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Summary

In classical statistics, the significance of comparisons (e.g., §; — 62) is cali-
brated using the Type 1 error rate, relying on the assumption that the true
difference is zero, which makes no sense in many applications. We set up
a more relevant framework in which a true comparison can be positive or
negative, and, based on the data, you can state “1 > 62 with confidence,”
“Gs > 61 with confidence,” or “no claim with confidence.” We focus on
the Type S (for sign) error, which occurs when you claim “f; > 6 with
confidence” when 6y > 6; (or vice-versa). We compute the Type S error
rates for classical and Bayesian confidence statements and find that classical
Type S error rates can be extremely high (up to 50%). Bayesian confidence
statements are conservative, in the sense that claims based on 95% poste-
rior intervals have Type S error rates between 0 and 2.5%. For multiple
comparison situations, the conclusions are similar.
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1 Introduction

1.1 Type 1 and Type S error rates

Classical comparisons procedures are calibrated based on the Type 1 error,
that is, the probability of claiming that 6; # 05 if, in fact, §; = 5. Thus,
for example, if we follow the procedure of claiming that 6; # 6 if the 95%
confidence interval for §; —85 excludes zero, then our Type 1 error rate should
be at most 5%. Based on our experience with data analysis in the social and
behavioral sciences, we believe this framework to be generally inappropriate,
since we do not believe that §; = 65 is a reasonable possibility for continuous
parameters.

We prefer to think in terms of the sign of the comparison. Thus, we iden-
tify a 95% interval for 6; — 65 that is all-positive as a claim “with confidence”
that 8; > 65, with an all-negative 95% interval corresponding to the opposite
claim and an interval that includes zero results in no confident claim (see,
e.g., Tukey, 1960, Harris, 1997, and Rindskopf, 1997). This sign comparison
procedure is calibrated using Type S (for sign) errors, which correspond to
wrongly identifying the sign of a comparison; that is, claiming that 6; > 6
when in fact 83 > 6;. From the perspective of sign comparisons, we believe
that the Type S error rate is of more direct interest than the Type 1 error
rate. In particular, we shall examine the probability of making a Type S er-
ror, conditional on making a comparison with confidence. The Type S error
rate will be compared for classical and Bayesian confidence intervals for data
from hierarchical normal models.

The structure of the paper is as follows. First, we will continue the intro-
duction by considering the relation between one-sided tests, two-sided tests
and confidence intervals. We also explore the relation between single and
multiple comparisons and hierarchical models. In Section 2, we lay out the
particular hierarchical model that will used throughout the paper, followed
by a definition of the classical and Bayesian intervals leading to confidence
statements. In Section 3, Type S error rates for single comparisons under the
hierarchical model are defined and results are presented. Section 4 presents
an evaluation of the Type S error probabilities for multiple comparisons; we
consider two classical procedures and one Bayesian procedure. We conclude
in Section 5 with a discussion about the relevance of Type S error rates,
suggestions for further work and some general recommendations and conclu-
sions.



1.2 One-sided tests, two-sided tests, and the interpre-
tation of confidence intervals

Classical one- and two-sided tests for comparisons test the hypotheses §; < 6,
and §; # 0y, respectively. Since we are testing the two inequalities 6; < 6
and 8 < 6;, our procedure of focusing on the sign of the confidence interval
corresponds to two simultaneous one-sided tests. This interpretation would
be acceptable, but we prefer to think of our “claims with confidence” and
Type S errors as arising from the natural interpretation of 95% confidence
intervals for comparisons. When the interval for 6; — 6;, includes zero (e.g.,
[-1.3,5.9]), then it is standard to say that the two parameters are not sta-
tistically significantly different. When the interval for §; — 6, excludes zero,
then it is standard to accept the difference as real and to confidently work
with the assumption that the sign of the true difference is as given by the
estimated difference.

This procedure—to implicitly make confident claims about the sign of
a comparison if the 95% interval for the estimate excludes zero—is stan-
dard in applications of linear regression, generalized linear models, and more
complicated statistical analyses as well as for simple comparisons of means.
Thus, we do not see ourselves as evaluating one-sided or two-sided tests but
rather as evaluating the standard statistical procedure—whether classical or
Bayesian—based on locating a 95% interval relative to zero.

