Not Asked and Not Answered:
Multiple Imputation for Multiple Surveys
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We present a method of analyzing a series of independent cross-sectional surveys in which some questions are not answered
in some surveys and some respondents do not answer some of the questions posed. The method is also applicable to a single
survey in which different questions are asked or different sampling methods are used in different strata or clusters. Our method
involves multiply imputing the missing items and questions by adding to existing methods of imputation designed for single
surveys a hierarchical regression model that allows covariates at the individual and survey levels. Information from survey weights
is exploited by including in the analysis the variables on which the weights were based, and then reweighting individual responses
(observed and imputed) to estimate population quantities. We also develop diagnostics for checking the fit of the imputation model
based on comparing imputed data to nonimputed data. We illustrate with the example that motivated this project: a study of
pre-election public opinion polls in which not all the questions of interest are asked in all the surveys, so that it is infeasible to
impute within each survey separately.
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1. INTRODUCTION

Multiple imputation is a general approach for handling
nonresponse in sample surveys. In particular, it is often
useful to use automatic methods, based on fitting saturated
or nearly saturated models, to impute missing data, with
the understanding that once the imputations have been ob-
tained, later users can analyze the completed datasets as
they see fit (see Belin et al. 1993; Meng 1994; Rubin 1987,
1996). (Also see Fay 1996 and Rao 1996 for critical per-
spectives on multiple imputation.) Algorithms are available
and in use for imputing missing data in a single sample sur-
vey based on normal (Liu 1993; Rubin and Schafer 1990;
Schafer 1997) and ¢ (Liu 1995) distributions and the general
location model (Liu and Rubin 1998; Schafer 1997).

When imputing missing data from several sample sur-
veys, there are two obvious ways to use existing single-
survey methods: (1) separately imputing the missing data
from each survey or (2) combining the data from all of
the surveys and imputing the missing data in the combined
“data matrix.” Both of these methods have problems. The
first approach is difficult if there is a large amount of miss-
ingness in each individual survey. For example, if a partic-
ular question is not asked in one survey, then there is no
general way to impute it without using information from
other surveys or some additional knowledge about the rela-
tion between responses to that question and to other ques-
tions asked in the survey. The second method does not ac-
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count for differences between the surveys—for example,
if they are conducted at different times, use different sam-
pling methodologies, or are conducted by different survey
organizations.

Our approach is to compromise by fitting a separate im-
putation model for each survey, but with the parameters in
the different surveys linked with a hierarchical model. This
method should have the effect that imputations of item non-
response in a survey will be determined largely by the data
from that survey, whereas imputations for questions not
asked in a survey will be determined by data from the other
surveys in the population as well as by available responses
to other questions in that survey. This effect of partial pool-
ing, with the amount of pooling depending on the amount
of available data, is typical of Bayesian inference in hierar-
chical models or meta-analysis (see, e.g., Belin et al. 1993;
DuMouchel and Harris 1983; Efron and Morris 1975; Gat-
sonis, Normand, Morris, and Liu 1992; Rubin 1980). The
hierarchical regression structure also allows us to include
covariates both at the individual and survey levels. (For
an approach to hierarchical regression using econometric
methods, see Franklin 1989.) A related Bayesian approach
to the problem of missing covariates in a regression analy-
sis of cross-sectional surveys has been given by Dominici
et al. (1996).

Another relevant area of application is stratified and clus-
ter sampling. Appropriate analysis of sample surveys in-
cludes information used in the design, including stratifica-
tion and clustering. (For perspectives from survey sampling
practice, Bayesian inference, and multiple-imputation in-
ference, see Gelman, Carlin, Stern, and Rubin 1995; Kish
1965; Rubin 1996) If strata or clusters are expected to dif-
fer in their mean responses (as will generally be the case),
then it would be reasonable to apply a hierarchical model
instead of imputing using a common distribution for all
the respondents irrespective of stratum/cluster. For cluster
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sampling, the hierarchical model has the additional advan-
tage of immediately generalizing to the unsampled clusters.
Our method might be particularly appropriate to surveys in
which different questions are asked to respondents in dif-
ferent strata (see Raghunathan and Grizzle 1995).

In this article we present a specific method for extending
a standard multiple imputation algorithm based on multi-
variate normal models. We illustrate with the example that
motivated this work, a study of 51 public opinion polls pre-
ceding the 1988 U.S. Presidential election. In the presenta-
tion of the example, we discuss some practical issues in us-
ing the imputations, including concerns about discrete data
and accounting for survey weights in the imputation and
analysis of results. In presenting the results for the exam-
ple, we illustrate some novel graphical methods for summa-
rizing the results of the multiple imputations and checking
the fit of the imputation model and the calibration of the
between-imputation variability.

2. THE MODEL

2.1 Notation and Basic Assumptions

Suppose that S sample surveys are conducted and we are
analyzing () questions, each of which is asked in at least one
of the S surveys. (Equivalently, S could be the number of
strata or clusters within a single survey; for simplicity, we
work with the multiple-survey context here.) When any of
the () questions is not asked in some surveys, we imagine
that it could have been asked but all of the responses to
this question are missing. In addition, there can be item
nonresponse, so not all the survey respondents respond to
every question asked of them. To handle both situations,
we augment the data such that the complete data consist of
the same () questions in all of the S surveys. We denote
by Ys,o = (Us,i,15- -+, Us,io) the responses of individual 4 in
survey s to all of the ) questions. Some of the elements
of y,, may be missing. Letting /N; be the number of the
respondents in survey s, the (partially unobserved) complete
data have the form

{{(ys,i,la ce ,ys,i,Q)/: 1= 1, ce ,Ns}: s = 1, .. ,S} (1)

We assume that the data are missing at random; that is, the
probability of missingness depends only on observed data
included in the model (Rubin 1976). This is a reasonable
assumption here, because almost all of the missingness is
due to unasked questions. If clear violations of missingness
at random occur (e.g., a question about defense policy may
be more likely to be asked when the country is at war), then
additional survey-level variables should be included in the
model until missingness at random is once again a reason-
able assumption (e.g., including a variable for the level of
international tension).

