
Poststrati�cation and weighting adjustments�Andrew Gelmanyand John B. CarlinzFebruary 3, 2000\A weight is assigned to each sample record, and MUST be used for all tabulations."| codebook for the CBS News / New York Times Poll, 19881 Introduction1.1 OverviewPoststrati�cation and weighting are used to adjust for known or expected discrepancies betweensample and population. In this chapter, we aim to review current methods for using these techniquesin survey analysis, and to critically examine the methods in the context of new ideas for extendingmodel-based (Bayesian) methods to handle some of the more di�cult problems that arise in practice.In particular, we distinguish among several di�erent types of weights that are commonly used andclarify the relationship between poststrati�cation and weighting. Di�culties that arise with theseconcepts motivate further development of the model-based poststrati�cation approach (Holt andSmith, 1979; Little, 1991, 1993), which is usefully linked to the more traditional approaches viawhat we call the basic poststrati�cation identity. Some progress is illustrated with examples, andthe need for further development of these ideas is emphasized.We focus most of our discussion on the problem of estimating the population mean of a univariatesurvey response in a one-stage sampling design. Section 4 briey considers more complex estimators(ratios and regression coe�cients) and multistage designs, and Section 5 illustrates the potentialadvantages of a model-based poststrati�cation approach with an example. We conclude in Section6. The goal of this chapter is not to make recommendations but rather to lay out the key choicesand assumptions that must be made when using weighting and poststrati�cation to correct for non-�For the International Conference on Survey Nonresponse 1999. To appear in Survey Nonresponse, ed. R. Groves,D. Dillman, J. Eltinge, and R. Little. We thank Roderick Little and John Eltinge for helpful comments and theNational Science Foundation for support through grant SBR-9708424 and Young Investigator Award DMS-9796129.The second author is grateful to Dr. C. Hendricks Brown and the Department of Epidemiology and Biostatistics,University of South Florida, for sabbatical support during this work.yDepartment of Statistics, Columbia University, New York, USAzClinical Epidemiology and Biostatistics Unit, Royal Children's Hospital and University of Melbourne, Australia1



response. Similarly, we do not attempt a thorough literature review; more comprehensive referenceson weighting and sample survey analysis appear in books such as Lohr (1999), and a companionchapter in this volume (Bethlehem, 2000) provides a broad review of the design-based approach tothese issues.2 Weighting and poststrati�cation: current practices2.1 WeightsThe essential idea of weights in sample survey estimation is that weighted averages over the sampleshould provide good estimates of the corresponding averages in the target population. The usualway of explaining this is that the weighted estimator will be unbiased for the population meanunder repeated sampling that uses the same sampling plan (although poststrati�cation weightscannot be justi�ed in quite this way). The intuitive appeal of weighting seems to be based ona more fundamental notion of creating estimates that correct for di�erences between sample andpopulation, whether these discrepancies arise from sampling uctuation, nonresponse, frame errors,or other sources.Weighted estimation is not something that many non-survey statisticians are familiar with. Infact, most mainstream statistics packages do not provide for inferences (that is, standard errorsas well as point estimates) using so-called sampling or \probability" weights. One exception isStata (StataCorp, 1999) which carefully distinguishes between these sampling weights and so-called\analytic" weights. The latter are weights used in standard regression estimation where the datavalues themselves each have di�erent (known) variances; in contrast, sampling weights are used forestimating a �nite population quantity about which auxiliary information is known. Some similarcapabilities are available in the latest release of SAS (An and Watts, 1998).2.1.1 Where do the weights come from?Di�erent survey organizations use di�erent weighting schemes, even when using similar methods,asking similar questions to the same populations. The general principle is clearly to do enoughweighting to correct for any dramatic discrepancies between sample and population, but just howmuch is \enough" is not easy to de�ne. For example, Voss, Gelman, and King (1985) report onweights for national political polls by news organizations in the 1988 U.S. general election campaign.At one extreme, some of the ABC News / Washington Post polls weighted only for sex (and in factthese weights were fairly minor, for example, 1.04 for men and 0.96 for women). In contrast, theCBS News / New York Times polls included weights proportional to number of adults in household(see Section 3.3.3) divided by the number of telephone lines, then used ratio weights to match the2