1.3 Single comparisons, multiple comparisons, and hi-
erarchical models

Statistical theory distinguishes between single comparisons, in which error
rates are evaluated for each comparison separately, and multiple comparisons,
in which one evaluates the error rate jointly among a set of comparisons.

In a more general sense, however, all evaluations of statistical methodol-
ogy are multiple comparisons problems in the sense that we expect to use
a method repeatedly in a variety of situations. The frequency properties of
a statistical method are defined with respect to long-term repeated use cor-
responding to a distribution of true parameter values and data. For single
comparisons, we consider the probabilities that claims with confidence are
in fact true, on an individual basis; for multiple comparisons, we consider
the probability that an ensemble of such claims are true. In either case, we
evaluate these probabilities in the context of a model of the distribution of
true parameter values 6;. As we shall see, the variance of this distribution
is a key parameter determining the Type S error rates for both classical and
Bayesian procedures.



2 Theoretical framework

2.1 Model and definition of replications

Consider data from J independent studies, with n; observations from each
study j. We do not specify a probability model for the individual obser-
vations; instead we focus directly on a derived measurement or summary
statistic, which we label y;, from each study. This derived measurement will
most likely be the sample mean for sample j, but in general it could be any
function of the data for which the following makes sense. We assume the
distribution of y; is normal, that it depends on an unknown parameter 6;
and has variance o2,

yj|0j,0'NN(0j,0'2)- (1)
Furthermore, we assume that the population of §;’s follow a normal distri-
bution,

0;lu, 7 ~ N(u, 7). (2)
Equations (1) and (2) determine the hierarchical normal linear model.

As stated in the introduction, in some situations a researcher wants to
make claims of the type “6; > 6,” with confidence (for some j and k) and
it would be interesting to know how such claims can be calibrated using the
Type S error rate.

For our error rate calculations, we shall need to know the joint distribution
of 8; -0 and y; —yi. Given 0;—0), and o, y; —y. follows a normal distribution

Yj — Ukl0;, 0k, 0 ~ N(0; — 0x,20?), ®3)
and the distribution of 8; — 6}, is also normal:
b; — 9k|lu’a T~ N(Oa 2T2)' (4)

Because of Equations (3) and (4), the joint distribution of (y; — yx,8; — 6k)
will be bivariate normal. The mean of 8; — 6}, is 0, and the mean of y; — y,
can be determined as follows:

E(y; — yx) = E(E(y; — yx|0; — 0k)) = 0,

with variance

Il

E(var(y; — yx|0; — Ok)) + var(E(y; — ye|0; — Ok))
202 + 272.

var(y; — yk)

The covariance can be established by equating the mean of the distribution
of y; — yr given 6; — 0y, (ie., ; — 6x) to the general formula for the mean of
conditional normal distributions

COV(yj — Yk, 0]' — Hk)
var(Gj - ()k)

0; — 0 =E(y; —ux) + (6; — 0r —E(6; — 64)).



Solving cov(y; — yk,0; — 6k) from this formula leads to
cov(y; — yr,8; — k) = 272.

Summarized, the distribution of (y; —yx, 8; —0x) can be symbolized as follows
(y; — yr,0; — Ox) ~ N2(0, %),

where 3 is the vector containing the means and X is the variance-covariance
matrix of (y; — y,6; — O).

2.2 Classical and Bayesian intervals and confidence state-
ments

In this paper, we perform calculations of the probabilities of Type S errors
for classical confidence statements and Bayesian posterior intervals under the
proposed hierarchical model. The 100(1 — )% Bayesian posterior interval
we consider is a so-called central posterior interval (see, e.g., Gelman et al.,
1995) bounded by the posterior a/2 and 1 — a/2 quantiles.

Our calculations are both frequentist and Bayesian: frequentist because
they evaluate long-term error rates (i.e., under repeated sampling), and
Bayesian (or empirical Bayesian, in the sense of Morris, 1983) because the
replications average over the population distribution for the 6;’s. As is dis-
cussed by Rubin (1984) both classical and Bayesian inferential statements can
be considered as data summaries and evaluated using frequentist methods.

