.55

Table 1: Inverse-probability weights and poststratification weights for late CBS polls, early CBS
polls, and the National Election Study, all scaled so that the weight is 1 for respondents from
households with 1 adult. (The inverse-probability weight in the last row is not exactly 4 because that
poststratification category includes all households with 4 or more adults.) Systematic discrepancies
between the two kinds of weights imply different nonresponse rates among the cells.

discrepancy between the sample and population is more plausibly explained by nonresponse, caused
primarily by the difficulty of reaching anyone in a small household (and, as is shown by Gelman and
Little, 1998, this differential nonresponse remains after adjusting for the demographic variables of
sex, ethnicity, age, and education). If an analyst wishes to adjust the survey for household size, it
seems to us much more reasonable and in line with other survey practice to poststratify rather than

trying to adjust for unequal sampling probabilities while ignoring nonresponse.

3.4 Difficulties with classical weighted estimates

Estimate (3) is unbiased under the sampling design if the cell weights TW; are set to N;/N, which
corresponds to unit weights w; oc Nj(;)/n;(;) for units 7 in cell j. As the weighting (3) indicates, if
these unit weights are too variable, then 6 will itself have an unacceptably high variance, and this
will occur if the n;’s are small. There is thus a tension between two competing alternatives: (a)
keeping the number of weighting cells small, so that the individual n;’s will be reasonably large and
the weighted estimate not too variable; and (b) increasing the number of cells, which may make the
implicit assumption of equal probability of inclusion within cells more plausible (in the presence of
nonresponse). A commonly-used compromise is to keep a large number of weighting cells but to
“smooth the weights”: that is, to set the unit weights so that they are less variable than would arise
from simply setting w; oc Nj(;)/nj(;). In practice, this means that units from cells with small sample
sizes receive smaller weights than they would under the unbiased estimate.

As discussed by Elliott and Little (1999), stable estimates of 6 in (2) can be obtained in two ways:
by smoothing the weights W;, or by estimating the cell means 6; using a hierarchical model. The
difference between these approaches is that smoothing of weights is usually done without reference
to the responses y;, whereas the amount of smoothing in a fitted hierarchical model depends on the
variance of y; between and within strata.

An extreme version of the instability problem occurs with non-structural zero cells: that is, cells

10



for which n; = 0 but N; # 0. This can obviously happen; for example, if J = 3200 as in the second
paragraph of Section 3.1 and n is 1500, say, which is typical in national polls, then by necessity
most of the cells will be empty. In this case the classical solution is to adjust based on margins
using the method of raking discussed at the end of Section 2.2, or to pool some weighting cells. The
choice of which margins to adjust for or which cells to pool is somewhat arbitrary and contradicts
the goal of including in the analysis all variables that affect the probability of inclusion, which is a

basic principle in both classical and Bayesian sampling inference.

3.5 Difficulties with model-based estimates

Unfortunately, existing model-based estimates also have drawbacks. Most importantly, there is an
understandable resistance on the part of survey sampling practitioners to the use of models for
survey response, since models do not seem necessary when using standard design-based methods
with moderate or large sample sizes. From this point of view, modeling assumptions can appear
somewhat arbitrary and concerns arise as to the possible sensitivity of inferences to alternative model
specifications.

At a minimum, model-based methods should be able to give similar answers to classical methods
in settings where the classical methods make sense. This means that models for survey outcome
variables must at least include all the information currently used in weighting estimates. This
appears to be possible in principle for poststratification variables (see Section 5 for some examples),
where including indicator variables in a regression model may arguably achieve the purpose, but it
is less clear how information used in unequal-probability sampling schemes should be handled.

Once we have resolved to include in our model all the variables affecting the probability of se-
lection, the problem arises that the resulting model becomes quite complicated and requires many
assumptions. In the notation of Section 3.1, we must model the §;’s conditional on all crossclassifica-
tion variables—for example age, sex, ethnicity, education, age, and state—and all their interactions.
The challenge is to construct a class of models for this problem for which the resulting inferences

based on (4) are reasonable.

4 More complicated settings

We briefly discuss how the theoretical framework of the previous section can be applied to multistage

designs and estimates more complicated than sample means.
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4.1 Estimating ratios and regression coefficients

So far we have focused on estimating the population mean (1) or subgroup means. In general,
however, one may be interested in more complex estimands, most notably ratios and regression
estimates.