We further assume that the rate of missingness provides
no information about the underlying responses. That is, we
assume that the parameters of the missing-data process are
distinct from the parameters of the datd model, so that the
missing-data mechanism is ignorable (see Rubin 1976).
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2.2 Hierarchical model

The simplest model for imputing the missing values in the
data in (1) that make use of the data structure of the multiple
surveys is multivariate normal at the individual level with
mean vector pg for survey s and a common variance ma-
trix o,

ind
ys,il(,usa \Ilz 97 E) ~ NQ(/U‘S’ \I/)

(i=1,....,Ny: s=1,...,5), ()

with the means exchangeable at the survey level,

1s)(6,) M Ny(6,8)  (s=1,...,8), 3)

where 6 is a vector of means and ¥ is a (Q x Q) diagonal
matrix, diag (6%, ..., 02). The model in equations (2) and (3)
allows for pooling information from all the S surveys and
imputing all of the missing values, including those to the
questions not asked in some of the surveys. The effect of
the pooling is illustrated with the example in Section 4. The
example also suggests that factors at the survey level, such
as organization effects and time trend, should be included in
the model for multiple imputation. The assumption that the
variance matrix W is the same for all surveys could be tested
by, for example, dividing the surveys nonrandomly into two
groups (for example, early surveys and late surveys) and
estimating separate matrices ® for the two groups.

Now suppose that we have data on P variables of interest
at the survey level. Let © = (z1,...,zp)" be the vector of
the P survey-level covariates. We assume that z is fully
observed for each of the S surveys. We denote by z, the
fully observed P covariates of the sth survey and write X =
{zs: s=1,...,5}. We consider the following hierarchical
model:

ind
ys,i'(;ufs,q/,Xa/B?Z) 'I}V NQ(/U‘S’lI/)

(i=1,...,Ng; s=1,...,5), (4)

sl (X, 8,%) M Ny(fzs, %) (s=1,...,8), ()
where £ is the (@ x P) matrix of the regression coefficients
of 1 on z. Because ¥ is diagonal, (5) represents @ linear
regression models with normal errors,

/J'SyjI(X’ﬁvE) ~ N(x/sﬁ§7gj2)
(s=1,...,8 j=1,...,Q), (6)

where p, ; is the jth component of p, and j3; is the jth row
of 5.

Following Liu (1993), we use the following noninforma-
tive prior distribution for (¥, 8, ¥):

Q
p(¥,8,%) = p(W)p(B) [ [ p(0]) oc [w|~ (XD (7)
q=1

If there are fewer than @ completely observed units (i.e.,
individuals with responses on all the questions), then it is
necessary to use a proper prior distribution for ¥. A mini-
mally informative conjugate prior density when there are



848

no completely observed units (as would happen, for ex-
ample, if there were no survey in which all ) questions
were asked) is inverse-Wishart with v = @ df; that is,
p(¥) o [§|~HQHD/2 exp(—Lir(o T 1)), where ¥y is a
positive-definite “prior estimate” of W. In realistic exam-
ples with moderate or large sample sizes and nondegen-
erate missing-data patterns, this prior distribution will be
essentially irrelevant (except for serving the mathematical
function of ensuring a proper posterior distribution). For the
prior scale matrix Wq, one can use a rough approximation
such as a diagonal matrix with elements set to the marginal
variances of the () outcomes. If this proper prior distribu-
tion is used, then it is to be treated as v additional data
points when updating ¥ in the subsequent computations. It
can also be appropriate to use a proper prior distribution
for X.

3. COMPUTATION

The model in (2) and (3) is computationally a special case
of that in (4) and (5). Here we describe a method to impute
the missing values in data (1) under the model in (4) and
(5). Our method, which is an extension of that of Schafer
(1997), uses two basic steps: data augmentation to form a
monotone missing-data pattern and the Gibbs sampler to
draw simulations from the joint posterior distribution of
the missing data and parameters. We go beyond the work
of Schafer (1997) in adapting this method to a hierarchical
data structure that includes information at the individual
and survey levels.

For incomplete multivariate normal data, Rubin and
Schafer (1990) proposed a data augmentation scheme called
monotone data augmentation (MDA) for efficiently creating

multiple imputations ( Liu 1993, 1995, 1996; Schafer 1997). '

A rectangular dataset {(yi1,...,%,m): ¢ =1,..., N} with
missing values is said to have a monotone pattern if the data
can be sorted in such a way that y; ; is observed if y;; ,
is observed for j =1,...,mandi=1,...,n — 1. MDA is
the algorithm that applies the data augmentation algorithm
(Tanner and Wong 1987) to a (complete) monotone-pattern
dataset, which is created by including those missing val-
ues that destroy the monotone pattern. MDA promises fast
converging iterative simulation methods by disregarding the
missing values of a monotone pattern during iterative sim-
ulations. After MDA converges, all of the missing values in
the rectangular dataset can be imputed to create a complete
rectangular dataset. We use a method-of-moments estimate
from fully observed units as a starting point for the iterative
data augmentation algorithm.