We separately consider confidence statements based on classical confi-
dence intervals and Bayesian posterior intervals. For convenience, we work
with the conventional 95% intervals; this work generalizes in the obvious way
to other probability statements. The classical 95% interval for 8; — 6}, is sim-
ply [(y; — yr) £ 1.961/20], and so a classical claim is made “with confidence”
if the absolute difference between the two observed derived measurements
exceeds a threshold

Classical threshold: |y; — yi| > 1.96v/20. (5)

As can be seen in Equation (5), this formula makes no reference to the hier-
archical structure of the data.

The Bayesian interval is based on the posterior distribution of §. We need
to stress that we consider for the moment only the case where the variance
o and the hyperparameters p and 7 are assumed to be known. Equivalently,
we could say that there are a large number of studies and that the sample
size within each study j are also large, such that u, 7 and ¢ can be accurately
estimated from the data in the “empirical Bayes” sense; see, e.g., Gelman et
al. (1995) or Carlin and Louis (1996).

Given the data y and the parameters u, o, 7, the ;’s are independent with
the following distributions:

0]'|y70-7/l‘77— ~ N(éja V7)7



where . )
A —=Y;+ = 1
. =<2 P ad Vi=—
J 1, 1 J 141
o2 T2 o2 2

The inverse of the posterior variance is simply the sum of the inverse of the
inverse of the data variance o (i.e., the data precision) and the inverse of
the prior variance (i.e., the prior precision). By factorizing the formula of the
posterior mean, it can be seen easily that the posterior mean is a precision
weighted average of the prior and observed derived measure.

The 95% posterior interval for 6; — 6, is thus

[(6; — 0k) £ 1.96\/V; + Vi] =

1 1
=zt

L 2
1 (y; —yx) £1.96, | +—— |,
—_ + =

and so a Bayesian claim is made “with confidence” if

2
Bayesian threshold: |y; — yi| > 1.96\/50\/ 1+ Z—2. (6)

This Bayesian threshold is always greater than the classical threshold (5),
and thus the Bayesian interval is more “conservative” in the sense of being
more likely to include zero. This happens because the posterior mean of
0; — 0, will be somewhere between the data mean y; — yx and the prior
mean, which is zero. Hence, the posterior mean will be pulled towards zero
(the amount of influence will determined by the ratio of the prior precision
to the data precision). Technically, this means that some shrinkage happens.

The only difference between what we call the classical and the Bayesian
procedures are in the acknowledgement of the hierarchical structure of the
data. In fact, the Bayesian statements have a classical interpretation as
random effects or as “predictive” inference (see, e.g., Robinson, 1991) in
that they are probability statements about unobserved random variables.
Conversely, the classical intervals can be interpreted as Bayesian inferences
with 7 set to oo. However, we feel comfortable using the label “classical” for
the unshrunken interval centered around y; — y, since this is the standard
estimate used as a starting point in classical comparisons (e.g., Scheffe, 1959).

3 Type S error rates in the hierarchical model

A Type S error occurs when a claim is made with confidence and with the
wrong sign. The plots in Figure 1 illustrate the frequencies of Type S errors
for Bayesian and classical statements in 2000 replications in each of three
scenarios: 7/ = 0.5, 1, and 2. For each simulation draw, we first sampled the
true difference 6; — 65 ~ N(0,27%) and then sampled the observed difference
Yi = Yk ~ N(0; — 0k, 20?).