Ratios arise in various ways, perhaps the most common being means of subgroups with unknown
population proportions. For example, suppose we are interested in @, the average income of support-
ers of the Republican candidate for President. If we let Y; be the income response in the population

and U; be the indicator for supporting the Republican, then

Zﬁil Ui U’
where V; = Y;U;. Classically, the bias correction and standard error of a ratio estimate are estimated
using Taylor expansion; in the Bayesian context, one would need to model Y and U jointly (perhaps
by modeling U given X, then Y given (U, X), where X represents the variables that determine the
poststratification categories described in Section 3.1).

Regression estimates commonly arise in analytical studies of sample survey responses that at-
tempt to understand what variables U are predictive of an outcome of interest Y. This can be
directly incorporated into our framework by including the variables in U as predictors, thus regress-
ing Y on (U, X), where X represents the variables used in any weighting and poststratification. The
implicit assumption underlying all weighting and poststratification is equal probability of inclusion
in the sample conditional on these X variables, and so any analysis that conditions on X (in this
case, a regression of Y on (U, X)) would yield valid inferences without any need for weighting in the
estimates; see DuMouchel and Duncan, 1983).

For many problems, this result will be satisfactory. For example, Gelman and King (1993)
model vote preferences as a function of party identification and political ideology (these variables
represent U in our notation) as well as demographics (the variables X used in the weighting) using
an unweighted regression (see also the rejoinder in Gelman, King, and Liu, 1998).

But what if one is ultimately interested in the regression of Y on U without conditioning on X7
We can derive this “marginal regression” from our joint regression of Y on (U, X) by averaging over
X, which means averaging over the distribution of X in the population, and then the weights come
back in, to adjust for differences between sample and population. Unfortunately, the weighting is
complicated by the presence of the additional predictors U. The marginal regression can be written
as,

E(Y|U) = E(E(Y|U, X)) = Y p(X|U)EY|U, X),
X

12



where the left side represents the predictive relation of interest, and the summation on the right
side requires an additional modeling of the joint distribution of (U, X) required to estimate the
conditional distribution p(X|U). (If U were not there, this would simply be p(X) which corresponds
to the cell populations N; used in poststratification.) Modeling and estimating p(X|U) seems like a

reasonable task but we are not aware of any examples in the literature.

4.2 Cluster sampling and unequal sampling probabilities

In a cluster sampling design, the population or subset of the population is partitioned into clusters,
only some of which are sampled. This fits naturally into a hierarchical model that includes a
parameter for each cluster. The key difference from stratification or poststratification is the need
to generalize to the unsampled clusters. In the hierarchical model, this corresponds to additional
parameters drawn from the estimated common distribution. In addition, depending on the design, it
may also be necessary to estimate the population sizes of the clusters (the N;’s in (1)). This problem
becomes more elaborate with unequal probability sampling designs such as probability proportional
to size, where it is possible for sampling probabilities 7; to be known even though population sizes IV;
are not, which adds another difficulty to inferences based on the poststratification identity (1). There
are various reasons why one might want to define poststratification cells for which the population
totals IV; are unknown, and one example is described in the next section.

Challenges arise when clustering is combined with weighting or poststratification. For example,
consider a national survey of personal interviews that is clustered geographically (for example, with
20 persons interviewed in each of 50 counties selected at random with probability proportional to
size) and then poststratified by demographics (for example, age, sex, ethnicity, etc.). A full modeling
analysis requires inference based on (4) requires estimates éj for cells j defined by all the counties in
the U.S. crossclassified by all the demographic categories used in the weighting/poststratification.
This should be possible but experience is limited with this sort of modeling, and further research is
needed to see what sort of relatively simple models could work reliably here.

For completeness, we review how the standard weighting methods for cluster sampling can be
understood in terms of unit weights as in (3). The first stage of weighting based on sample design:
the weight w; for each of the units in sampled cluster & is set to Ny /(ngpx), where Ny, is the number
of units in the cluster, ny is the number of units in the cluster included in the sample, and py, is
the probability of selection of cluster k (see, e.g., Lohr, 1999). This weighting expression is general
enough to include sampling with probability proportional to size, or approximate measure-of-size,
and the nj in the denominator automatically corrects for unequal nonresponse between clusters

(implicitly assuming, as is standard with these weighting or modeling procedures, that nonresponse
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is uncorrelated with the outcome under study). Once these weights are obtained, one can follow up
with standard ratio weighting to poststratify on demographics, as discussed in Section 2.1.1.

