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Treatment effects in

before-after data1

Andrew Gelman2

18.1 Default statistical models of treatment ef-

fects

The default analyses for experiments and observational studies assume con-
stant treatment effects. The usual modeling or Bayesian approach with ig-
norable treatment assignment starts with a constant treatment effect; for
example, yi = β0 + β1Ti + β2x2i + β3x3i + · · ·+ εi, where Ti is the treatment
variable (most simply, an indicator that equals 1 for treated units and 0 for
controls). In Fisher’s classical test, the null hypothesis is that treatment ef-
fects are zero for all units. More generally, this approach can be inverted to
obtain confidence intervals for a constant treatment effect. Neyman (1923)
allowed the possibility for varying effects (see Rubin, 1990) but only as a goal
toward estimating or testing hypotheses about average treatment effects.

Before-after designs have been much discussed in the statistical literature
(see Brogan and Kutner, 1980, Laird, 1983, Crager, 1987, Stanek, 1988, Stein,
1989, Singer and Andrade, 1997, and Yang and Tisatis, 2001). It is recognized
that treatment effects can vary with pre-treatment covariates (x2, x3, . . . in the
above model), and that these interactions can be substantively important (see
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Dehejia, 2004). We argue here that interaction between treatment and covari-
ates is a general phenomenon that can be seen as deriving from an underlying
variance components model. We posit fundamental variation among exper-
imental (or observational) units that is not fully captured in pre-treatment
predictors and manifests itself in experimental or observational outcomes.

18.2 Before-after correlation is typically larger

for controls than for treated units

Our point is not merely that treatment effects vary—in practice, everything
varies—but that they vary in systematic, predictable ways. We begin by re-
viewing a ubiquitous pattern in experiments and observational studies with
before-after data: the correlation between “before” and “after” measurements
is commonly higher for controls than in the treatment group.

An observational study of legislative redistricting

Figure 18.1 gives an example from our research on the effects of redistricting
on the partisan bias of electoral systems (Gelman and King, 1994). The sym-
bols in the graph represent state legislatures in election years (e.g., California
in 1974), with the estimated “partisan bias” (a measure of the fairness of
the electoral system) of the legislature in that year plotted vs. the estimated
partisan bias in the previous election. The small dots in the graph represent
“control” cases in which there was no redistricting, and the larger symbols cor-
respond to “treated” cases, or redistrictings. The treatment has three levels—
corresponding to redistrictings controlled by Democrats, Republicans, or both
parties—but here we consider all treatments together. Elections come every
two years and redistricting typically happens every ten years, so most of the
data points are controls. The correlation between before and after measure-
ments is much larger for controls than treated cases. (The regression lines for
the three levels of treatment are constrained to be parallel and equally spaced
because there were not enough data points to accurately estimate separate
slopes or separate effects for the two parties.)

From the usual standpoint of estimating treatment effects, the interaction
between treatment and x (estimated partisan bias in previous election) in
Figure 18.1 is dramatic—and, in fact, we had not thought to include an inter-
action in our model until it jumped out at us from the graph. Stepping back
a bit, however, the different slopes for the two groups should be no surprise
at all. In the control cases with no redistricting, the state legislature changes
very little, and so the partisan bias will probably change very little from the
previous election. In contrast, when the legislative districts are redrawn, larger
and more unpredictable changes occur.
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Estimated partisan bias in previous election
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Figure 18.1: Effect of redistricting on partisan bias. Each symbol represents
a state and election year, with dots indicating control cases (years with no
redistricting) and the other symbols corresponding to different types of redis-
tricting. As indicated by the fitted regression lines, the “before” value is much
more predictive of the “after” value for the control cases than for the treated
(redistricting) cases. In contrast to the minor differences between Democratic,
bipartisan and Republican redistricting, the dominant effect of the treatment
is to bring the expected value of partisan bias toward 0, and this effect would
not be discovered with a model that assumed parallel regression lines for
treated and control cases. From Gelman and King (1994).

In fact, in this example, the interaction effect of redistricting—that it tends
to reduce partisan bias—is larger than the original object of this study, which
was the partisan advantage of redistricting (the slight difference between the
lines for Democratic, bipartisan, and Republican treatment lines in Figure
18.1). It was crucial to model the variation in the treatment effects to see this
effect.