MDA is very effective in multiple imputation for multi-
ple surveys, because the data can be sorted so that a large
portion of the missing values fall into a monotone pat-
tern due to the fact that some questions are not asked in
some surveys. First, we sort the data consisting of the S
datasets from the S surveys so that a portion of the missing
values fall into a monotone pattern, which has ¢) possible
observed-data (or missing-data) patterns. The resulting data
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matrix can be described as

(k) ):

k
Ymp = {(yiz,)i,w o Ys, i

@}, (8)

where k£ indexes the observed-data pattern and s; repre-
sents the survey containing the ith respondent in the kth
observed-data pattern. The data in (8) may still contain
missing values. We denote the set of all of the missing
values in (8) by ymp,mis and the set of all the observed val-
ues by yobs. Thus we have ymp = {Yobs; Ymp,mis - Figure 1
illustrates a constructed monotone data pattern for the pre-
election surveys, with the variables arranged in decreasing
order of proportion of missing data.

We use the Gibbs sampler (Gelfand and Smith 1990;
Geman and Geman 1994; Tanner and Wong 1987), an it-
erative algorithm for obtaining draws of a set of m vari-
ables &1,...,&, from their joint distribution. Each itera-
tion of the Gibbs sampler consists of a sequence of steps,
and each takes a draw of a subset of {&;,...,&,} from
their conditional distribution given the remaining variables
in {&1,...,&n } with each of the conditioning variables fixed
at its most current draw. Under mild conditions, the distri-
bution of the Gibbs sequence will converge to the joint dis-
tribution of (£1,...,&y) if each of the &1,..., &, is visited
infinitely often.

Using the data augmentation scheme in (8) and the model
defined by (4), (5), and (7), we have the observed data
Yobs and all of the unknowns {Ymp mis, ¥, p1, - - ., ps, 3, L}
To take draws of {Ympmis, ¥, K1, - .-, s, 3, L} from their
posterior/predictive distribution given the observed values
Yobs, W€ use the version of the monotone Gibbs sampler
where each iteration consists of the following three steps:

i=1,...,n5 k=1,...

Step 1. Impute Ymp mis given ¥, u1, ..., us, 3, %, and
Yobs -

Step 2. Draw (VU,3,%) given pi,...,M4s, Yobs, and
Ymp,mis-

Step 3. Draw (p1,...,us) given U, 8, %, yops, and
Ymp,mis-

For the monotone Gibbs sampler for our hierarchical model,
as with the single-survey MDA approach of Rubin and
Schafer (1990), one need impute only enough missing data
to fill in the monotone pattern y,, defined in (8) and not
the complete rectangular data matrix. In the Gibbs sam-
pler context, this has the effect of analytically integrating
over (rather than sampling) the other missing elements in
the data matrix, which tends to yield a faster-converging
algorithm (Liu, Wong, and Kong 1994).

It is straightforward to implement step 1 because, given
W, u1, ..., Ws, B, 2, and yobs, the nonresponse components
of any of the respondents in ymp mis 1S independent of that
of other respondents in ymp,mis and the nonresponse compo-
nents of any respondent in ¥mp mis 18 Normally distributed.
This conditional distribution is easily computed using the
sweep operator.

Given p1, ..., ls, Yobs, and Ymp mis, (¥) and (G, %) are
independent. It is again straightforward to take a draw of
(B8, %), because the problem falls in the conventional linear
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regression framework with independent normal errors, as
shown in equation (6). To take a draw of ¥ from the con-
ditional distribution, we use the following theorem, which
extends the result of corollary 1 of Liu (1993).

Theorem 1. For 1 < k < p, let Ci be the total
sum of squares and cross-products matrix of the sample
{(yij)lk, . ,yg?zyQ): i=1,...,N;; j=1,...,k} about their
corresponding population means pug, ..., 4s. Suppose that
C; ' has the Cholesky factorization C;' = L;L}, where
Lpisa ((Q—k+1)x (Q—k+1)) lower triangular ma-
trix. Let H be the (Q x @) lower triangular matrix whose
kth column consists of Lyt as the last (Q — &k + 1) com-
ponents, where ti = (tgk,...,tko) for k =1,...,Q and
{tp:k =1,...,Q} satisfies the following conditions:

a. t,; is independent for 1 < j <4 < Q.
b. t;,; ~N(0,1) for1<j<i<Q.
C. t]vj ~ Xni+no++n, —j+1 for'j =L...

7Q'

If n; > @, then the conditional distribution of ¥, given
W1y -y thss Yobs, aNd Ymp mis, 1S the same as the distribution
of (HH') .

Given ¥, 3, %, Yobs, and Ymp,mis, K1, - - -, s are mutually
independent and normally distributed. To take a draw of
for s=1,...,S, we use the following result.

Theorem 2. For 1 < k < @, let y,, be the
(Q — k + 1)-dimensional sample mean of the reduced set
{(ygf,)i’k,...,yg,)m): i=1,...,n5 j=1,...,k;s; =s}in
survey s and the Cholesky factorization ¥—! = HH'. Then,
given the monotone pattern {Yobs, Ymp,mis }, ¥» 5, and 2, 15
is conditionally normally distributed with mean

s =[S+ HAH] ™!

x [27'0, + HA (hiys, ..., hiys)] 9)

and covariance matrix

d, = [+ HAH], (10)
where 93 = ﬁ:ﬂs, hk = (hk,k,-'-,hQ,k)ly As = dlag (nsl,
3Nt + ...+ Ng), and ngy is the number of observations
of pattern k in survey s.

