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Difficulty of selecting among multilevel models
using predictive accuracy

Wei Wang∗ and Andrew Gelman

As a simple and compelling approach for estimating out-
of-sample prediction error, cross-validation naturally lends
itself to the task of model comparison. However, even with
moderate sample size, it can be surprisingly difficult to com-
pare multilevel models based on predictive accuracy. Using a
hierarchical model fit to large survey data with a battery of
questions, we demonstrate that even though cross-validation
might give good estimates of pointwise out-of-sample predic-
tion error, it is not always a sensitive instrument for model
comparison.

AMS 2000 subject classifications: primary 62F15; sec-
ondary 62D05.
Keywords and phrases: Multilevel Models, Predic-
tive Accuracy, Model Selection, Sample Survey, Cross-
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1. INTRODUCTION

1.1 Cross-validation for Hierarchical Models

Cross-validation is a widely-used method for estimating
out-of-sample prediction error and comparison of statisti-
cal models. By fitting the model on the training data set
and then evaluating it on the testing set, the over-optimism
of using data twice is avoided. Furthermore, attempts have
been made to use cross-validated objective functions for sta-
tistical inference (Craven and Wahba, 1978; Seeger, 2008),
thus integrating out-of-sample prediction error estimation
and model selection into one step.

However, for multilevel data (as well as other dependent
structures such as time series, spatial, and network data),
several challenges arise in the use of cross-validation for esti-
mating out-of-sample prediction error and model selection.
The first challenge is the lack of clear protocol for the cross-
validation procedure: to truly test the model, the holdout set
cannot be a simple random sample of the data but instead
needs to have some multilevel structure itself, so that entire
groups as well as individual observations are held out. Hi-
erarchical cross-validation can be performed in the context
of particular applications (Price, Nero and Gelman, 1996)
but it is not clear how best to subsample structured data
for cross-validation in a general way. The second challenge
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is that, in multilevel models, the observed loss function for
data-level cross-validation can be so close to flat that the
cross-validation estimates of prediction errors under candi-
date models can be swamped by random fluctuations.

We focus on the second of these concerns, demonstrating
the limitations of prediction error in the context of a set of
multilevel models fit to a large cross-tabulated national sur-
vey. An innovative aspect of our analysis is that we evaluate
separately on 71 different survey responses, taking each in
turn as the outcome in a comparison of regression models.
This allows us to construct a relatively large corpus of data
out of a single survey.

Multilevel models are effective in survey research, as par-
tial pooling can yield accurate state-level estimates from
national polls (Gelman and Hill, 2007). Multilevel models
have been successfully applied both to representative and
nonrepresentative surveys to obtain accurate small-area es-
timation and prediction (Fay and Herriot, 1979; Lax and
Phillips, 2009; Ghitza and Gelman, 2013; Wang et al., 2014),
and the practical application of such methods is currently
being actively discussed in social science research (Buttice
and Highton, 2013; Lax and Phillips, 2013). In the present
paper, we conduct model selection procedures based on k-
fold cross-validation and find that under this framework,
the improvement of multilevel models over classical models
is surprisingly small when measured on the scale of predic-
tion error. Furthermore, we demonstrate that this lack of
notable improvement is related to the sample size and data
structure by repeating the analysis on simulated data sets
that vary in terms of these two factors.

Our results illustrate that under multilevel structure, it
could be tricky to use cross-validation in model selection,
as the size of the data and how balanced the structure is
heavily affect the relative performance of the models.

1.2 Order of Magnitude Analysis of
Prediction Errors in Binary-data
Regressions

What sorts of improvements in terms of expected pre-
dictive loss can we expect to find from improved models
applied to public opinion questions? We can perform a back-
of-the-envelope calculation. Consider one cell with true pro-
portion 0.4 and three fitted models, a relatively good one
that gives a posterior estimate of 0.41 and two poorer mod-
els that give estimates of 0.44 and 0.38. The predictive log



loss is −[0.4 log(0.41) + 0.6 log(0.59)] = 0.6732 under the
good model and −[0.4 log(0.44) + 0.6 log(0.56)] = 0.6739
and −[0.4 log(0.38) + 0.6 log(0.62)] = 0.6763 under the oth-
ers.