sample to the population for sex � ethnicity and age � education.As pointed out by Voss, Gelman, and King (1995), the weighted average estimates for populationquantities of interest turned out to be similar for the di�erent survey organizations, which is nosurprise since each survey organization used the weighting it deemed necessary to match sample topopulation.The CBS example may be used to illustrate an important distinction between two types ofweights: inverse-probability and poststrati�cation. The basic di�erence is that the former are knownat the time the survey is designed whereas the latter can only be estimated after the data havebeen collected. A further distinction among types of inverse-probability weights is that sometimesthese are created by the survey designer, for example using probability-proportional-to-size samplingschemes, and sometimes they are a byproduct of a multistage structure, as with the household sizeweights in the CBS polls.Poststrati�cation weights are calculated after the data are collected, with the weight (multiplier)for each stratum proportional to the number of units in the stratum in the population, dividedby the number of units in the sample in this stratum. In the CBS polls, the �nal weight for eachindividual was the product of four factors: two approximate inverse-probability weights and twopoststrati�cation weights. Although both kinds of weights have the same intuitive interpretation,they have a di�erent statistical standing, with potential implications for the estimation of standarderrors, whether design or model-based; see Section 3.3.2.1.2 How should the weights be used?In using sampling weights, it is widely agreed that for obtaining point estimates of populationmeans and ratios, weighted averages are appropriate. The weighted estimate of a mean Y isPni=1 wiyi=Pni=1 wi, and the weighted estimate of a ratio Y =X is Pni=1 wiyi=Pni=1 wixi.If the aim of analysis is to estimate something more complicated, such as regression coe�cients, orif standard errors are required, current practices and textbook recommendations vary. For estimatingthe coe�cients of the regression of y on X , the most commonly used option among most surveyanalysts is probably to run a weighted regression using the survey weights. The basic weightedaverage notion is applied to the estimation of regression coe�cients by applying the weights to\estimating equations" or pseudo-score statistics, which also take the form of a (weighted) averageover the sample (Binder, 1983; Carlin et al., 1999).Alternatively, statisticians with a stronger model-based persuasion might decide to ignore theweights, on the basis that regression relationships should be validly estimable even from a non-equally weighted sample as long as the model is adequate. Concerns about robustness to model3



assumptions tend to lead many away from this approach, and an alternative is to try to capturethe information in the weighting by including in the model a further set of covariates that containall the information used in the survey weighting. One then performs an unweighted regression of yon the augmented X matrix, and interprets the regression coe�cients in the context of the largermodel (see DuMouchel and Duncan, 1983, and Pfe�ermann, 1993). In a more complicated scenario,interest lies in the regression of y on a subset of the variables in X ; a problem we briey discuss atthe end of Section 4.1.2.2 Poststrati�cationPoststrati�cation may be de�ned simply as the use of strati�ed sample estimators for unstrati�eddesigns. Its use is traditionally motivated by the considerable gains in precision that can be madeby using information about population structure that is predictive of the survey outcome. However,a more important reason to use poststrati�cation is often as a means of correcting for di�erentialnonresponse between cells. For example, the well-educated are much more likely than the poorly-educated to respond to national telephone opinion polls (see, e.g., Little, 1996).We use a general de�nition of poststrati�cation that includes all methods of adjusting the sampleto �t known aspects of the population. For example, one can examine the sample averages of somedemographic variables and compare them to the population averages (e.g., estimated from the Censusor Current Population Survey). If the sample and population di�er dramatically on some variables,one can reweight the sample to match the population. Considered from the poststrati�cation per-spective, one can consider the survey as giving separate estimates for each demographic category orpoststratum, and then these estimates are combined using population totals. We elaborate on thisperspective below.When adjusting for many variables, a standard approach, called raking, is to use ratio weights,adjusting for one variable or set of variables at a time. In iterative proportional �tting, this weightingprocedure is followed several times, looping thorough all of the variables until the weights stabilize(Deming and Stephan, 1940).3 A unifying framework3.1 Notation for weighting and poststrati�cationWe have found it useful to develop a uni�ed notation, derived from Little (1991, 1993), for weightingand poststrati�cation of sample surveys. We shall follow standard practice and focus on a singlesurvey response at a time, labeling the values on unit i in the population as Yi, i = 1; : : : ; N , and4



in the sample as yi, i = 1; : : : ; n. To start with, we assume the goal is to estimate the populationmean � = Y =PNi=1 Yi=N .We suppose a population is divided into J strati�cation/poststrati�cation cells, with populationNj and sample size nj in each cell j = 1; : : : ; J , with N =PJj=1Nj and n =PJj=1 nj . For example,if the population of U.S. adults is classi�ed by sex, ethnicity (white or nonwhite), 4 categories ofeducation, 4 categories of age, and 50 states, then J = 2 � 2 � 4 � 4 � 50 = 3200, and the cellpopulations Nj would be (approximately) known from the public-use subset of the long form of theU.S. Census.We de�ne �j as the probability that a unit in cell j in the population will be included in thesample. For some designs, �j is known but, in general, when nonresponse is present, it can onlybe estimated. The ratio nj=Nj is an obvious estimate but this does not take account of unequal-probability sampling designs. Moreover, smoothed estimates can perform better if cell sample sizesare small.We label the population mean within cell j as �j = Y j and the sample mean within cell j as �yj .The overall mean in the population is then� = Y = PJj=1Nj�jN ; (1)which we refer to as the basic poststrati�cation identity. We focus on weighted estimates of the form�̂ = JXj=1Wj �̂j ; (2)where the cell weights Wj sum to 1. So far, equation (2) has no restrictions: the Wj 's and the �̂j 'scan depend in any way on the design and the data.We use (1) and (2) as a way of unifying a variety of existing estimation procedures. Classicalweighting methods generally avoid any modeling of the responses and restrict themselves to un-smoothed estimates �̂j = �yj and weights Wj that depend only on the nj 's and Nj 's (as well asinverse-probability weights, where present), but not on the yj 's, thus yielding population estimatesof the form, �̂w = JXj=1Wj �yj= Pni=1 wiyiPni=1 wi ; (3)where wi =Wj(i)=nj(i) is the unit weight of the items i in cell j. Strictly speaking, the denominatorin (3) is unnecessary since, as we have de�ned them, the wi's sum to 1, but the general ratio formulais useful when considering arbitrary unnormalized unit weights. The usual challenge for design-based5