Following Liu (1993), we can prove Theorems 1 and
2. Letting ¥ be the (Q — k + 1)-dimensional sam-
ple mean of the reduced set { (ygf)i et ,yi? it =
1,...,nk;8; = s} in survey s and lefting ®p be ¥ with
elements replaced by O except the elements in the lower-
right (Q —k+1) x (Q — k + 1)) submatrix, we can write
ns in (9) and @, in (10) as

-1

Tls =

Q
[Eles +>° wb,;yg’“’}

k=1

Q
DI ENE Z ey
k=1

and
-1

o, =

Q
4 Znsk‘bg
k=1
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where ®, is ®; with the lower-right ((Q —k+1) x (Q —k
+1)) submatrix replaced by its inverse.

The computer implementation is written in Fortran and
C and was developed from an earlier program designed for
imputation for single surveys. For the example in Section 4,
the final program requires several hours to run (simulating
five Gibbs sampler sequences for 100 iterations each) on a
Sun Sparc workstation.

4. EXAMPLE: MISSING QUESTIONS IN
PRE-ELECTION POLLS

4.1 The Problem and the Data

In a study of public opinion changes in the 1988 U.S.
Presidential election campaign, Gelman and King (1993)
analyzed data from 51 national opinion polls conducted by
nine different major polling organizations during the 180
days preceding the election. One of the major purposes
of the study was to examine changes in vote intentions
(Bush, Dukakis, or undecided/other) over time for different
subgroups of the population (e.g., men and women, self-
declared Democrats, Republicans, and independents, low-
income and high income). The changes were studied by
constructing simple graphs of average vote intentions over
time for different subgroups and also by tracking changes
in coefficients of logistic regression models predicting vote
intention in terms of variables such as sex, party identifica-
tion, income, and so forth.

Performing these analyses required some care in han-
dling the missing data, because not all questions of interest
were asked in all surveys. For example, respondent’s self-
reported ideology (liberal, moderate, or conservative), a key
variable, was missing in 10 of the 51 surveys, including
our only available surveys during the Democratic nominat-
ing convention. Questions about the respondent’s views of
the national economy and of the perceived ideologies of
Bush and Dukakis were asked in fewer than half of the
surveys, and they were excluded from that analysis. Gel-
man and King (1993) used a mixture of available-case and
complete-case methods (see Little and Rubin 1987), with
available-case for the time-series plots by subgroup and
complete-case for the regressions. Compared to complete-
case inference, these analyses are more difficult to set up—
one must examine the missing-data pattern to decide what
information can be conveniently used in the analysis—and
the results are more difficult to interpret, because different
findings are based on different subsets of the data.

We wish to multiply impute responses for the missing
questions in these and similar surveys so that the analyses
for the purpose of political science need not be complicated
with concerns about missing data. For example, if imputa-
tions were available, then we would not have to choose
between logistic regression models that are fit to all the
surveys but do not include respondent’s ideology as a pre-
dictor, or include ideology but not to the surveys during
the Democratic convention. Our goal in imputation is not
to “get something for nothing” but rather to express the in-
creased uncertainty due to missing data in a form that is
accessible and convenient for subsequent analyses.



850

To this end, we fit the aforementioned multiple-
imputation model to the data from the 51 pre-election sur-
veys, using the 13 variables listed in Table 1 These included
the outcome variable of interest (Presidential vote prefer-
ence), the variables that were believed to have the strongest
relation to vote preference, and several demographic vari-
ables that were fully observed or nearly so, which would
have the effect of explanatory variables in the imputation.
We also include in our analysis the date at which each sur-
vey was conducted.

There were 72,546 missing values out of 607,417 possi-
ble item responses, and an additional 249,127 missing val-
ues corresponding to questions that were not asked.

The program outputs a monotone missing-data pattern,
displayed in Figure 1. Fewer than a third of the missing
values in the data matrix needed to be filled in to achieve
this monotone pattern.

4.2 Use of the Continuous Model for
Discrete Responses

There is a natural concern when using a continuous im-
putation model for survey responses coded at varying levels
of discretization. Some variables in our analysis (sex, eth-
nicity) are coded as unordered and discrete; others (vote
intention, education) are ordered and discrete; and others
(age, income, and the opinion questions on 1-5 and 1-
7 scales) are potentially continuous but are coded as or-
dered and discrete. We recode the responses from different
survey organizations as appropriate so that the responses
from each question fall on a common scale. (For example,
for the surveys in which the “perceived ideology" ques-
tions are framed as too-liberal/just-right/too-conservative,
the responses are recoded based on the respondent’s stated
ideology.)

There are several possible ways to adapt a continuous
model to impute discrete responses; from the most elabo-
rate to the simplest, these include (1) modeling the discrete
responses conditional on an underlying continuous variable
(e.g., multinomial probit), (2) modeling the data as continu-
ous and then using some approximate procedure to impute
discrete values for the missing responses, and (3) model-
ing the data as continuous and imputing continuous values
(Schafer 1997). We follow the third, simplest approach. In
our example, little is lost by this simplification, because
the most “discrete” variables (sex, ethnicity, vote intention)
are fully observed or nearly so, whereas the variables with
the most nonresponse (the opinion questions) are essentially
continuous. When it is necessary to have discrete values (as
for Fig. 5 in Sec. 4.7), we round off the continuous imputa-
tions, essentially using the second approach when it appears
necessary.