From these plots we can see that, as noted above, the Bayesian thresholds
for making a statement with confidence are always higher than the classical
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Figure 1: Illustration of claims with confidence and Type S errors for Bayesian
and classical comparisons. Scatterplots show the long-run frequency prop-
erties using 2000 simulations from the hierarchical model with ¢ = 1 and
variance ratio 7/o set to 0.5, 1, and 2.
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Figure 2: Probability of making a claim with confidence for classical and
Bayesian comparisons: long-run frequencies are shown as a function of the
variance ratio 7/o.

threshold—in fact, for 7/0 = 0.5, the Bayesian threshold is set so high that
even in 2000 replications we would not expect to find any Bayesian claims
with confidence. The difference between the two procedures decreases for
higher values of 7/0. (Figure 2 displays the frequency of Bayesian and classi-
cal claims with confidence—i.e., the “power” of the comparisons procedures—
as a function of 7/0.) The plots in Figure 1 also illustrate a familiar tradeoft:
as the threshold for making statements with confidence is lowered, the rate
of Type S errors increases. In this simple example, the Bayesian and clas-
sical rules for whether to make a statement “with confidence” differ only
in their thresholds. The two procedures have the same receiver operat-
ing characteristic (ROC) curves (i.e., the same tradeoff relation between
Pr(claiming that 8; > 6;|6; > 6x) and Pr(claiming that 6; > 6,]6; < 6%))
but because of the different thresholds they give quite different results for
any fixed confidence level, as we shall illustrate for 95% intervals.

We examine the rate of Type S errors as a proportion of the statements
made with confidence. We believe that this conditional probability is the
appropriate error rate to consider, since our primary concern is to understand
the frequency properties of claims with confidence derived from signs of 95%
intervals. The conditional probability of a Type S error is,

Pr(Type S error | claim made with confidence) =
Pr(sign(0; — 6k) # sign(y; —yw) | ly; — vl > T),

where T is a generic symbol for the threshold (which can be classical or
Bayesian). To compute this probability, we have to compute a volume under
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Figure 3: Conditional probability of Type S error, conditional on making a
claim with confidence for classical and Bayesian comparisons, as a function
of 7/o.

a bivariate normal distribution:

T

oo

Ny (0 yr)d(0; — Or) + N, (0 — yr)d(8; — 6},)

)

N2 ) 0 —Gk + N2 —yk)d(ﬁj—é?k)

4] I L
L Z‘;L

8%8 8%0

with 3, the 2 x 2 variance matrix of (y; — yx,0; — i), as derived in Section
2.1.

Maghsoodloo and Huang (1995) present an algorithm for approximating
the bivariate normal integrals by transforming the random variables such that
only cumulative distribution functions of univariate normal distributions are
necessary in the calculation.

Figure 3 displays the conditional Type S error rates for the Bayesian and
classical procedures as a function of 7/0. It is no surprise that the Bayesian
error rates are lower since the Bayesian threshold (6) is more stringent than
the classical rule (5). What may be surprising, at first, is that neither pro-
cedure comes close to an error rate of 5%.

Consider the classical procedure first. For 7/0 near 0, the classical proce-
dure is set up to have a Type 1 error rate of 5%, and thus to make confident
claims 5% of the time (for 7/o = 0) or slightly more than 5% of the time (for
7/o near 0). However, with o so much greater than 7, the patterns in the
data are mostly noise, and, in particular, even if (y; — yx) > 1.961/20, the
true difference 6; — 65 is just about equally likely to be negative as positive
(see the upper left plot in Figure 1). Thus, the conditional Type S error rate
is close to 50%. Conversely, when 7/o is large enough, essentially all of the
comparisons are statistically significantly different from zero, and the Type
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S error rate approaches 0 (not 5%).

Now consider the Bayesian procedure. Because we are assuming the model
is known, Bayesian posterior distributions have direct long-run frequency
interpretations. Consider a comparison 8; — 6;, that is made with confidence
(for convenience, suppose the claim is that 8; > 6;). For such a comparison,
the expected conditional Type S error rate is simply the posterior probability
Pr(6, > 6;]y), which we know must be less than 2.5% (a claim that 6; > 6,
with confidence means that the central 95% interval excludes 0, so less than
2.5% of the posterior distribution is in the range 6; — 6, < 0). Under the
model, the Bayesian Type S error rate is thus bounded above by half the
nominal error rate. Figure 3 shows that, for small values of 7/0, this bound
is approximately achieved, but for large values of 7/, as with the classical
procedure, most of the posterior intervals are far from zero, and so the Type
S error rate approaches 0.