methods is for the unit weights wi to capture the unequal sampling fractions in the di�erent cellswithout being so variable as to lead to an unstable estimate of �.\Model-based" estimates tackle (2) from a di�erent direction by setting the cell weights to thepopulation proportions|that is,Wj = Nj=N for each j|and using a probability model or smoothingprocedure to construct the estimates �̂j from the sample means �yj and sample sizes nj . Thus,�̂m = JXj=1 NjN �̂j : (4)The implicit model underlying all these procedures, both design- and model-based, is of equalprobability of inclusion in the sample within cells|where the probability encompasses both designand nonresponse issues. This is why �yj is considered a reasonable estimate for �j . It is also why, inthe presence of nonresponse, it is desirable to poststratify as �nely as possible, so that the implicitassumption of equal probability of inclusion is reasonable within each poststrati�cation cell (withthese probabilities being allowed to vary between poststrata).3.2 Standard errors and inferenceAn essential part of survey estimation is going beyond point estimates to provide credible measuresof uncertainty. We shall follow standard practice here and assume sample sizes are large enoughthat normal-theory inferences are acceptable, so that we can base inferences on point estimates andstandard errors.For standard survey problems, classical design-based and Bayesian model-based calculations tendto give similar inferences, as long as (a) sample sizes are large enough that sampling distributions ofestimands of interest are approximately normal, (b) the inferences take into account design featuressuch as strati�cation and clustering, and (c) the model uses noninformative prior distributions (see,e.g., Gelman et al., 1995, chapters 4 and 7). This similarity allows one to use model-based calcu-lations to get reasonable repeated-sampling inference or, conversely, to use design-based standarderrors to make probability statements about unknown population quantities.With complex weighting schemes, the design-based perspective can be used to derive variancesof weighted/poststrati�ed estimates by accounting for the design factors by using the form (2) andrecognizing the sampling variability of the weights Wj . To start with, in simple poststrati�cation,the weights Wj are �xed (Wj = Nj=N) and the cell estimates are simply �̂j = �yj , and so we can usethe simple variance formula for a strati�ed estimate:for simple poststrati�cation: var(�̂) = JXj=1W 2j �2j =nj ; (5)6



where �2j can be estimated from the within-stratum sample variance. (For expression (5), we ignorethe generally very minor correction arising from the randomness of the 1=nj factors.)With inverse-probability weights, raking, or iterative proportional �tting, the cell weights Wjdepend on the vector of data sample sizes n = (n1; : : : ; nJ). As a result, the sampling variance canbe decomposed as var(�̂) = E(var(�̂)jn) + var(E(�̂jn)); (6)the �rst term of which is essentially identical to (5) and the second term of which accounts for therandomness in the cell weights. For a complex survey design, (6) can be estimated using linearizationor jackknife-type methods (Binder, 1983, Lu and Gelman, 2000).Design and model-based inferences begin to di�er when sample sizes become small or modelsbecome more complicated, both of which happen when poststrati�cation is applied with many cells.In this case the sample size in each cell becomes small and design-based approaches may su�erproblems of excess variance. For such problems, model-based inferences may provide an attractivealternative, with the assumption of informative, structurally based hierarchical prior distributions(see Sections 3.4 and 3.5 for general discussion and Section 5 for an example). Standard errorsfor model-based inferences such as �̂ in (4) come directly from the posterior distribution of thecorresponding quantities of interest, such as � in (2), which would be computed from posteriorsimulations of the parameter vector � in a Bayesian analysis (e.g., Gelman et al., 1995).3.3 Three simple examples illustrating the distinction between inverse-probability weights and poststrati�cation weightsIn classical sampling theory, unit weights can be de�ned in two ways. Inverse-probability weights(from Horvitz and Thompson, 1952) are de�ned as wi / 1=�j(i) and poststrati�cation weights arede�ned for unit i in cell j as wi / Nj(i)=nj(i); in either case, the classical estimator is the weightedratio (3). Because the two kinds of weights use the same estimation formula, they are often confused.However, the distinction between them is important (within the design-based perspective), especiallywhen considering more complex weighing adjustments. Here, we illustrate the di�erences betweeninverse-probability and poststrati�cation weights using three simple examples.3.3.1 Unequal response probabilities for men and women: 1For our �rst example, we consider a simple random sample (with no nonresponse) of adults with thepopulation divided into two poststrata|men and women|with equal numbers in the population,N1 = N2 = 500;000, and a sample of n = 200 with n1 = 90 men and n2 = 110 women. For thissurvey, we are assuming simple random sampling, so the inverse-probability weights are equal for7