4.3 Accounting for Survey Design and Weights

The surveys were performed by random-digit dialing
(with the exception of the four Roper polls, which were
in-person interviews), with one adult selected from each
sampled household. The respondents for each survey were
assigned weights based on sampling and poststratification
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(see Voss, Gelman, and King 1995 for details). These were
not used in the imputation procedure, because the variables
on which the weights were based were by and large already
included in the imputation model. Thus the weights do not
provide additional information about the missing responses,
and the imputation model is proper in the sense of Rubin
(1996).

We do, however, use the survey weights when comput-
ing averages, to obtain unbiased estimates of population
averages unconditional on the demographic variables (i.e.,
weighting has the effect of poststratification on these vari-
ables). Because of the simplicity of the sampling schemes,
further adjustments (e.g., for clustering) were not required.
We also restricted our analysis to the respondents who
stated that they were registered or were likely to vote.

If we were to include the known poststratification infor-
mation (which is encoded in the weights) in the imputation
analysis, then we would be able to reduce the between-
survey variance in the parameters corresponding to the vari-
ables on which the weights were based. For example, two
of the surveys oversample blacks, and so fitting the multi-
ple imputation model to the data without correcting for the
weights gives an estimate of proportion black varying from
about 10%-33% among polls. After correcting for weights,
the range reduces to 10%—16%. In our example, the vari-
ables used in the weights are all fully observed or nearly
so, and so the added variability in some of the model pa-
rameters has little effect on the imputations themselves.

4.4 Presentation of Results

Before fitting the full model, we first fit the version
with no survey-level variables (i.e., treating all of the sur-
veys as exchangeable, ignoring their time order). We then
demonstrate a graphical model-checking method, which can
be applied routinely, that displays the failure of the ex-
changeable model. Section 4.5 presents results for the more
appropriate model that includes time trends, Section 4.6
presents cross-validation checks for that model, and Section
4.7 compares inferences from available-case and multiple-
imputation analyses. Our program displays the results of
the imputation for the 51 surveys with a separate graph
for each variable; we illustrate in Figure 2 with two of the
variables: “income” and “perceived ideology of Dukakis.”
First, consider Figure 2(a), “income.” Each symbol on the
graph represents a different survey, plotting the estimated
average value of income in the survey versus the date of
the survey, with the symbol itself indicating the survey or-
ganization. The size of the symbol is proportional to the
fraction of survey respondents who responded to the partic-
ular question, with the convention that when the question
is not asked (indicated by circled symbols on the graph),
the symbol is tiny but not of zero size. The vertical bars
show +1 SE in the posterior mean, where the standard er-
ror is the square root of the between-imputation variance
plus the average within-imputation sampling variance (as in
Rubin 1987). Finally, the inner brackets on the vertical bars
show the within-imputation standard deviation alone. All
complete-data means and standard deviations are weighted.
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variable

183,229 Missing

61,457 Missing
610,794 Observed

| Bush’s perceived ideolo?y
| Dukakis’ perceived ideology
| national economic well-being
| opinion of Dukakis

| opinion of Bush

_ideolo%y

| party |

| Income

| age4

| age3

| age2

| education

| ethnicity

| Bush v. Dukakis

sex

0 10000

subject

Figure 1.

For surveys in which the question was asked, the within-
imputation variance almost equals the total variance, which
makes sense, because when a question was asked, most re-
spondents answered (see Table 1). The multiple-imputation
procedure makes very weak statements about missing in-
come responses, which makes sense, because income is not
highly correlated with the other questions. However, even
the surveys in which this question was asked have nonzero
standard errors, because of the finite sample sizes of the
surveys.

Figure 2(a) also shows some between-survey variability
in average income, from 31K to 37K—more than can be
explained by sampling variability, as is indicated by the er-
ror bars on the surveys for which the question was asked.
Because we do not believe that the average income among
the population of registered or likely voters is changing that
much, the explanation must lie in the surveys. In fact, differ-

30000

50000

Monotone Data Pattern for the Pre-Election Polls, as Output by the Multiple-Imputation Program.

ent survey organizations use different codings for incomes
(e.g., 0-10K, 10-20K, 20-30K, etc., or 0-7.5K, 7.5-15K,
15-25K, etc.). Because the point of our method is to pro-
duce imputations close to what the surveys would look like
if all the questions had been asked and answered, rather
than to adjust all the observed and unobserved data to es-
timate population quantities, this variability is reasonable.
The large error bars for average income for the surveys in
which the question was not asked reflect the large between-
survey variation in average income, which is captured by
our hierarchical model. For this study, we are interested in
income as a predictor variable rather than for its own sake,
and we are willing to accept this level of uncertainty.