As always, the standard error of the weighted estimate (3) should be computed based on the
sampling design, not simply using the weights. A generally reasonable approximation is to compute
standard errors conditional on the observed cluster means (see Kish, 1965). That is, if clusters

k=1,..., K have been sampled, to express estimate (3) as a weighted average of cluster means:

g - i) Wi

w K
Zk:l Wk

where wy, = ), wi and 2z, = Y, wiyi/ Y ;o wi. The variance of 0, in (7) can be computed

; (7)

using standard ratio estimation formulas or the jackknife (see, e.g., Lohr, 1999).

4.3 Item nonresponse

Weighting and poststratification are designed to correct for missing data at the unit level, whether
the missingness arises by design (i.e., a survey is not a census, so many if not most of the units in
the population are missing from the sample) or by nonavailability or nonresponse. As discussed in
Section 3.3.3, poststratification can be used to correct for nonresponse in the context of unequal
sampling probabilities.

Once we are working in a modeling framework with parameters 6; for mean response within
poststrata, it is natural to consider modeling individual responses, and then to go the next step
and model individual responses to the set of survey questions as a multivariate outcome. Such a
multivariate model can be used to impute missing items. It is in fact already becoming common
to use model-based imputation methods for item nonresponse (e.g., Rubin, 1996, Schafer, 1997),
but unit nonresponse is still usually handled by weighting methods. A full multivariate analysis of

survey responses could in principle be used to model both kinds of nonresponse.

5 Poststratification in model-based inference: examples

The model-based approach can allow improved estimation when partial information is available on
a variable that is predictive of the survey response of interest, in other words when there is partial
but not complete information on the poststratification cell totals IV;. For example, Reilly and Gel-
man (1999) analyze a series of national opinion polls, focusing on the question of how strongly the
respondent approves of the President’s job performance. A highly effective predictor of Presidential
approval is the respondent’s “party identification,” which can be Democrat, Republican, or neither.

Using party identification as a poststratifier would seem to be hopeless since it is itself known only
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from opinion polls. However, polls in a closely-spaced time series are available, and party identifica-
tion is known (and observed) to change only slowly over time. It was thus possible to fit a time-series
model to party identification, estimate the IV;’s for the cells corresponding to the three categories,
and use these to poststratify and get lower-variance estimates of average Presidential approval at
each time point. In this example, weekly snapshots of public opinion were analyzed, with sample
sizes of about 40 to 60 in each survey. The estimates formed by the model-based poststratification
reduced the estimation variances by factors of about 1.3 relative to the simple unadjusted estimates.
This is an example of the modeling of population distributions of poststratifiers that we believe
warrants further development.

A more detailed example will illustrate use of the model-based poststratification approach in
combination with model-based small-area estimation methods (e.g., Fay and Herriot, 1979, Dempster
and Raghunathan, 1987) to get inferences about subpopulations of interest. In effect, the model-
based approach allows us to estimate population averages in a large number of poststrata, in settings
where the poststratum means are too variable to be directly useful.

We illustrate the potential power of this approach with an example from Gelman and Little
(1997). The goal in that paper was to get separate estimates for each state from a series of national
pre-election polls. Two natural approaches to this problem are (1) the classical method of assigning
unit-level design-based weights and then computing weighted means for each state, and (2) the naive
Bayesian method of shrinking the mean of each state toward the national average, with the amount
of shrinkage determined by the variance of the binomial distribution for the sample mean in each
state. Both these approaches have problems, however: the classical method yields highly variable
estimates for all but the largest states, and the naive Bayesian method ignores design information
and thus fails to correct for known sampling biases (for example, that women and more educated
persons are more likely than men and less educated persons to be reached and respond to a telephone
survey).

For this problem, we focused on the binary response y; equal to 1 if the respondent supported or
leaned toward supporting the Republican candidate for President and 0 if the respondent supported
or leaned toward the Democrat. (Respondents who supported other candidates or had no opinion
were excluded from our analysis.) Our approach was to fit a model of the form n;y; ~ Bin(n;,6;) and
logit(d;) = (X 3);, with X including indicators for each state and for all the demographic variables
used by the survey organization’s own weighting: sex x ethnicity, age x education, and region of the
country. We modeled the state indicators as random effects, so that the Bayesian inference shrinks
the state differences toward zero after adjusting for the variables that affect nonresponse. We view

this Bayesian model as design-based in that it uses the design information that had been recognized
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Figure 1: Election result by state, vs. posterior median estimate based on (a) raking on demographics,
(b) regression model including state indicators with no hierarchical model, (c) regression model
setting state effects to zero, (d) regression model with hierarchical model for state effects.

as relevant by the survey organization.