all the units, and the corresponding Horvitz-Thompson estimator, ignoring the poststrati�cationinformation, is �̂H�T = �y (see, e.g., Lohr, 1999). The poststrati�cation weights, however, areproportional to 1=90 for the men and 1=110 for the women, and so the poststrati�ed estimate is�̂PS = 12 �y1 + 12 �y2.The two estimates also di�er in their standard errors. The Horvitz-Thompson estimate inthis case is simply �y, so its standard error is �=pn, where � is the standard deviation of theYi values in the population. The poststrati�ed estimate has an approximate standard error ofp(N1=N)2�21=n1 + (N2=N)2�22=n2, where �1 and �2 are the within-stratum standard deviations inthe population, which are typically smaller than � (since we tend to poststratify on variables thatare relevant for the survey responses of interest). For example, if � = 30 and �1 = �2 = 20, then theHorvitz-Thompson estimate has standard error 2.1 and the poststrati�cation estimate has standarderror of approximately1 1.4. These are design-based standard errors; normal-theory model-basedinferences would give essentially the same results.Given the population proportions, poststrati�cation is the standard weighting approach in thissort of problem, and it is not an inverse-probability weighting in this example; as noted above, thetwo approaches give di�erent estimates and di�erent standard errors.3.3.2 Unequal response probabilities for men and women: 2Conversely, consider the same example|simple random sampling, n1 = 90 and n2 = 110|but thistime with N1 = 450;000 and N2 = 550;000. In this case, the inverse-probability weights are stillequal and so the Horvitz-Thompson estimate is still �y, but now the poststrati�cation weights arealso equal (because 450;000=90 = 550;000=110) and so its corresponding estimate is also �y.However, in this case, even though the two estimates are the same for this particular sample,they have di�erent properties in repeated sampling. In particular, the poststrati�cation estimate hasa lower standard error. In fact, the design-based (or normal-theory model-based) standard errors ofthe two estimators are as given in Section 3.3.1.The increased precision of the poststrati�cation estimator in this simple example is due to theconditioning on poststrata, not to any di�erence between the weighting (since of course there wasnone). Although in this case the point estimate was the same from the two approaches, in generalthe poststrati�cation method will provide a better \�t" to the population. In practical terms, anapproximate poststrati�cation inference would be obtained in standard survey analysis software byspecifying both the weights and the poststrata (as if they were in fact strata), whereas the Horvitz-1This is only the approximate sampling standard error because it conditions on n1; n2 rather than treating themas random variables. In this case, however, a simple simulation calculation shows this approximation to be correct totwo signi�cant �gures. 8



Thompson estimate would only specify the weights.This example illustrates the weakness|from a design- or model-based perspective|of trying toobtain standard errors using only weights, without including the information used in constructingthe weights.3.3.3 Adjusting for household size in a survey of individualsOur second example comes from a real problem in household surveys described in Gelman andLittle (1998). In a survey in which households are sampled at random, and then a single individualis sampled from each sampled household, individuals in larger households have a smaller probabilityof being selected. If individuals within a household are selected with equal probability and thereis no nonresponse, then the probability of an individual being included in the survey is inverselyproportional to the size of the household. However, composition of the sample is also a�ected bynonresponse. One source of nonresponse is nonavailability|no one answers the phone, or no onereceives the message on the answering machine. It seems reasonable to suppose that in a largerhousehold it is more likely that someone will be home to receive the phone call. Another source ofnonresponse is refusal to participate in the survey.Gelman and Little (1998) compared the distribution of household sizes in the U.S. Census tothree series of national opinion polls (two sets of pre-election telephone polls conducted by CBSNews and the in-person National Election Study conducted by the University of Michigan) in orderto compute the poststrati�cation weights for adults in di�erent household sizes. Table 1 comparesthese to the inverse-probability weights, which are simply proportional to the number of adults inthe household. The poststrati�cation weights for the higher categories are lower than the inverse-probability weights because the realized sample overrepresented the larger households, presumablybecause adults in smaller households are harder to reach. The discrepancy between the two kinds ofweights is smallest with the in-person NES poll, which makes sense since it had the highest responserate of all these surveys.A simple use of inverse-probability weights in this example will give inferences that overly weightthe adults in larger households. Interestingly, Table 1 reveals that the poststrati�cation weights arealso less variable than the inverse-probability weights in this example.A key assumption of the poststrati�cation weighting here is that the Census numbers representthe target population of the survey. In general, this is not exactly the case; for example, the Censusincludes people who are apathetic about politics, and one might argue that a political poll shouldrepresent the people who plan to vote in the election. For this particular example, however, there isno substantial correlation between number of adults in a household and the likelihood of voting. The9