In this example, the improvement in predictive loss
by switching to the better model is between 0.0006 and
0.003 per observation. The lower bound is given by
−[0.4 log(0.4) + 0.6 log(0.6)] = 0.6730, so the potential gain
from moving to the best possible model in this case is only
0.0002.

These differences in expected prediction error are tiny,
implying that they would hardly be noticed in a cross-
validation calculation unless the number of observations in
the cell were huge (in which case, no doubt the analysis
would be more finely grained and there would not be so
many data points per cell). At the same time, a change in
prediction from 0.38 to 0.41, or from 0.41 to 0.44, can be
meaningful in a political context. For example, Mitt Rom-
ney in 2012 won 38% of the two-party vote in Massachusetts,
41% in New Jersey, and 44% in Oregon; these differences are
not huge but they are politically relevant, and we would like
a model to identify such differences if it is possible from
data.

The above calculations are idealized but they gives a
sense of the way in which real differences can correspond to
extremely small changes in predictive loss for binary data.

2. MODEL ASSESSMENT AND SELECTION
VIA CROSS-VALIDATION

2.1 Predictive Loss

We start with a loss function l(ỹ, a) corresponding to the
inferential action aM based on a model M , in face of future
observations ỹ. The available data, typically consisting of
predictors x and outcomes y, are labeled as D. The corre-
sponding predictive loss is then,

(1) PL(pt,M,D) = Ept l(ỹ, aM ) =

∫
l(ỹ, aM )pt(ỹ)dỹ,

where pt(·) is the true distribution from which the future
observations ỹ are generated.

The predictive loss is affected by the form of the action
aM , the loss function l, and the data D. For example, aM
could be the mean of the posterior predictive distribution
and l the mean square error loss. However, it is often conve-
nient and theoretically desirable to use the whole posterior
predictive distribution as the inferential action and a log-
arithmic loss function. In addition, using the whole poste-
rior predictive distribution has a Bayesian justification, as
it reflects the full inferential uncertainty conditional on the
model (Vehtari and Ojanen, 2012). Substituting the choice
of aM and l into (1) yields,

PL(pt,M,D) = Ept [− log p(ỹ|D,M)]

= −
∫
pt(ỹ) log p(ỹ|D,M)dỹ

(2)

This quantity is central to predictive model selection. The
fundamental difficulty in estimating it is that the true dis-
tribution pt(·) is unknown.

Another important quantity arises when we approximate
the true distribution with the empirical distribution, which
gives the training loss,

TL(M,D) = −
∫

log p(y|D,M)dF̂ (y)

= − 1

N

∑
y∈D

log p(y|D,M).
(3)

The training loss uses the same data for both estimation
and evaluation and so in general underestimates prediction
error.

2.2 Prediction Error

With (2), the model selection task is straightforward.
Among the candidate models, the best model under this
framework is the one that minimizes the predictive loss:

(4) −min
M

∫
pt(ỹ) log p(ỹ|D,M)dỹ,

which has a lower bound, −
∫
pt(ỹ) log pt(ỹ)dỹ, which is the

entropy of the true distribution. It is often more informative
to look at the excess of the predictive loss over this lower
bound, as shown in (5). We label this quantity as the predic-
tion error. Conceptually, the prediction error indicates how
far the posterior predictive distribution is from the oracle,
and it is the Kullback-Leibler divergence between the poste-
rior predictive distribution of the candidate model and the
true generative model. As its form suggests, the prediction
error is the difference between log posterior predictive den-
sity and log true predictive density, averaged over the true
predictive distribution,

PE(pt,M,D) = PL(pt,M,D)− LB(pt)

= −
∫
pt(ỹ) log p(ỹ|D,M)dỹ +

∫
pt(ỹ) log pt(ỹ)dỹ.