How should we interpret these results? From our perspective, the usual
Type 1 error rate is not particularly useful here. In particular, if 7/0 is
near zero, the classical statements, when they are made with confidence, are
wrong nearly half the time. Thus, in the very setting where Type 1 errors are
relevant—when the null hypothesis is approximately true—we believe that
the Type S error rate is more relevant than the Type 1 error rate for the key
question: what is the long-run reliability of a set of statistical claims?

4 Multiple comparisons

By considering error rates, one is implicitly considering a long sequence of
comparisons; this is in fact our fundamental justification for our above anal-
ysis using a hierarchical model. The distribution of the 8;’s is tautologically
defined as the set of 8;’s that will appear in the long run, and this is the
distribution that should be averaged over in evaluating error rates.

It is natural at this point to consider multiple comparisons procedures,
which are constructed to control the probability of making at least one error
in a given set of comparisons. For various multiple comparisons procedures,
we study the comparisonwise Type S error rate (that is, among all the claims
made with confidence, the proportion that are of the wrong sign) and the
experimentwise type S error rate (that is, among the times that the set of
claims made with confidence is nonempty, the proportion of such nonempty
sets that contain at least one claim that is of the wrong sign).

Multiple comparisons is an extensive topic (see, e.g., Kirk, 1995), and we
do not attempt a complete treatment here; rather, we illustrate the general
properties of Type S errors for multiple comparisons in a relatively simple
situation. We consider the canonical example of J parameters, 64,...,60;,
with interest in the J(J — 1)/2 pairwise comparisons, 6; — 6.
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4.1 Classical multiple comparisons procedures

A classical multiple comparisons procedure requires, if the true 8;’s are all
equal, that the probability of making no claims with confidence be at least
95%. This can be achieved in a variety of ways, including the approach of
widening the confidence intervals for all pairs 8; — 6, by an amount deter-
mined by J so that the experimentwise Type 1 error rate is 5%. Here, we
consider two standard classical procedures: Tukey’s Honestly Significant Dif-
ference test (HSD) and Wholly Significant Difference test (WSD), which are
both range tests, in which all the pairwise differences are compared with a
critical value under the distribution of the studentized range under the null
hypothesis that the J groups are identical. Typically one starts with the
largest difference, working down until no significant result is found anymore.
For the HSD procedure the reference set is always the original one of
size J, with thus the same critical value for each pairwise comparison. The
HSD procedure is known to be the most conservative classical procedure for
pairwise comparisons (Klockars and Sax, 1986). In contrast, for the WSD
procedure the critical value for a pairwise comparison depends on the re-
maining number of group measures, because a significant test leads to the
exclusion of one of the members of the significant pair. The WSD procedure
is less conservative than HSD since the critical value for pairs in later testing
stages (after already some significant values are determined) is smaller.

4.2 A Bayesian multiple comparisons procedure

In contrast, we define a Bayesian multiple comparison procedure (as in Pruzek,
1997) as a set of “statements with confidence” of the form 6; > 6y, such that
the posterior probability is 95% that all these statements are true. (Of course,
it is possible that such a procedure will result in no statements made with
confidence, which occurs if none of the parameters are statistically distin-
guishable from each other, in this Bayesian sense.)

Our Bayesian procedure is, like the WSD method, a multistage testing
procedure. To apply it, posterior simulation draws of the vector of param-
eters 6 has to be computed (which is straightforward in our case since the
parameters pu, 0,7 are fixed in our simulations and, given these, the 8; pa-
rameters can be sampled directly from their Gaussian posterior distribution).
We then consider the statements of the form “8; > 6;” one at a time, starting
with the comparison that has the highest posterior probability (based on the
simulations), then continuing in decreasing probability order. If none of the
comparisons has at least a 95% posterior probability of being the correct sign,
then we can make no statements with confidence. Otherwise, we include as
many of the statements as possible, stopping when the joint posterior prob-
ability of all of them being true is less than 95%.
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5 groups 10 groups 15 groups
T/U Bayes HSD WSD Bayes HSD WSD Bayes HSD WSD
0.5 .001 .107 .108 .003 .128 .128 .008 .140 .140
1.0 .279 .295 .298 .626 .420 .420 .824 .519 .520
2.0 .868 742 744 .993 .926 .926 1.000 973 973

Table 1: The probability of making at least one statement with confidence for
three multiple comparisons procedures—Bayesian, classical Honestly Signifi-
cant, Difference, and classical Wholly Significant Difference—as a function of
the number of studies and the between-study standard deviation. Computa-
tions for each procedure and each value of 7/ are based on 10000 simulations
from the hierarchical normal model.