Number of adults Inverse-probability Poststrati�cation weights for three surveysin household weights early CBS late CBS NES1 1 1.00 1.00 1.002 2 1.32 1.38 2.003 3 1.35 1.53 2.304+ 4.25 0.95 1.20 2.55Table 1: Inverse-probability weights and poststrati�cation weights for late CBS polls, early CBSpolls, and the National Election Study, all scaled so that the weight is 1 for respondents fromhouseholds with 1 adult. (The inverse-probability weight in the last row is not exactly 4 because thatpoststrati�cation category includes all households with 4 or more adults.) Systematic discrepanciesbetween the two kinds of weights imply di�erent nonresponse rates among the cells.discrepancy between the sample and population is more plausibly explained by nonresponse, causedprimarily by the di�culty of reaching anyone in a small household (and, as is shown by Gelman andLittle, 1998, this di�erential nonresponse remains after adjusting for the demographic variables ofsex, ethnicity, age, and education). If an analyst wishes to adjust the survey for household size, itseems to us much more reasonable and in line with other survey practice to poststratify rather thantrying to adjust for unequal sampling probabilities while ignoring nonresponse.3.4 Di�culties with classical weighted estimatesEstimate (3) is unbiased under the sampling design if the cell weights Wj are set to Nj=N , whichcorresponds to unit weights wi / Nj(i)=nj(i) for units i in cell j. As the weighting (3) indicates, ifthese unit weights are too variable, then �̂ will itself have an unacceptably high variance, and thiswill occur if the nj 's are small. There is thus a tension between two competing alternatives: (a)keeping the number of weighting cells small, so that the individual nj 's will be reasonably large andthe weighted estimate not too variable; and (b) increasing the number of cells, which may make theimplicit assumption of equal probability of inclusion within cells more plausible (in the presence ofnonresponse). A commonly-used compromise is to keep a large number of weighting cells but to\smooth the weights": that is, to set the unit weights so that they are less variable than would arisefrom simply setting wi / Nj(i)=nj(i). In practice, this means that units from cells with small samplesizes receive smaller weights than they would under the unbiased estimate.As discussed by Elliott and Little (1999), stable estimates of � in (2) can be obtained in two ways:by smoothing the weights Wj , or by estimating the cell means �j using a hierarchical model. Thedi�erence between these approaches is that smoothing of weights is usually done without referenceto the responses yi, whereas the amount of smoothing in a �tted hierarchical model depends on thevariance of yi between and within strata.An extreme version of the instability problem occurs with non-structural zero cells: that is, cells10



for which nj = 0 but Nj 6= 0. This can obviously happen; for example, if J = 3200 as in the secondparagraph of Section 3.1 and n is 1500, say, which is typical in national polls, then by necessitymost of the cells will be empty. In this case the classical solution is to adjust based on marginsusing the method of raking discussed at the end of Section 2.2, or to pool some weighting cells. Thechoice of which margins to adjust for or which cells to pool is somewhat arbitrary and contradictsthe goal of including in the analysis all variables that a�ect the probability of inclusion, which is abasic principle in both classical and Bayesian sampling inference.3.5 Di�culties with model-based estimatesUnfortunately, existing model-based estimates also have drawbacks. Most importantly, there is anunderstandable resistance on the part of survey sampling practitioners to the use of models forsurvey response, since models do not seem necessary when using standard design-based methodswith moderate or large sample sizes. From this point of view, modeling assumptions can appearsomewhat arbitrary and concerns arise as to the possible sensitivity of inferences to alternative modelspeci�cations.At a minimum, model-based methods should be able to give similar answers to classical methodsin settings where the classical methods make sense. This means that models for survey outcomevariables must at least include all the information currently used in weighting estimates. Thisappears to be possible in principle for poststrati�cation variables (see Section 5 for some examples),where including indicator variables in a regression model may arguably achieve the purpose, but itis less clear how information used in unequal-probability sampling schemes should be handled.Once we have resolved to include in our model all the variables a�ecting the probability of se-lection, the problem arises that the resulting model becomes quite complicated and requires manyassumptions. In the notation of Section 3.1, we must model the �j 's conditional on all crossclassi�ca-tion variables|for example age, sex, ethnicity, education, age, and state|and all their interactions.The challenge is to construct a class of models for this problem for which the resulting inferencesbased on (4) are reasonable.4 More complicated settingsWe briey discuss how the theoretical framework of the previous section can be applied to multistagedesigns and estimates more complicated than sample means.
11