(5)

So to estimate the prediction error, we need to estimate the
two terms in (5).

2.3 k-fold Cross-Validation for Estimating
Predictive Loss

In the predictive framework, the central obstacle of esti-
mating the predictive loss (2) is that the future observations
are not available. One thread of research attempts to esti-
mate and correct the bias introduced by reusing the sample
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and thus gives rise to various information criteria, whose
validity hinges on a number of assumptions and simplifica-
tions. Another thread of research is to use hold-out data for
testing, thus making training and testing data independent.
This leads to a variety of resampling procedures, includ-
ing leave-one-out cross-validation, k-fold cross-validation,
Monte Carlo cross-validation, and bootstrapping. In prac-
tice, k-fold cross-validation is popular due to its computa-
tional convenience and stability (Kale, Kumar and Vassil-
vitskii, 2011). Formally, the k-fold cross-validation of the
predictive loss is given by

P̂L
CV

(M,D) = − 1

N

K∑
k=1

∑
i∈testk

log p(yi|Dk,M)

= − 1

N

N∑
i=1

log p(yi|D(\i),M),

(6)

where Dk represents the kth training set, testk represents
the kth testing set under the random partition and D(\i)

denotes the training set that excludes the ith observation.
Because k-fold cross-validation does not use all the data,
the prediction error estimates are biased, but in the cases
where there are relatively few predictors, this bias is small
(Burman, 1989).

The practical impediment of using cross-validation is the
computational burden: with k-fold cross-validation, we need
to fit the model k times. However, in many cases it is possible
to perform the k steps in parallel.

The problem remains of estimating the second term in
(5), namely the lower bound of predictive loss. In this pa-
per, we use the in-sample training loss TL(Ms, D) of the
saturated model Ms as the surrogate for the lower bound.
So the estimated prediction error is

P̂E(M,D) = P̂L
CV

(M,D)− TL(Ms, D)

= − 1

N

N∑
i=1

log p(yi|D(\i),M) +
1

N

∑
y∈D

log p(y|D,Ms).
(7)

2.4 Cross-Validation of Structured Data

Standard cross-validation assumes that data are inde-
pendent and with no distributional differences between the
training and testing sets. For structured data, it is not al-
ways clear how best to perform this partition. Burman,
Chow and Nolan (1994) discusses a modification of ordi-
nary cross-validation procedure for stationary time series. In
this paper, we focus on the cross-tabulated structure, which
is the characteristic of survey data with discrete responses.
In an unbalanced cross-tabulated data set, simple random
sampling might result in undersampling of small cells. Thus,
we adopt a stratified sampling approach to guarantee that
each cell is partitioned into a training part and a testing
part. Another possibility is to perform a cluster sampling

and train the model on some cells and test the fitted model
on others. This approach is related to transfer learning (Pan
and Yang, 2010). In the analysis of survey data, the focus is
mostly on the existing cells rather than on hypothetical new
cells, and so we only discuss cross-validation using stratified
sampling on structured data.

3. COMPARING MULTILEVEL MODELS
FOR BINARY SURVEY OUTCOMES

The 2006 Cooperative Congressional Election Survey, the
example data set in this paper, is a national stratified sam-
ple of size 30,000 that includes a wide variety of response
outcomes, thus providing an ideal setting to evaluate cross-
validation. Although various demographic predictors are
available in this data set, we keep our model simple by using
only two predictors, state and income. Under this setting,
the multilevel model is the preferred model over no pooling
(saturated model) or complete pooling (additive model). On
one hand, the saturated model will trigger overfitting. On
the other hand, income and state are known to have strong
interactions when predicting electoral choice (Gelman et al.,
2009), so the additive model must be substantively inade-
quate.