4.5 Model Checking and Improvement

Figure 2(b) shows a similar plot for Dukakis’s perceived
ideology. This graph shows a serious flaw in the model:

Table 1. Survey Questions Used in the Multiple Imputation Study

No. of Rate of item

Question Range of responses surveys nonresponse
Vote intention 1 (Bush), 1.5 (undecided), 2 (Dukakis) 48 15
Sex 1 (male), 2 (female) 51 0
Age 18-65+ years 49 .08
Education 1 (no high school)-5 (graduate school) 45 .03
Ethnicity 1 (white), 1.5 (other), 2 (black) 51 .03
Income 0-100+ thousands of dollars 41 a2
Party identification 1 (strong Republican)-7 (strong Democrat) 50 .07
Ideology 1 (very liberal)-5 (very conservative) 41 .10
Opinion of Bush 1 (very favorable)-5 (very unfavorable) 36 .30
Opinion of Dukakis 1 (very favorable)-5 (very unfavorable) 36 .30
View of economy 1 (very good)-7 (very bad) 20 14
Perceived ideology: Bush 1 (very liberal)-5 (very conservative) 10 .30
Perceived ideology: Dukakis 1 (very liberal)-5 (very conservative) 16 .38

NOTE:

“Number of surveys” is the number of surveys (out of 51) in which the question was asked, and “Rate of item nonresponse” is for that question among those surveys in which it was

asked. Demographic questions such as sex, ethnicity, education, and income, which are nearly fully observed, are essentially used as explanatory variables in the imputation. All variables were
coded as above, except for age, which was discretized into categories 18-29, 30-45, 46-54, and 65+ (i.e., the continuous “age” variable was replaced by indicator variables for three of the four
age categories); and income, which was treated as a continuous variable with values assigned from the approximate median for each response category (e.g., 0-10K set to 7K, 10-20K set to
15K, ..., 60K+ set to 80K, 100K+ set to 125K). Also, when the perceived ideology of Bush or Dukakis was stated to be “too liberal,” “too conservative,” or “just right,” the response for the perceived
ideology of the candidate was imputed to 2, 4, or the respondent’s answer to the “ideology” question.
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Figure 2. Estimates and +1 SE Bars for the Population Mean Response for Two Questions—(a) Income and (b) Perceived Ide-
ology of Dukakis, Over Time—for the Model That Does Not Include Time as a Covariate. Each symbol represents a different sur-
vey, with different letters indicating different survey organization. The size of the letter indicates the number of responses to the ques-
tion, with large-sized letters for surveys with nearly complete response and small-sized letters for surveys with few responses. Circled
letters indicate surveys for which the question was not asked; note that the estimates for these surveys have much larger standard
errors. The inner brackets on the vertical bars show the within-imputation standard deviation for the estimated mean from each sur-
vey. Note the anomaly in (b), which indicates a model error: the surveys with responses (the large letters) show a trend over time,
whereas the surveys without responses (the small, circled letters) do not. This problem was fixed by including time as a covariate (see

Fig. 3).

The surveys in which the question was asked (indicated
by uncircled letters) show a strong trend downward over
time (toward a perceived ideology of “liberal”), whereas the
surveys in which the question was not asked (indicated by
circled letters) are approximately constant over time. This
indicates that the trend in Dukakis’s perceived ideology is
not captured by the regression model, which ignores time,
from the other survey responses. Plots for other survey re-
sponses (most notably, “opinion of Dukakis”) show similar
time trends not captured by the multiple imputations under
the model that does not include time as a predictor.

The obvious solution to this problem is to put time trends
into the model, which we do by including time as a survey-

level covariate—that is, a known variable z in model (5).
Figure 3 shows the plots corresponding to Figure 2 under
the old model; there are no apparent problems now. If one
were further interested in exploring survey effects, then one
could add indicator variables for survey organizations as
additional covariates x. This would require a further level
of hierarchical modeling, however, as not all questions are
asked by all survey organizations. Thus some pooling or
partial pooling would be required for the coefficients of x
in the multivariate regression.

In general, further graphical checks on the model fit, such
as residual plots, would be appropriate, depending on the
purpose to which the model would be used. (That is, it might
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Figure 3. Estimates and 1 SE Bars for the Population Mean Response for Two Questions—(a) Income and (b) Perceived Ideology of Dukakis,
Over Time—for the Model That Includes Time as a Covariate. Each symbol represents a different survey, with different letters indicating different
survey organization. The size of the letter indicates the number of responses to the question, with large-sized letters for surveys with nearly complete
response and small-sized letters for surveys with few responses. Circled letters indicate surveys for which the question was not asked; note that the
estimates for these surveys have much larger standard errors. The inner brackets on the vertical bars show the within-imputation standard deviation
for the estimated mean from each survey. Note that the anomaly in Figure 2(b) has been corrected.

be appropriate for these tests to be performed by the users
as well as the creators of the multiple imputations.) In any
particular application, we imagine that in-depth examina-
tion of the imputed data would be useful for discovering
ways to improve the imputation model.

4.6 Cross-Validation Checks

4.6.1 Ignorable Nonresponse. To test the model in an-
other way, we created a new dataset by removing the “party
identification” question from half of the surveys in which it
was asked, and then removing the responses for that ques-
tion from a random selection of a third of the individuals
in the remaining surveys. The resulting nonresponse pattern
for “party identification” is then comparable to the items on
the bottom of Table 1. This nonresponse mechanism is ig-

norable, in the sense that the nonresponse pattern provides
no information about the missing data values. We then ran
the multiple-imputation program on this new dataset and
compared the imputed values of party identification to the
true values that were artificially deleted. This is a serious
check of our method, because party identification is the
best-known predictor of vote intention and is highly corre-
lated with many of the other questions.

