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trivariate distribution which isN(I'I' E]) with probability 0.5 and N(1'2' E1) with probability 0.5 whereI'I = (- 1.5, -7, 7). In both cases the Metropolis-within-Gibbs method appears to be superior.
Combined with its relatively simple set-up it becomes attractive for many problems.
All runs were performed in a commonly available computing environment-an IBM-PC 80286 with

mathematics coprocessor. The Gibbs sampler was run with 300 parallel strings in case 1 and 500 in
case 2. Convergence of the sampler is.assessed relative to the known mean and covariance matrix of
the joint distribution. Since the number of iterations to convergence is itself a random variable we
simulated this as well, reporting the median number of iterations and associated performance. No claims
are made for our simulation schedule or convergence criterion other than a common specification for
all procedures in a given case.

Andrew Gelman (University of California, Berkeley) and Donald B. Rubin (Harvard University,
Cambridge): We congratulate the authors and the Royal Statistical Society for gathering these interesting
papers on the increasingly important topic of iterative simulation. Since we have our own forum for
advocating the use of multiple (but not short) series to draw inferences from iterative simulation (Gelman
and Rubin, 1992), we confine ourselves here to a simple but potentially important point. In the spirit
of much of the discussion in these papers (e.g. Section 7 of Smith and Roberts), wewould like to mention
yet another variant of the Metropolis algorithm that may be useful in Bayesiansimulation: an approximate
Gibbs sampler.
As noted by various researchers (e.g. Tierney (1991», one iteration of the Gibbs sampler can be viewed

as d steps of the Metropolis-Hastings algorithm, where each step corresponds to one of the d conditional
distributions 1r(xdx_J, which define the Gibbs sampler and the joint distribution 1r(x). For some
problems, sampling from some, or all, of the correct conditional distributions is impossible, although
approximations, g;(x;lx_J, are available. Performing the Gibbs sampler with the approximate
conditional distributions instead of the correct distributions will not work, in that the iterations will
not converge to the desired joint distribution 1r. The Metropolis-Hastings algorithm, however, can be
used for each of the d steps of an approximate Gibbs sampler and will converge to the correct joint
distribution. The transition probability function at the ith Metropolis step at iteration t is then, in the
notation of Smith and Roberts,
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and the ratio of importance ratios is
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which is identically equal to 1 only if g;(xilx_J=1r(x;lx_;). When gj is an approximation, the
Metropolis step will have a positive probability of not jumping.
This Metropolis-approximate Gibbs sampler should be useful in at least two situations: to correct

for an analytical approximation and when using the values of the distribution computed at a discrete
set of points. An example of an analytical approximation before the Gibbs sampler appears in Dempster
et al. (1983), who approximate a binomial likelihood by a normal distribution on the logit scale to be
conjugate with a normal prior distribution on the parameters. Discrete approximations commonly arise
in the Gibbs sampler when a conditional density can be computed at severalvalues (perhaps with difficulty)
but not directly sampled from. In this case, if a method such as adaptive rejection sampling (Gilks and
Wild, 1992)is unavailable, an approximate conditional density can be created by interpolating the density
calculated at a few points, and then the Metropolis-approximate Gibbs sampler step can be applied.

Donald Geman (University of Massachusetts, Amherst): Recently, we hear that the Markov chain
Monte Carlo (MCMC) method is 'revolutionizing' Bayesian statistics, and these papers suggest that.
Applications outside spatial statistics (let alone image analysis) are proliferating, and the MCMC method
has become an area of study in its own right.