3.1 Complete Pooling, No Pooling, and
Partial Pooling Models

Bayesian multilevel modeling is a natural choice for an-
alyzing cross-tabulated data. When the data provide many
explanatory variables, and thus a potentially complex cross-
tabulated structure, it is difficult to model the interactions
among explanatory variables in classical models, since each
single cell is getting sparser and the estimates become unsta-
ble. By borrowing strength across cells, a multilevel model
(or, alternatively, some other structured model such as a
Gaussian process) can produce stable estimates even for cells
that have few observations and thus can be viewed as a mul-
tivariate regression or interpolation procedure..

We develop our model on a simple two-way cross-
tabulation of survey data, with state and income as the two
explanatory variables, having J1 and J2 levels respectively.1

We assume no continuous predictors in our model. Let N
be the total sample size of the survey, then the array of cell
counts follows a multinomial distribution,

N ∼ Multinomial(N,p),

where

N = (Nj1j2)J1×J2 ,

p = (pj1j2)J1×J2 .

1For the 2006 Cooperative Congressional Election Survey data set,
there are 50 states (J1 = 50), and 5 income levels (J2 = 5), including
less than $20,000, $20,000-$40,000, $40,000-$75,000, $75,000-$150,000,
and $150,000+
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The population is thus divided into J1 × J2 cells. We con-
strain our discussion to binary outcomes. Then for a respon-
dent in cell (j1, j2), the probability that he or she gives a
positive response is πj1j2 , which is modeled using logistic
regression:

logit(πj1j2) = Zβ,

in which Z is the covariate vector and β includes the main
and interaction effects. Since our goal of inference is on cell
proportions πj1j2 rather than cell assignment probabilities
pj1j2 , we treat pj1j2 as fixed throughout.

Under this setup, we consider three models:

• Complete pooling of interactions:

πj1j2 = logit−1
(
βstate
j1 + βinc

j2

)
• No pooling:

πj1j2 = logit−1
(
βstate
j1 + βinc

j2 + βstate*inc
j1j2

)
• Partial pooling:

πj1j2 = logit−1
(
βstate
j1 + βinc

j2 + βstate*inc
j1j2

)
with βstate*inc

j1j2

i.i.d.∼ N(0, σ2), where the scale parameter
σ is estimated from the data (with a separate value for
each survey outcome).

Although nonparametric multilevel modeling, both in the
Bayesian (Hjort, 2010) and the frequentist (Ruppert, Wand
and Carroll, 2003) perspectives, have been under rapid de-
velopment, we adopt a linear parametric specification for
the multilevel model, because linear parametric models are
still the standard specification, and software that fit the rou-
tine linear parametric models are widely available and easily
accessible to practitioners. In the remaining sections of this
paper, we compare the prediction error of these three models
under various real data and simulation settings.

We recognize that multilevel models in big-data applica-
tions can be much more complicated (see Ghitza and Gel-
man, 2013, for example); we use a relatively simple example
here to explore the basic ideas.

3.2 Computation

Ideally we want to do full Bayesian inference on our
model, but for computational reasons we are currently using
an approximate marginal posterior mode estimate provided
by blme (Dorie, 2013) in R, which is an extension of the
widely-used lme4 (Bates, Maechler and Bolker, 2013) pack-
age. The lme4 package approximately integrates out the ran-
dom effects to obtain an approximate marginal MLE of the
scale parameter and the fixed effects. However, modal esti-
mates can end up on the boundary due to sampling variabil-
ity (Chung et al., 2013), which in our case makes the partial
pooling model reduce to complete pooling. In blme, the scale

parameter σ is also given a gamma prior with shape param-

eter 2.5 and rate parameter 0. The gamma prior is used to

regularize the prior of the scale and pull the estimates of the

interactions away from zero, a situation that often happens

in modal estimation. We have developed an R package, mrp

(Gelman et al., 2012), to streamline the multilevel model

fitting and cross-validation procedure.

3.3 Estimation Procedure

For each outcome, we fit a multilevel logistic regression

model, with additive, fully-interacted, and multilevel mod-

els. We use 5-fold cross-validation to estimate predictive loss

(using more folds gives essentially identical results). We esti-

mate the lower bound using the training loss of the saturated

model.