We checked the multiple imputations by comparing them
to the withheld data (the responses to the party identification
question that were withheld from the analysis) in two ways:
averaged over surveys and as individual responses. Figure
4(a) displays, for each poll, the average response to the party
identification question (on the y-axis) versus the average
from the multiply imputed datasets. Open circles indicate
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surveys where the party identification question was (artifi-
cially) completely missing; in solid circles, the question was
missing from about  of the units. To indicate uncertainty in
the forecasts, horizontal error bars display +1 SD from the
between-imputation variability. Predictions are of course
much more accurate for the surveys in which responses to
the question were available. The imputations have approx-
imately zero mean error; that is, E(g2ctual|gPred) o gpred,
where 7P is the mean of the five imputed values of 7. In
addition, the uncertainties in the imputed means are reason-
ably calibrated: about % of the true values fall within one
predicted standard error.

We also check the predictions of individual responses to
the party identification question. For each individual for
whom we artificially removed the response to that ques-
tion, we compare the actual response to the five multiply
imputed responses. If the data had been simulated from the
model, then we would expect the actual responses and the
multiple imputations to have the same distribution, so that
if one ranked the actual response along with five random
imputations, then all six possible orderings (actual response
lowest, second lowest, . .. , highest) would be equally likely.
The first three columns of Table 2 present the actual cross-
validation results for the party identification question, sepa-
rating the surveys with (artificially created) complete nonre-
sponse and 3 nonresponse. In both cases, the six rankings
are quite close to equally likely, meaning that the spread
of the five imputations is approximately calibrated to the
actual predictive uncertainty. In comparison, if predictions
were systematically overconfident, then the extreme cate-
gories would have higher frequencies; if predictions were
systematically underconfident, then the extreme categories
would have lower frequencies. If, in addition, the impu-
tations were systematically too high or too low, then the
frequencies in the six categories would show a decreasing
or increasing trend, respectively.

4.6.2 Nonignorable Nonresponse. We repeat the fore-
going cross-validation simulation with a highly nonignor-
able nonresponse pattern: as before, we remove the party
identification question from half of the surveys, but in the
remaining surveys, we remove the response from 10% of
(self-declared) Republicans, 30% of Independents, and 50%
of Democrats. This once again yields an approximate % item
nonresponse rate, but with nonresponse probabilities that
depend on the now-unobserved responses. We then repeat
the aforementioned calibration checks; because we have
disproportionately removed the responses from Democrats,
we expect the imputed values to be too low, compared to
the true responses. (Party identification is coded from 1 for
strong Republican to 7 for strong Democrat.)

Figure 4(b) displays, for each poll, the average response
to the party identification question (on the y-axis) versus
the average from the multiply imputed datasets. The im-
putations are clearly too low both for the surveys in which
item nonresponse was created (solid circles) and those from
which all responses to the question were removed (open cir-
cles). Interestingly, the standard errors are much too small
for the solid circles but are closer to calibrated (although
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Figure 4. Cross-Validation Checks for the Party Identification Ques-
tion With (a) Ignorable and (b) Nonignorable Nonresponse. The question
was artificially removed from 5’ of the surveys and 5’ of the responses
from the remaining surveys, and the missing values were multiply im-
puted by our computer program. Two different cross-validations were
performed, one with ignorable nonresponse and one with nonignorable
nonresponse. For each, the predicted average response for each sur-
vey (from the average of the multiple imputations) is compared to the
true value, with horizontal error bars indicating +1 standard deviation of
between-imputation variability. Open circles indicate surveys in which all
the responses to the question were deleted; solid circles indicate sur-
veys in which a random selection of 5’ of the responses were deleted.
The diagonal line corresponds to equality between actual and imputed
values. Note that the ranges on the horizontal and vertical axes are the
same on each graph but differ between graphs.

still too small) for the open circles. This suggests that the hi-
erarchical between-survey variability of the model protects
the imputations from being very overconfident in surveys
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Table 2. Cross-Validation of Individual Responses for the Party Identification Question

Ignorable nonresponse
Rank of true

Nonignorable nonresponse

response Proportion of cases Proportion of cases Proportion of cases Proportion of cases
among the five (for polls with (for polls with (for polls with (for polls with

imputations complete nonresponse) 5’ nonresponse rate) complete nonresponse) 5’ nonresponse rate)

0 16.5% 16.8% 12.3% 5.9%

1 17.9% 17.7% 16.2% 8.6%

2 16.3% 15.8% 16.3% 11.1%

3 17.1% 16.8% 16.6% 16.4%

4 16.8% 16.7% 18.8% 23.5%

5 15.3% 16.2% 19.8% 34.4%

NOTE: Columns 2 and 3 correspond to a simulation with ignorable nonresponse; columns 4 and 5 correspond to a simulation with nonignorable nonresponse. The responses for this question

were removed entirely from 2 of the surveys (chosen at random) and from 3

of the individuals in the other surveys. For each of the removed responses, we recorded its ranking among the five

imputations (0 means the true value is lower than all five imputations, 1 means it is lower than four of the five imputations, - - -, and 5 means it 1s higher than all five imputations), breaking ties
randomly. The table records the percentage of values in each category, considering separately the polls with complete nonresponse and partial nonresponse. For each simulation, if the imputation

model were correct, then we would expect about 16.7% in all categories.

for which the question was not asked, even if the nonre-
sponse is nonignorable and the imputations are, on average,
quite biased.