5 groups 10 groups 15 groups
T/U Bayes HSD WSD Bayes HSD WSD Bayes HSD WSD
0.5 .000 .106 123 .000 .100 110 .012 .081 .085
1.0 .017 .024 .032 .018 .016 .018 .021 .014 .018
2.0 .014 .006 .010 .021 .004 .007 .025 .004 .007

Table 2: The computed experimentwise Type S error rate—that is, the num-
ber of simulations in which at least at least one Type S error was made,
divided by the number of simulations in which at least one comparison was
made with confidence—for three multiple comparisons procedures. See cap-
tion of Table 1 for more information.

4.3 Results

As before, we evaluate the Type S error rates of the classical and Bayesian
procedures in the context of the hierarchical normal model with known hy-
perparameters. For each dataset y simulated under the model, we sepa-
rately perform classical and Bayesian multiple comparisons procedures, each
of which yields a (possibly empty) set of statements of the form “6; > 6,
with confidence at the 95% level.”

We compute both these error rates based on the 10,000 simulations, with
o =1 and for each of the nine combinations of the variance ratio /o = 0.5,
1.0, 2.0, and the number of studies J = 5, 10, 15 (with the number of
comparisons equal to J(J —1)/2 = 15, 45, 105). The results of the Bayesian
procedure are based on 5000 posterior draws. Results appear in Tables 1-3.
Table 1 displays the probability that at least one statement with confidence is
made among all possible pairwise comparisons. Table 2 shows the probability
of making at least one Type S error in a set of comparisons, conditional on at
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5 groups 10 groups 15 groups
T/U Bayes HSD WSD Bayes HSD WSD Bayes HSD WSD
0.5 .000 .083 .087 .000 .068 .071 .004 .054 .054
1.0 .013 .015 .017 .011 .006 .007 .008 .005 .005
2.0 .006 .003 .003 .003 .001 .001 .009 .000 .001

Table 3: The computed comparisonwise Type S error rate—that is, the num-
ber of comparisons in which a Type S error was made, divided by the number
of comparisons made with confidence—for three multiple comparisons proce-
dures. See caption of Table 1 for more information.

least one statement with confidence being made. (Thus, the denominator for
the ratio computed in Table 2 is the numerator of the ratio for Table 1.) Table
3 summarizes the comparisonwise Type S error rates—that is, the proportion
of confident claims that have the wrong sign. These values are lower than
the probabilities in Table 2, which makes sense since the probability in Table
2 of at least one error is primarily determined by the weakest comparisons
made with confidence (that is, the comparisons that are on the border of
statistical significance), whereas the probability in Table 3 averages over all
comparisons made with confidence, weak and strong.

These tables reveal that the Bayesian procedure is neither uniformly more
nor less conservative than the classical methods. For small values of 7/, the
Bayesian multiple comparison procedure is more conservative—it leads to
fewer claims with confidence and lower Type S errors as a fraction of claims
made with confidence. For 7/0 near zero, the classical procedures yield
relatively high Type S error rates, as in the single comparisons setting.

For large values of 7/0, the pattern is reversed: the Bayesian procedure
yields more frequent, but less reliable statements. However, this is not such
a bad thing, considering that, for moderate and high values of 7, both the
classical and Bayesian procedures yield very low Type S error rates.

5 Discussion

5.1 The relevance of Type S error rates

Frequentist error rates and Bayesian hierarchical models are complementary:
both are based on an ensemble of comparisons (over time or within a group)
that are a priori exchangeable (in the sense that, before seeing any data, no
comparison is treated any differently than any other, and all are weighted
equally in the error rate).