Under the aforementioned setting, the cross-validation

loss estimate is,

P̂L
CV

(M,D) = − 1

N

K∑
k=1

∑
j∈testk

log p(yj |Dk,M)

= − 1

N

K∑
k=1

∑
i,j

[ytestkij log π̂Dk

ij + (ntestkij − ytestkij ) log(1− π̂Dk

ij )]

= − 1

N

∑
i,j

K∑
k=1

[ytestkij log π̂Dk

ij + (ntestkij − ytestkij ) log(1− π̂Dk

ij )]

= − 1

N

∑
i,j

[
yij log π̂ij + (nij − yij)log(1− π̂ij)

]
= −

∑
i,j

nij
N

[
πij log π̂ij + (1− πij)log(1− π̂ij)

]
,

in which ntestkij is the number of respondents in cell (i, j)

of the k-th testing set, ytestkij is the number of respondents

who answered yes in cell (i, j) of the k-th testing set, cor-

respondingly, nij and yij are the numbers of total respon-

dents and respondents who answered yes in cell (i, j), π̂Dk

ij

is the estimated πij using the k-th training data set, and

log π̂ij is the weighted average log posterior proportion from

each fold,
(∑K

k=1 y
testk
ij log π̂Dk

ij

)/
yij , and log(1− π̂ij) has

the similar form. The cross-validation loss estimate is ap-

proximately a measure of loss under cell proportion dis-

tribution (exp(log π̂ij), exp(log(1− π̂ij))) (here we say “ap-

proximately” because these two probabilities do not in gen-

eral add up to 1). The quick calculation in section 1.2 sug-

gests that we should expect to see only small improvements

in cross-validation loss even from substantively important

model improvements.
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Figure 1. Measure of fit (estimated prediction error) for all response outcomes in the 2006 Cooperative Congressional Election
Survey. Outcomes are ordered by the lower bound (in-sample loss of the saturated model). The no pooling model gives a bad
fit. Partial pooling does best but in most cases is almost indistinguishable from complete pooling under the cross-validation

criterion.

4. RESULTS

4.1 Prediction Errors for a Corpus of
Outcomes

We begin by estimating the prediction errors of all out-
comes in the survey. The results are shown in Figure 1. The
x-axis is ordered by the in-sample training loss of the sat-
urated model TL(Ms, D), which we use as a surrogate for
a lower bound of predictive loss. For complete pooling and
partial pooling, the prediction error stays stable across dif-
ferent outcomes, while the no pooling model has huge pre-
diction error for outcomes with small lower bounds. This
finding makes sense since these are the settings where over-
fitting is most severe (saturated models achieve the lowest
in-sample training error). However, the difference in pre-
diction error between complete pooling and partial pool-
ing seems negligible. Partial pooling is giving essentially the
same result as complete pooling, at least according to cross-
validation on individual survey responses.

This seems to suggest that partial pooling does not have
enough information to estimate cell-to-cell variation, thus
giving an overly conservative estimate. Indeed, when we plot
the estimates of πj1j2 for one particular outcome, vote pref-
erence for in the congressional election (see the left panel
of Figure 2), the estimates from partial pooling are almost
identical to those from complete pooling. Even for populous
states where, because of their large sample size, the amount
of partial pooling should be small, there are no major dif-
ferences between estimates from partial pooling model and

estimates from complete pooling model (see the right panel
of Figure 2). This pattern is consistent across different out-
comes.

Although we believe partial pooling is intrinsically bet-
ter than complete pooling, it seems that the given data are
not sufficient for the partial pooling model to pick up the
interaction and unpool the estimates appropriately. It is a
result of the particular characteristics of this data set? There
are three factors determining the structure of the data that
might affect the extent of pooling of the model. First is the
sample size. If we increase the sample size to a sufficiently
large level, the partial pooling model will be able to partially
pool the estimates to an appropriate amount. As sample size
grows, the no pooling model will eventually have the same
performance as partial pooling, and it might be interesting
to see at what point the saturated model becomes accept-
able. The second factor affecting the relative performance of
the different models is the size of the interactions that are
being estimated, and the third factor is the level of imbal-
ance in the hierarchical structure. Survey data classified by
demographic and geographic predictors are typically highly
unbalanced due to the long tails of sizes typical in taxo-
nomic structures (Mandelbrot, 1955). For example, the 2006
CCES includes 3,637 respondents from California but only
131 from Arkansas. This unbalanced structure will affect the
amount of pooling performed by a multilevel model.