The last two columns of Table 2 present the cross-
validation results for the predictions of individual responses
to the missing party identification question. Once again, we
separate the polls with complete nonresponse from those
with item nonresponse. As expected, the imputations are
not calibrated: for example, in the polls with item nonre-
sponse, 34.4% of the true values of the “missing” party
identification are higher than all five multiply imputed val-
ues. Under the model, we would expect only 16.7%. The
direction of this bias is as expected, given that a dispropor-
tionate number of high values (Democrats) were removed,
and this was not accounted for in the model. Once again,
however, the lack of calibration is not nearly as bad for the
polls in which all the questions were removed; here, only
19.8% of the true values were greater than all five mul-
tiple imputations. These results suggest that the aspect of
our imputation model that is the most vulnerable to nonig-
norable nonresponse is the traditional within-survey impu-
tation, not the new hierarchical model for between-survey
variation.

4.7 Comparison of Available-Case and Multiple
Imputation Analyses

We conclude by replicating one of the analyses of Gel-
man and King (1993): the plots of political preference by
subgroup, over time. Each of the plots in Figure 5 displays
the estimated changes in estimated support for Bush over
time for different groups of the population, as character-
ized by survey responses. The population is separated in
turn according to political party identification (Republican,
Democrat, and Independent/other/no-answer), ideology
(conservative, liberal, and moderate/no-answer), income
(under $20,000, $20,000-$50,000, and over $50,000), and
view of the economy (positive, intermediate or negative).
We include the two political variables because they are the
most strongly predictive of vote preference, we include in-
come because it has a relatively high rate of nonresponse

for a demographic variable, and we include view of the
economy as an important variable that was asked in fewer
than half of the surveys.

The plots on the left column of Figure 5 display the re-
sults based on an available-case analysis, using, for each
plot, only the surveys in which the corresponding question
was asked and only the individuals who responded to those
items. For each poll, error bars show +1 SE, estimated from
the weighted mean of the respondents. The plots in the right
column of Figure 5 display the corresponding results using
the multiply imputed datasets, with standard errors includ-
ing both within- and between-imputation variation.

How do the available-case and multiple-imputation anal-
yses differ? The most striking pattern is during the Re-
publican convention (about 115 days before the election),
when the available polls do not ask the “ideology” or “in-
come” questions. The available-case analyses must skip this
point, whereas the analyses from the imputations show the
different subgroups to be moving together over time. This
behavior revealed by the analysis of the multiply imputed
data makes sense politically. The fact that public opin-
ion shifts are generally uniform across the population is
documented elsewhere (Gelman and King 1993). Page and
Shapiro (1992) used the term “parallel publics” for this be-
havior and discussed it extensively in many aspects of U.S.
public opinion.

5. CONCLUSION

The method of multiple imputation, analysis, and diag-
nostics based on a hierarchical regression model achieves
the goal of generalizing available algorithms for single-
survey imputation to attack the problem of imputation for
several surveys or for several strata or clusters within a
single survey. We perform the computations using an itera-
tive algorithm (the Gibbs sampler) that alternately performs
imputation at the single-survey level and estimates param-
eters using information available from all the surveys. The
results have the Bayesian property of compromising be-
tween the approaches of no pooling and complete pooling
of surveys. The estimated between-survey variation is part
of the multiple-imputation variation, which typically yields
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Figure 5. Comparison of Available-Case and Multiple-Imputation Analyses. The plots on the left side display available-case analyses; those
on the right side are the corresponding analyses based on the multiple imputations. The most notable differences appear during the Republican
convention (about 115 days before the election), when the available polls did not include ideology and income questions.

wide posterior intervals for questions that were not asked
in a particular survey. Information from survey weights is
incorporated by including in the analysis the variables on
which the weights were based, and then reweighting indi-
vidual responses (observed and imputed) to estimate popu-
lation quantities.

Cross-validation studies show that the ignorable model
performs well for ignorable nonresponse but poorly under
strongly nonignorable nonresponse. The most immediate
application of these methods is for problems like our elec-
tion study—an analysis of a series of independent cross-
sectional surveys in which not all questions are asked in

all surveys, and with relatively low rates of item nonre-
sponse for the questions of primary interest. Note also that
the ability to include more variables in the imputation model
(by including variables that are not asked in all the surveys)
should give our model more flexibility to handle item non-
response. (See Rubin 1996, Sec. 2.6, for a discussion of
why the missing at random assumption is in general more
reasonable if more variables are included in the model.)
Once imputations have been obtained, the completed
datasets can be analyzed using complete-data methods of in-
ference. Before doing so, however, it is advisable to summa-
rize the results of the imputations graphically, using symbol



Gelman, King, and Liu: Multiple Imputation for Multiple Surveys

sizes to indicate the fraction of missing data in the dif-
ferent surveys. Graphs of posterior inference for mean re-
sponses, plotted against time, survey organization, and other
survey-level variables, are crucial for identifying variables
that should be included in the hierarchical model.

When performing imputations, questions always arise
about the adequacy of the model used to create the imputa-
tions. Some aspects of model adequacy can be addressed in-
ternally, as discussed earlier, but the ultimate test is to com-
pare the results of analyses of substantive interest to what
would be obtained using various methods of imputation-
or nonimputation-based analysis. This is what was done in
the example of the pre-election polls. Ultimately, to choose
any data analysis procedure is to make a decision, and some
of the purposes of multiple imputation are to make the as-
sumptions behind that decision more transparent, account
for as much uncertainty as possible, and reduce the com-
plexities of subsequent substantive analyses.

[Received June 1997. Revised January 1998.]
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