4.1 Estimating ratios and regression coe�cientsSo far we have focused on estimating the population mean (1) or subgroup means. In general,however, one may be interested in more complex estimands, most notably ratios and regressionestimates.Ratios arise in various ways, perhaps the most common being means of subgroups with unknownpopulation proportions. For example, suppose we are interested in �, the average income of support-ers of the Republican candidate for President. If we let Yi be the income response in the populationand Ui be the indicator for supporting the Republican, then� = PNi=1 UiYiPNi=1 Ui = VU ;where Vi = YiUi. Classically, the bias correction and standard error of a ratio estimate are estimatedusing Taylor expansion; in the Bayesian context, one would need to model Y and U jointly (perhapsby modeling U given X , then Y given (U;X), where X represents the variables that determine thepoststrati�cation categories described in Section 3.1).Regression estimates commonly arise in analytical studies of sample survey responses that at-tempt to understand what variables U are predictive of an outcome of interest Y . This can bedirectly incorporated into our framework by including the variables in U as predictors, thus regress-ing Y on (U;X), where X represents the variables used in any weighting and poststrati�cation. Theimplicit assumption underlying all weighting and poststrati�cation is equal probability of inclusionin the sample conditional on these X variables, and so any analysis that conditions on X (in thiscase, a regression of Y on (U;X)) would yield valid inferences without any need for weighting in theestimates; see DuMouchel and Duncan, 1983).For many problems, this result will be satisfactory. For example, Gelman and King (1993)model vote preferences as a function of party identi�cation and political ideology (these variablesrepresent U in our notation) as well as demographics (the variables X used in the weighting) usingan unweighted regression (see also the rejoinder in Gelman, King, and Liu, 1998).But what if one is ultimately interested in the regression of Y on U without conditioning on X?We can derive this \marginal regression" from our joint regression of Y on (U;X) by averaging overX , which means averaging over the distribution of X in the population, and then the weights comeback in, to adjust for di�erences between sample and population. Unfortunately, the weighting iscomplicated by the presence of the additional predictors U . The marginal regression can be writtenas, E(Y jU) = E(E(Y jU;X)) =XX p(X jU)E(Y jU;X);12



where the left side represents the predictive relation of interest, and the summation on the rightside requires an additional modeling of the joint distribution of (U;X) required to estimate theconditional distribution p(X jU). (If U were not there, this would simply be p(X) which correspondsto the cell populations Nj used in poststrati�cation.) Modeling and estimating p(X jU) seems like areasonable task but we are not aware of any examples in the literature.4.2 Cluster sampling and unequal sampling probabilitiesIn a cluster sampling design, the population or subset of the population is partitioned into clusters,only some of which are sampled. This �ts naturally into a hierarchical model that includes aparameter for each cluster. The key di�erence from strati�cation or poststrati�cation is the needto generalize to the unsampled clusters. In the hierarchical model, this corresponds to additionalparameters drawn from the estimated common distribution. In addition, depending on the design, itmay also be necessary to estimate the population sizes of the clusters (the Nj 's in (1)). This problembecomes more elaborate with unequal probability sampling designs such as probability proportionalto size, where it is possible for sampling probabilities �j to be known even though population sizesNjare not, which adds another di�culty to inferences based on the poststrati�cation identity (1). Thereare various reasons why one might want to de�ne poststrati�cation cells for which the populationtotals Nj are unknown, and one example is described in the next section.Challenges arise when clustering is combined with weighting or poststrati�cation. For example,consider a national survey of personal interviews that is clustered geographically (for example, with20 persons interviewed in each of 50 counties selected at random with probability proportional tosize) and then poststrati�ed by demographics (for example, age, sex, ethnicity, etc.). A full modelinganalysis requires inference based on (4) requires estimates �̂j for cells j de�ned by all the counties inthe U.S. crossclassi�ed by all the demographic categories used in the weighting/poststrati�cation.This should be possible but experience is limited with this sort of modeling, and further research isneeded to see what sort of relatively simple models could work reliably here.For completeness, we review how the standard weighting methods for cluster sampling can beunderstood in terms of unit weights as in (3). The �rst stage of weighting based on sample design:the weight wi for each of the units in sampled cluster k is set to Nk=(nkpk), where Nk is the numberof units in the cluster, nk is the number of units in the cluster included in the sample, and pk isthe probability of selection of cluster k (see, e.g., Lohr, 1999). This weighting expression is generalenough to include sampling with probability proportional to size, or approximate measure-of-size,and the nk in the denominator automatically corrects for unequal nonresponse between clusters(implicitly assuming, as is standard with these weighting or modeling procedures, that nonresponse13