In the following subsections, we conduct simulations that
vary sample size and the structure of the cells to investigate
how these factors affect the relative performance of the three
models as captured by cross-validation.
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Figure 2. Left panel: Cell proportion estimates for three models of vote intention. Each line is a state. The partial pooling
model pools so much that it is indistinguishable from complete pooling. Right panel: The same estimates for the 10 most

populous states. Still, partial pooling estimates are similar to complete pooling estimates.

4.2 How Sample Size Changes the Dynamics

We artificially augment the data set by combining the

data set with itself. New data sets with sample size that

are 2, 3 and 4 times as large are generated. This augmen-

tation still maintains the same level of interactions and cell

structure as those of the original data. Then we estimate the

prediction errors for all outcomes for the three models. Re-

sults are plotted in Figure 3. As we expected, as sample size

grows, the prediction error of complete pooling model, which

is essentially a wrong model, dominates the other two; while

the prediction error of no pooling model keeps decreasing.

When the sample size is 4 times as large as the original data

set, no pooling model has almost the same prediction error

as partial pooling model. This makes sense, since the prob-

lem of overfitting eventual goes away if we have sufficiently

large sample size and fixed model structure.

These results suggest that for a fixed data structure, par-

tial pooling decisively outperforms no pooling and complete

pooling only for a certain window of sample sizes. To have a

closer look at the range of the window, we look at one partic-

ular outcome, the vote preference in the upcoming election

for the U.S. House of Representatives. We augment the sam-

ple size and plot the relative performance of the three mod-

els in Figure 4. Partial pooling model is noticeably better

than complete pooling in this setup when the total sample

size exceeds larger than 50,000. Other outcomes have similar

patterns.

●

●
●

●

● ●

●

●

●

● ●
●

● ●

●

● ● ●

●

●

●
●

● ●
●

●
●

●

●
● ● ●

●
●

●

●

●

● ●
●

●

●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

● ● ● ● ●
●

●

● ●
● ●

●

●

●
● ●

●

●

●
●

●
● ●

●
● ● ● ● ●

●

●
●

●

●
● ●

● ●
● ● ● ● ● ● ● ●

●
●

● ●
● ●

●
●

● ●
●

●
●

●
●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

● ● ●

●

●
●

● ●

●

●

●
● ●

●

●
●

● ●

● ● ●
●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

● ●
●

●

●
● ●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●
●

● ● ● ●
●

●

●

●

●
● ● ● ●

●
●

●
● ● ●

●

●

● ●
●

●
● ●

●
● ● ●

● ● ●
●

● ● ●

●
● ●

● ●
●

●
● ●

●
● ●

●
● ●

● ● ●
● ●

●
●

●

● ●
● ●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

● ● ●

●
●

●

●
● ●

●
●

● ● ●

●

● ● ●

● ●

●
●

●

● ● ● ●
●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

● ●
●

● ●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●
● ● ● ● ● ● ●

● ●

●
●

● ●

● ●

●

● ● ●
● ●

●

●
● ● ●

● ●
● ●

●

● ● ● ● ●
●

●
● ● ●

●
● ●

● ● ● ●
●

● ●

●
● ● ●

●

●
●

● ●
●

● ●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

● ●
●

● ●

●

●
●

● ●

●

●

●

● ●

●

●

● ●

●
●

● ● ●
● ● ●

●
● ●

● ●

●
●

●

●
●

● ● ●
●

●

● ● ●
●

● ●

●
●

● ●
●

●

● ● ●

● ●

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

2
3

4

Outcomes (ordered by in−sample training error from low to high)