Once the model has been fitted and inferences obtained for all 8;’s, the key poststratifica-
tion step is performed, computing estimates of the population mean within each state k as 6, =
> jer Nibli/ - ;er Nj, where the summations are over all poststratification cells within state k, and
the cell sizes N; are given from the Census. Our Bayesian computation yields 1000 posterior simu-
lation draws of the vector 3; from each simulated vector 3 is computed the vector of cell means 6;,
which are summed to yield the vector of state means 6. For each 6y, we can take the 1000 simulation
draws and compute a point estimate as the median of the draws and 50% or 95% intervals from the
appropriate quantiles (see, e.g., Gelman et al., 1995).

This approach of smoothing and poststratification performs quite well, as we can see by compar-
ing our inferences, which were based on polls immediately preceding the presidential election, to the
state-by-state outcomes of the election itself. Figure 1 displays result vs. prediction, by state, for four
estimation methods: classical weighting (“raking”), Bayesian estimate with hierarchical variance set

to infinity (“unsmoothed,” which does no shrinkage and is thus very similar to the classical estimate,
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Figure 2: Scatterplot of prediction errors, by state, for the hierarchical model vs. the classical raking
estimate. The errors of the hierarchical model are lower for most states.

as expected), Bayesian estimate with hierarchical variance set to 0 (“var=0,” which overshrinks by
assuming that states are identical after demographic adjustments), and finally hierarchical Bayes,
which has the lowest prediction errors. This is a fair test of the model: the actual election results
were not used in any way in the estimation procedure.

In addition, Figure 2 shows in a state-by-state comparison that the poststratified hierarchical
estimates had lower errors than the classical weighting in 41 out of the 48 states (Alaska and Hawaii
were not included in these surveys). In this example, the Bayes estimate worked well because it
used all the information that was used in classical weighting, but in a model-based context.

An important feature of the model-based approach is its direct computation of posterior uncer-
tainties. The average width of the 50% intervals for the 48 state estimates is 0.57, and 20 out of the
48 intervals contain the actual result for that state. (By comparison, the model-based 50% intervals
for the raking estimates have an average width of 0.69, and only 18 of these intervals contain the
actual results.)

Finally, Figure 1d shows that the hierarchical model does not seem to shrink the data enough to-
ward the nationwide mean. As discussed by Gelman and Little (1997) and Little and Gelman (1996),
this extra variation in the predictions could be caused by a pattern of nonignorable nonresponse that

varies between states; see also Krieger and Pfeffermann (1992).

6 Conclusion

“... it is the structure of the population, rather than the sample design, which an

estimator should reflect.” — Holt & Smith, 1979
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This quotation reflects a belief that we find reasonable, despite the emphasis of many sample
survey texts on sample design as the primary basis for deriving estimates from sample surveys. The
use of weights, whether inverse-probability or based on poststratification, is traditionally supported
with the concepts of unbiasedness and efficiency from the design-based approach to survey inference.
We believe that it may be helpful to shift the emphasis somewhat, toward regarding weights as a
tool for ensuring that inferences reflect as well as possible the structure of the target population.
Extending this notion suggests that other efforts to capture population structure as part of the
survey analysis task will be fruitful, and we have described examples where this was achieved through
appropriate modeling.

The pre-election polls example in Section 5 illustrates how one can attack the problem of large
numbers of poststrata, which challenges traditional “design-based” methods. This example also
shows how a successful “model-based” approach works by conditioning on variables relevant in
the design and nonresponse and then using population information on these variables to estimate
population averages of interest. (The short example that begins Section 5 illustrates how this model-
based poststratification approach can be used when the population stratum sizes are missing.)

We have attempted to clarify some aspects of existing practices and to suggest areas where
existing methods may be open to improvement by greater investment in modeling technology. In
particular, the goal of conditioning on all variables that might affect nonresponse leads to a large
number of potential poststratification cells and thus many parameters 6; in (1); Section 5 illustrates
how hierarchical models can be used to estimate all these parameters simultaneously. Further work
is needed, however, to define ways in which the model-based approach can successfully incorporate
adjustments that are currently made in practice with operationally straightforward techniques such
as inverse-probability weighting and raking of poststratification weights (see Little and Wu, 1991).
Our hope is to see a unified approach to survey estimation that combines the benefits of modeling
population structure while remaining “backwards compatible” with the more traditional ad hoc

adjustment techniques.
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