is uncorrelated with the outcome under study). Once these weights are obtained, one can follow upwith standard ratio weighting to poststratify on demographics, as discussed in Section 2.1.1.As always, the standard error of the weighted estimate (3) should be computed based on thesampling design, not simply using the weights. A generally reasonable approximation is to computestandard errors conditional on the observed cluster means (see Kish, 1965). That is, if clustersk = 1; : : : ;K have been sampled, to express estimate (3) as a weighted average of cluster means:�̂w = PKk=1 !kzkPKk=1 !k ; (7)where !k = Pi2k wi and zk = Pi2k wiyi=Pi2k wi. The variance of �̂w in (7) can be computedusing standard ratio estimation formulas or the jackknife (see, e.g., Lohr, 1999).4.3 Item nonresponseWeighting and poststrati�cation are designed to correct for missing data at the unit level, whetherthe missingness arises by design (i.e., a survey is not a census, so many if not most of the units inthe population are missing from the sample) or by nonavailability or nonresponse. As discussed inSection 3.3.3, poststrati�cation can be used to correct for nonresponse in the context of unequalsampling probabilities.Once we are working in a modeling framework with parameters �j for mean response withinpoststrata, it is natural to consider modeling individual responses, and then to go the next stepand model individual responses to the set of survey questions as a multivariate outcome. Such amultivariate model can be used to impute missing items. It is in fact already becoming commonto use model-based imputation methods for item nonresponse (e.g., Rubin, 1996, Schafer, 1997),but unit nonresponse is still usually handled by weighting methods. A full multivariate analysis ofsurvey responses could in principle be used to model both kinds of nonresponse.5 Poststrati�cation in model-based inference: examplesThe model-based approach can allow improved estimation when partial information is available ona variable that is predictive of the survey response of interest, in other words when there is partialbut not complete information on the poststrati�cation cell totals Nj . For example, Reilly and Gel-man (1999) analyze a series of national opinion polls, focusing on the question of how strongly therespondent approves of the President's job performance. A highly e�ective predictor of Presidentialapproval is the respondent's \party identi�cation," which can be Democrat, Republican, or neither.Using party identi�cation as a poststrati�er would seem to be hopeless since it is itself known only14



from opinion polls. However, polls in a closely-spaced time series are available, and party identi�ca-tion is known (and observed) to change only slowly over time. It was thus possible to �t a time-seriesmodel to party identi�cation, estimate the Nj 's for the cells corresponding to the three categories,and use these to poststratify and get lower-variance estimates of average Presidential approval ateach time point. In this example, weekly snapshots of public opinion were analyzed, with samplesizes of about 40 to 60 in each survey. The estimates formed by the model-based poststrati�cationreduced the estimation variances by factors of about 1.3 relative to the simple unadjusted estimates.This is an example of the modeling of population distributions of poststrati�ers that we believewarrants further development.A more detailed example will illustrate use of the model-based poststrati�cation approach incombination with model-based small-area estimation methods (e.g., Fay and Herriot, 1979, Dempsterand Raghunathan, 1987) to get inferences about subpopulations of interest. In e�ect, the model-based approach allows us to estimate population averages in a large number of poststrata, in settingswhere the poststratum means are too variable to be directly useful.We illustrate the potential power of this approach with an example from Gelman and Little(1997). The goal in that paper was to get separate estimates for each state from a series of nationalpre-election polls. Two natural approaches to this problem are (1) the classical method of assigningunit-level design-based weights and then computing weighted means for each state, and (2) the naiveBayesian method of shrinking the mean of each state toward the national average, with the amountof shrinkage determined by the variance of the binomial distribution for the sample mean in eachstate. Both these approaches have problems, however: the classical method yields highly variableestimates for all but the largest states, and the naive Bayesian method ignores design informationand thus fails to correct for known sampling biases (for example, that women and more educatedpersons are more likely than men and less educated persons to be reached and respond to a telephonesurvey).For this problem, we focused on the binary response yi equal to 1 if the respondent supported orleaned toward supporting the Republican candidate for President and 0 if the respondent supportedor leaned toward the Democrat. (Respondents who supported other candidates or had no opinionwere excluded from our analysis.) Our approach was to �t a model of the form nj �yj � Bin(nj ; �j) andlogit(�j) = (X�)j , with X including indicators for each state and for all the demographic variablesused by the survey organization's own weighting: sex � ethnicity, age � education, and region of thecountry. We modeled the state indicators as random e�ects, so that the Bayesian inference shrinksthe state di�erences toward zero after adjusting for the variables that a�ect nonresponse. We viewthis Bayesian model as design-based in that it uses the design information that had been recognized15
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Figure 1: Election result by state, vs. posterior median estimate based on (a) raking on demographics,(b) regression model including state indicators with no hierarchical model, (c) regression modelsetting state e�ects to zero, (d) regression model with hierarchical model for state e�ects.as relevant by the survey organization.Once the model has been �tted and inferences obtained for all �j 's, the key poststrati�ca-tion step is performed, computing estimates of the population mean within each state k as �k =Pj2kNj�j=Pj2kNj , where the summations are over all poststrati�cation cells within state k, andthe cell sizes Nj are given from the Census. Our Bayesian computation yields 1000 posterior simu-lation draws of the vector �; from each simulated vector � is computed the vector of cell means �j ,which are summed to yield the vector of state means �k. For each �k, we can take the 1000 simulationdraws and compute a point estimate as the median of the draws and 50% or 95% intervals from theappropriate quantiles (see, e.g., Gelman et al., 1995).This approach of smoothing and poststrati�cation performs quite well, as we can see by compar-ing our inferences, which were based on polls immediately preceding the presidential election, to thestate-by-state outcomes of the election itself. Figure 1 displays result vs. prediction, by state, for fourestimation methods: classical weighting (\raking"), Bayesian estimate with hierarchical variance setto in�nity (\unsmoothed," which does no shrinkage and is thus very similar to the classical estimate,16
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Figure 2: Scatterplot of prediction errors, by state, for the hierarchical model vs. the classical rakingestimate. The errors of the hierarchical model are lower for most states.as expected), Bayesian estimate with hierarchical variance set to 0 (\var=0," which overshrinks byassuming that states are identical after demographic adjustments), and �nally hierarchical Bayes,which has the lowest prediction errors. This is a fair test of the model: the actual election resultswere not used in any way in the estimation procedure.In addition, Figure 2 shows in a state-by-state comparison that the poststrati�ed hierarchicalestimates had lower errors than the classical weighting in 41 out of the 48 states (Alaska and Hawaiiwere not included in these surveys). In this example, the Bayes estimate worked well because itused all the information that was used in classical weighting, but in a model-based context.An important feature of the model-based approach is its direct computation of posterior uncer-tainties. The average width of the 50% intervals for the 48 state estimates is 0.57, and 20 out of the48 intervals contain the actual result for that state. (By comparison, the model-based 50% intervalsfor the raking estimates have an average width of 0.69, and only 18 of these intervals contain theactual results.)Finally, Figure 1d shows that the hierarchical model does not seem to shrink the data enough to-ward the nationwide mean. As discussed by Gelman and Little (1997) and Little and Gelman (1996),this extra variation in the predictions could be caused by a pattern of nonignorable nonresponse thatvaries between states; see also Krieger and Pfe�ermann (1992).6 Conclusion\: : : it is the structure of the population, rather than the sample design, which anestimator should reect." | Holt & Smith, 197917