It is standard in applied statistics, both classical and Bayesian, for com-
parisons to be made with confidence when interval estimates exclude zero.
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When the true variation is comparable to or smaller than the estimation
uncertainty, we have found that Bayesian procedures tend to be more con-
servative, in the sense of being less likely than classical methods to make
claims with confidence. This is somewhat ironic, considering that the bias in
shrinkage estimates sometimes leads them to be viewed with suspicion com-
pared to classical procedures. The key here is that the situations in which
one is worried about Type 1 errors are exactly those settings where shrinkage
is most effective and most clearly motivated by the data.

For multiple comparisons problems, the conservatism of the Bayesian pro-
cedure is even more apparent. Perhaps this is one reason why multiple com-
parisons issues are typically ignored in Bayesian inference (see, e.g., Gelman
et al., 1995, and Carlin and Louis, 1996): the multiple comparisons problem
is serious when 7/0 is small, and in such settings the ordinary Bayesian in-
ferences (without “multiple comparisons” adjustments) shrink so much that
typically few or no claims are made with confidence. (See the Bayesian curve
in Figure 2 for single comparisons in the range 7/0 < 0.5.) When 7/0 is large,
Bayesian classical non-multiple comparison procedures become identical, and
Type S errors approach 0 in both cases.

Related findings (for single comparisons) were reported by Berger and
Sellke (1987) and Berger and Delampandy (1987), comparing classical p-
values to a Bayesian point null hypothesis (that is, a prior distribution for
0; — 6;, with a point mass at zero). Casella and Berger (1987) found smaller
discrepancies between Bayesian inference with a uniform prior distribution
and classical one-sided tests (which is similar to our Type S error problem
except that we are considering comparisons in both directions). The point
and diffuse null hypotheses correspond in our model to 7/0 = 0 and oo,
respectively. Our analysis connects these two extremes using the hierarchical
modeling framework, with the pleasing result that our findings do not depend
on the assumption of a null hypothesis being true.

We emphasize that the only way that our Bayesian procedure differs from
the classical method is in using the hierarchical structure of the data, which
is implicitly possible given the repeated-sampling frequency interpretation.
As always in these hierarchical settings, the methods will differ in practice
only if 7/c is not too large; that is, if the variance between studies is not
much larger than the estimation variance for the individual studies.

5.2 Further work

Our results can be generalized in several ways. As stated above, we see
the empirical Bayes hierarchical model as the natural mathematical frame-
work for studying error rates of statistical comparisons. However, the normal
model we have used is only one possible family of distributions. It would be
natural to also consider longer-tailed families such as ¢ distributions, which
would yield a higher rate of statements with confidence even for small values
of 7. (We are content to leave our Gaussian error model unchanged, since
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the central limit theorem makes it appropriate for data y; that are means,
regression coefficients, or any other estimates with approximate normal dis-
tributions.)

Another direction towards realism is to allow the hyperparameters in the
model to be estimated, rather than assumed known, for the Bayesian infer-
ence. We examined this with a simulation in which the Bayes method, rather
than “knowing” the population parameters p and 7, averages over them us-
ing the standard hierarchical Bayes method with uniform prior distribution
(which reduces to the classical procedure if J < 3). For simplicity, we still
assume o is known in this simulation; in general, as long as sufficient data
are available within the J studies, estimating ¢ is not a problem. We ran
three small simulation studies with J = 15 and 7/0 = 0.5, 1.0, 2.0, with
1000 simulations of parameters and data for each condition. For each simu-
lation, a sample from the posterior distribution of size 2000 was drawn (see
Gelman et al., 1995, Sections 5.4-5.5), yielding a (possibly empty) set of
claims with confidence corresponding to all the comparisons for which the
95% simulation-based posterior intervals excluded zero. We then computed
the Type S error rate as the proportion of these claims that had the wrong
sign, averaging over the 1000 simulations.