E
st

im
at

ed
 P

re
di

ct
io

n 
E

rr
or

model

●

●

●

complete pooling

partial pooling

no pooling

Figure 3. Estimated prediction error of all response outcomes
for augmented data sets. From top to bottom, the data sets
have 2, 3, and 4 times as many data points as the original

data set. The outcomes are ordered by the in-sample
predictive loss. As sample size grows, complete pooling

gradually gets worse and no pooling gets better.
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Figure 4. Prediction error of the three models as sample size grows. The outcome under consideration is partisan vote
preference in the upcoming congressional election. By this criterion, partial pooling and complete pooling perform similarly

until sample size exceeds 50,000.

4.3 Balancedness of the Hierarchical
Structure

One possible explanation for the steep learning curve of
the partial pooling model is the highly unbalanced structure
of the data. Although we have 50 states, the estimate of the
covariance of the state random effects might not be reliable
since some of the states have small sample sizes. To see how
the balancedness of the structure affects the model, we sim-
ulate a data set based on partial pooling estimates from the
original data set, but make each demographic-geographic
cells of roughly the same size. The overall sample size is
the same as that of the real data. Relative performance of
the three models for all outcomes is plotted in Figure 5.
The graph shows that with balanced hierarchical structure,
at the same sample size and amount of interaction, partial
pooling kicks in much more quickly. Thus partial pooling is
consistently better than complete pooling in this scenario.
As in the previous analysis, we also look at the relative per-
formance of the three models as sample size grows. The re-
sults are plotted in Figure 6.

5. DISCUSSION

Cross-validation is an important tool used to evaluate
a wide variety of statistical methods and has been widely
used in model comparison when predictive power is of con-
cern. Some theoretical treatments have pointed out situa-
tions where cross-validation might have problems. For ex-
ample, Shao (1993) shows that, under the frequentist set-
ting, using leave-one-out cross-validation for linear model
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Figure 5. Measure of fit (prediction error) for all outcomes,
ordered by in-sample training loss. The data set is simulated
from real data set, and has the same sample size in total as
the real data set, but keeping all demographic-geographic

cells balanced. In this case, complete pooling model has much
higher prediction errors than no pooling and partial pooling.

Partial pooling is slightly but consistently better than no
pooling. In particular, no pooling model has huge prediction
error for outcomes that have smaller in-sample training loss.

variable selection is not consistent. However, the simplicity
and transparency of cross-validation gives it a near-universal
appeal. In this paper, we investigate the sensitivity of cross-
validation as a model comparison instrument in a cross-
tabulated multilevel survey data set.

We set up the model selection problem, considering three
models for these structured data: the classical models of
complete pooling and no pooling, and a Bayesian multilevel
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● ●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

no pooling

complete pooling

partial pooling

0.000

0.005

0.010

0.015

30000 50000 70000 90000
Sample size

E
st

im
at

ed
 P

re
di

ct
io

n 
E

rr
or

Figure 6. Prediction error of the three models as sample size
grows under the simulated balanced data set. The outcome
under consideration is the vote for the Republican candidate
in the U.S House of Representatives. Partial pooling has the

lowest prediction error when sample size is under 70,000.

model. The multilevel model captures important interac-
tions that are not included in the complete pooling model,
while at the same time avoiding the inevitable overfitting
from the no pooling model. However, the improvement of
the multilevel model as given by cross-validation is surpris-
ingly tiny, almost negligible to unsuspecting eyes. The prob-
lem is that improved fits with binary data yield minuscule
improvements in log loss, in moderate sample sizes nearly
indistinguishable from noise even if the improved estimates
are substantively important when aggregated (for example,
state-level public opinion). Simulations based on real data
show that sample size and structure of the cross-tabulated
cells play important roles in the relative margins of different
models in cross-validation based model selection. Caution
should be exercised in applying prediction error for model
selection with structured data.
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