This quotation reects a belief that we �nd reasonable, despite the emphasis of many samplesurvey texts on sample design as the primary basis for deriving estimates from sample surveys. Theuse of weights, whether inverse-probability or based on poststrati�cation, is traditionally supportedwith the concepts of unbiasedness and e�ciency from the design-based approach to survey inference.We believe that it may be helpful to shift the emphasis somewhat, toward regarding weights as atool for ensuring that inferences reect as well as possible the structure of the target population.Extending this notion suggests that other e�orts to capture population structure as part of thesurvey analysis task will be fruitful, and we have described examples where this was achieved throughappropriate modeling.The pre-election polls example in Section 5 illustrates how one can attack the problem of largenumbers of poststrata, which challenges traditional \design-based" methods. This example alsoshows how a successful \model-based" approach works by conditioning on variables relevant inthe design and nonresponse and then using population information on these variables to estimatepopulation averages of interest. (The short example that begins Section 5 illustrates how this model-based poststrati�cation approach can be used when the population stratum sizes are missing.)We have attempted to clarify some aspects of existing practices and to suggest areas whereexisting methods may be open to improvement by greater investment in modeling technology. Inparticular, the goal of conditioning on all variables that might a�ect nonresponse leads to a largenumber of potential poststrati�cation cells and thus many parameters �j in (1); Section 5 illustrateshow hierarchical models can be used to estimate all these parameters simultaneously. Further workis needed, however, to de�ne ways in which the model-based approach can successfully incorporateadjustments that are currently made in practice with operationally straightforward techniques suchas inverse-probability weighting and raking of poststrati�cation weights (see Little and Wu, 1991).Our hope is to see a uni�ed approach to survey estimation that combines the bene�ts of modelingpopulation structure while remaining \backwards compatible" with the more traditional ad hocadjustment techniques.ReferencesAn, A., and Watts, D. (1998). New SAS procedures for analysis of sample survey data. In SUGIProceedings. Cary, N.C.: SAS Institute.Bethelehem, J. G. (2000). Weighting adjustments for ignorable nonresponse. In this volume.Binder, D. A. (1983). On the variances of asymptotically normal estimators from complex surveys.International Statistical Review 51, 279{292.18
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