An experiment with pre-test and post-test data

Figure 18.2 summarizes before-after correlations from an educational experi-
ment performed on a set of elementary-school classes.3 In each of four grades,

3The treatment in this experiment was exposure to a new educational television show
called “The Electric Company.” The experiment was conducted around 1970 and used as
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Figure 18.2: Correlation of pre-test and post-test scores for an educational
experiment, for control and treated classrooms in each of four grades. Corre-
lations are higher in the control groups, which is consistent with models of
varying treatment effects.

the classes were randomized into treated and control groups, with pre-test
and post-tests taken for each class. Figure 18.2 shows the correlation between
before and after measurements, computed separately among the control and
treated classes. At each grade level, the correlation is higher for the controls.

As in our previous example, the pattern of correlations makes sense: the
pre-test is a particularly effective predictor of post-test scores for the control
classes, where no intervention has been imposed (except for a year of school-
ing). In the treatment group, it is reasonable to expect the intervention to
have different effects in different classrooms, thus attenuating the correlation
of before and after measurements.

Congressional elections with incumbents and open seats

We give one more example of before-after correlations, in an observational
study of the effect of incumbency in elections in the U.S. House of Repre-
sentatives.4 The units in this example are Congressional districts, the before
and after measurements are the Democratic Party’s share of the vote in two
successive elections, and the “treatment” is incumbency. For simplicity, we
separately analyze in each year the seats held by Democrats and by Repub-
licans.

In the context of our discussion here, the “control” districts are those
where the incumbents are running for reelection, and the “treated” districts
are the open seats, where the incumbent party is running a new candidate.
We use this labeling because the races with incumbents represent less change
from the previous election, whereas running a new candidate can be viewed

an example in Don Rubin’s course at Harvard University in 1985.
4See Gelman and King (1990) and Gelman and Huang (2004) for details.
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Figure 18.3: Correlations of party vote share in each pair of successive Con-
gressional elections in the past century, computed separately for the incum-
bents running for reelection (the “control group”) and open seats (the “treat-
ment group”). Correlations are consistently higher in the control group, which
makes sense since there is less change between before and after in these dis-
tricts. In the early part of the century, when correlations in the two groups
were about the same, the effect of incumbency was very small.

as an intervention. The effect of incumbency in a given district is then the
negative of the treatment effect as defined here.

Figure 18.3 shows the correlations between the Democratic vote shares in
each pair of two successive elections, computed separately for controls (incum-
bents running) and treated districts (open seats).5 As in our previous exam-
ples, the before-after correlation is much higher in the control group. Again,
this picture is consistent with the idea that there is little change among the
controls, whereas a varying treatment effect reduces the predictive importance
of past data.

A careful look at Figure 18.3 reveals that the before-after correlations
within the two groups did not diverge until the second half of the century.
A separate analysis (not shown here) estimates the average advantage of in-
cumbency in Congressional elections to be near zero for the first half of the
century, then increasing dramatically through the 1950s and 1960s to its cur-
rent high level. Thus, as the treatment effect increased, its variation increased
also. (The jaggedness of the solid line in Figure 18.3 can largely be explained

5We exclude uncontested elections and years ending in “2,” when district lines are re-
drawn. Within each group (incumbents running and open seats), we compute correlations
separately for the Democratic and Republican-held seats; Figure 18.3 presents the averages
of the within-party correlations for each pair of election years.
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as sampling variability given the small number of open seats, especially in
recent decades.)

18.3 A class of models for varying treatment

effects

When only “after” data are available in an experiment, it is not possible to
see the consequences of varying treatment effects, and the classical t interval
gives appropriate superpopulation inference for average treatment effects (see
Gelman et al., 2003, Section 7.5). In contrast, treatment effects that vary as a
function of “before” data can be modeled and estimated in a number of ways.

Plots such as Figure 18.1 suggest regression models with treatment effects
interacted with pre-treatment covariates. We would like to think more gener-
ally of treatments that can have varying effects, both additive and subtractive.
For example, suppose we label the “before” and “after” measurements for unit
j as yjt, t = 0, 1, and fit the two-error-term model,

before: yj0 = (Xβ)j0 + αj + γj0 + εj0

after: yj1 = Tjθ + (Xβ)j1 + αj + γj1 + εj1, (18.1)

where T represents the indicator for treatment (which in this setup occurs be-
tween the “before” and “after” measurements) and θ is the average treatment
effect—the usual object of inference in an observational study. The matrix X

represents other linear predictors in the regression model (e.g., demographic
variables for a model of individuals, or district-level characteristics for a model
of election outcomes), and the unit-level term αj represents persistent varia-
tion among units not explained by the predictors. The error terms εj0, εj1 are
the usual independent observation-level errors.