We found that, as 7/0 increases from 0.5 to 1.0 to 2.0, the probability
of making at least one statement with confidence increases also from 0.070
to 0.453 to 0.980. As a comparison, if 7 is assumed known, the theoretical
probabilities of making at least one statement with confidence are 0.008, 0.824
and 1.000 (see Table 1). Thus in general, the uncertainty about = makes the
Bayesian testing procedure less likely to make a claim with confidence (except
for small values of 7/0). Next, we examined the experimentwise Type S error
rates (conditional on making at least one claim with confidence): for 7 = 0.5,
1.0, and 2.0, the Bayesian procedure with unknown 7 has experimentwise
error rates of .114, .020, and .022. Again we can compare to Type S error
rates for the Bayesian procedure when 7 is known, which are 0.012, 0.021
and 0.025 (see Table 2). That is, when 7 is uncertain, the claims made with
confidence are less reliable, especially for small values of 7. This makes sense
if our prior distribution on 7 is uniform on (0, 00), which tends to favor large
values of 7, pushing in the direction of 7 = oo, which corresponds to the
classical inferences that have high Type S error rates when the true 7 is
small.

Our results are also relevant for problems more complicated than simple
exchangeable models. If the studies differ in known ways, and these known
differences can be expressed as linear predictors or as unequal variances, then
72 and 0? can be interpreted as residual variances in a hierarchical regression
model.

Another direction of further work is to study the multiple comparisons
procedures more carefully. In particular, one can examine Type S error rates
of various subsets of comparisons that lie between the extremes of compar-
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isonwise and experimentwise errors. This might be relevant for practical uses
of multiple comparison procedures to distinguish reliably between subsets of
an ordered list of parameter estimates.

Finally, one can consider the rates of other kinds of error. For example,
a problem that arises in many studies is the overestimation of true effects,
a bias that can occur because, conditional on an estimate being statistically
significant, it is by necessity far from zero. We can define the Type M (for
magnitude) error as the overestimation of a true difference, and then the
conditional Type M error rate is the probability that the stated 95% interval
is larger than the true parameter value, conditional on a claim being made
with confidence. Other definitions of error rates would perhaps be relevant
for other concerns, with the idea being that different statistical criteria can
be relevant in different settings.

5.3 Recommendations

We do not claim that Type S errors are the only concern, or even the most
important concern, in statistical comparisons. We do believe, however, that
in a situation in which one is making repeated or multiple comparisons with
a concern about possible errors, that the conditional Type S error rate is
more relevant than the usual Type 1 error rate in evaluating the long-term
frequency properties of statistical inferences for continuous parameters.

In particular, the dramatically high Type S error rates of classical pro-
cedures when 7 is near zero suggests that, for the purposes of inference (as
opposed to testing), control over Type 1 errors—in either the single or multi-
ple comparisons case—does not necessarily mean that statistically significant
claims are reliable. This casts some doubt on those statistical procedures if
in some cases half of the classical comparisons are false in the sense of having
the wrong sign.

The purpose of this paper, however, is not to make a claim that Bayesian
intervals are better or worse than classical intervals (such a comparison is
best made by comparing precision and empirical coverage of the intervals, as
in Gelman and Little, 1997). Rather, we demonstrate that the Type S error
rate—which we argue is the relevant error rate for statistical analyses in the
social and behavioral sciences—differs dramatically from the Type 1 error
rate, which is usually used to calibrate interval estimation procedures. This
difference occurs for both classical and Bayesian procedures, and even in the
best-case scenario in which the assumed model is true.

We conclude by addressing the following question: how can we be so
dismissive of the Type 1 error, given that it is such a popular concept in
statistics? Our answer is that Type 1 error calculations are important for
understanding p-values for testing a null hypothesis, both in classical and
Bayesian settings (Meng, 1994, Robins et al., 1998). However, for evaluating
the frequency properties of statistical inferences about comparisons, we see
Type S errors as the more relevant concept. (Comparisons are special be-
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cause, for them, zero is a natural point of comparison. For inference about
quantities of interest without this symmetry, other sorts of errors—for exam-
ple, the probability of claiming that an effect is large when it is in fact small,
or vice-versa—might be more relevant.)

In any case, our recommendation in constructing inferential procedures is
not to try to recalibrate to a fixed Type S error rate, but rather to recognize
that, even in the context of the “alternative hypothesis” that 6; # 6y, error
rates can be empirically and theoretically evaluated.
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