The terms γj0, γj1 take model (18.1) beyond the usual longitudinal or
panel-data hierarchical regression framework, and our key innovation is in
linking this variance component with the treatment, so that it is affected
differently by the treatment and controls. Various models are possible here,
all of which allow treatment effects to vary by unit and have the byproduct
that before-after correlation is higher for controls than treated units. We list
some possibilities here.

Replacement treatment error. Suppose that under the control condi-
tion, γj is unchanged (that is, γj1 ≡ γj0), but under the treatment, γj0 and
γj1 are independent draws from have the same probability distribution. In this
model, the treatment has the effect of replacing a random error component.
This could make sense if the control corresponded to staying with a particular
regimen and the treatment corresponded to switching to a new approach. For
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example, in the redistricting example in Figure 18.1, the treatment replaces
an old districting plan with a new one.

Additive treatment error. Suppose that γj0 ≡ 0 for all units, and γj1 = 0
for controls but is drawn from a distribution for treated units. In this model,
the treatment adds a source of variability that was not present before. This
could happen if the treatment is a new, active intervention (for example, the
educational TV program in Figure 18.2).

Subtractive treatment error. For a different model, suppose that γj0

comes from some probability distribution, and under the control condition,
γj1 ≡ γj0), but under the treatment, γj1 ≡ 0. In this model, the treatment
subtracts a source of variability. This could apply to a setting in which an ac-
tive intervention has already been applied to the “before” measurements, and
the control and treatment conditions correspond to staying with or dropping
the intervention. For example, in the incumbency example in Figure 18.3, the
“treatment” corresponds to an open seat—the disappearance of an incumbent
(see Gelman and Huang, 2004).

More formally using the potential-outcome notation of Rubin (1974), the
error terms γj1 could be written as γTj1, where T = 0 or 1 corresponds to the
control and treatment conditions. In any case, these models, or more general
distributions on these error terms, capture the idea that the treatment changes

the affected units as well as having some average additive effect. Similar mod-
els are used in animal breeding to model genetic variation and treatment
effects (see Lynch and Walsh, 1988), and Sargent and Hodges (1997) present
related ideas for hierarchical models of complex regression interactions. We
would also like to formulate a class of models in which treatments with larger
main effects naturally have larger variation, as this is another property that
often seems to hold in practice.

18.4 Discussion

It has been argued that statistical models should be adapted individually
to applied problems (see, for example, chapter 27 in this volume). However,
in practice default procedures and models are used in a wide variety of set-
tings. This is not merely for convenience (or because certain models are easier
to access in statistical software packages such as SPSS) but because default
models often work. Methods such as t-intervals, the analysis of variance, and
least-squares regression have been effective in all sorts of problems (see, for
example, Snedecor and Cochran, 1989), and much of the methodological re-
search of the past few decades has resulted in extensions of these and other
approaches. Our current toolbox of default methods includes t models for
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robust regression and multivariate imputation (generalized from the normal;
see Liu, 1995), wavelet decompositions (generalized from Fourier analysis; see
chapter 31 in this volume), generalized linear models (McCullagh and Nelder,
1989), splines and locally weighted regressions (Wahba, 1979, and Cleveland,
1979), and model averaging for regressions and density estimates (Hoeting
et al., 1999, and Richardson and Green, 1997). All these methods have been
demonstrated for specific examples but are intended to be flexible generaliza-
tions of previous default approaches.

In this chapter, we have tried to motivate an expansion of the default
model of experiments and observational studies to allow for treatment effects
to vary among units. This variation can sometimes be expressed as interac-
tions with pre-treatment measurements but more generally can be understood
as effects on unobserved unit-level variance components of the sort that are
used in instrumental variables and principal stratification (see chapters 8 and
9 in this volume). Our models are still under development and we hope they
will reach “default” stage sometime in the not-so-distant future, as a small
part of a general applied framework for causal inference deriving ultimately
from the potential-outcome perspective of Rubin (1974).


