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This article presents several applications of the score statistic in the context of output
assessment for Monte Carlo simulations. We begin by observing that the expected value of
the score statisticU is zero, and that when the inverse of the information matrix I = E(UUT )
exists, the asymptotic distribution of UT I−1U is χ2. Thus, we may monitor the sample mean
of this statistic throughout a simulation as a means to determine whether or not the simulation
has been run for a sufficiently long time.

We also demonstrate a second convergence assessment method based upon the idea of
path sampling, but first show how the score statistic can be used to accurately estimate the
stationary density using only a small number of simulated values. These methods provide
a powerful suite of tools which can be generically applied when alternatives such as the
Rao-Blackwell density estimator are not available. Our second convergence assessment
method is based upon these density estimates. By running several replications of the chain,
the corresponding estimated densities may be compared to assess how “close” the chains
are to one another and to the true stationary distribution. We explain how this may be done
using both L1 and L2 distance measures.

We first illustrate these new methods via the analysis of MCMC output arising from
some simulated examples, emphasizing the advantages of our methods over existing diag-
nostics. We further illustrate the utility of our methods with three examples: analyzing a
set of real time series data, a collection of censored survival data, and bivariate normal data
using a model with a nonidentified parameter.

Key Words: Convergence diagnostics; Markov chain Monte Carlo; Density estimation;
Path sampling.

1. INTRODUCTION

Iterative simulations, especially Markov chain Monte Carlo (MCMC) methods, have
been increasingly popular in statistical computation, most notably for drawing simulations
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from Bayesian posterior distributions; see Brooks (1998a), for example. In addition to
any implementational difficulties and computing resources required, iterative simulation
presents two problems beyond those of traditional statistical methods. First, when running
an iterative algorithm, one must decide when to stop the iterations or, more precisely, one
must judge how close the algorithm is to convergence after a finite number of iterations.
Second, MCMC simulation converges to a target distribution, rather than a target point. This
leads to many practical difficulties, not least of which is how to provide adequate summaries
of the sampler output.

Of course, these problems apply quite generally to iterative simulation algorithms, not
just to MCMC algorithms. For example, Gelman (1992) discussed how importance sampling
methods are in fact iterative and, in general, result in draws from the target distribution
only in the limit as the number of iterations approaches infinity. One way of seeing this
approximate nature of importance sampling is to note that ratio estimates of importance-
weighted means,

∑n
i=1 wih(θi)/

∑n
i=1 wi are unbiased only in the limit as n → ∞, and

that this convergence (as well as more practical issues of the variance of the estimate in
a finite sample) depends upon the upper tail of the distribution of the weights wi. Liu,
Liang, and Wong (2001) noted the duality between this “importance weight infinity” and
the “waiting time infinity” of MCMC and rejection sampling.

This article aims to address both aspects of the problem of assessing Monte Carlo
output. We show how calculations based upon the classical log score statistic, that is the
derivative of the log density, can be used to construct robust and accurate density estimates
from Monte Carlo sampler output. These methods can be generically applied when other
popular methods based upon Rao-Blackwellization, for example, cannot. Not only do these
estimates provide useful summaries of the marginal distributions of the quantities being
sampled, they also facilitate the identification of sample modes for example.

In this article, we also introduce several new diagnostic techniques based upon the
calculation of the classical score statistic. However, before introducing these methods, it is
useful to briefly review existing methods to establish a context for these new developments.

Various methods have been proposed for assessing convergence without the analysis
of simulation output. Perhaps the most obvious approach is to design the simulation algo-
rithm to produce independent draws directly from the target distribution. Examples include
rejection sampling using a proposal function that uniformly dominates the target density;
coupling and regeneration methods in MCMC; and the “perfect simulation” method of
Propp and Wilson (1996), in cases where it is computationally feasible. In each of these
approaches, the time required to wait until the next independent draw is a random variable,
which can limit the effectiveness of these methods if the waiting time is too long.

Theoretical (analytic) results bounding the difference between the simulation and target
distributions after some specified number of iterations have also been developed. Reasonable
results of this type have appeared only for some very simple models. See Cowles and
Rosenthal (1998), for example. Though recent work has improved considerably the state of
the art in this area, it is still unrealistic to expect this approach to become widely applicable
in MCMC simulation except in certain special cases.
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Thus, in the absence of practical analytic techniques, we assess convergence by ana-
lyzing sampler output to assess the mixing properties of the simulation. Probably the most
commonly used convergence assessment techniques make use of the fact that most MCMC
algorithms exhibit a random-walk behavior in which a simulated chain gradually spreads
out from its starting point to ergodically cover the space of the target distribution. Conver-
gence occurs when the chain has fully spread to the target distribution, which can be judged
in three basic ways. The first is to monitor trends. Given a single MCMC sequence, one can
judge mixing by looking for trends in the simulation (Brooks 1998b); unfortunately, such
an approach will not necessarily detect lack of convergence of a slowly moving sequence
(Gelman and Rubin 1992b).

A second approach is to monitor autocorrelation. Efficiency of simulations can be
judged by autocorrelations, and this approach can also be used to obtain approximately
independent simulation draws (Raftery and Lewis 1992). This approach, however, can also
be fooled by very slow-moving series and thus is perhaps most effective as a measure of
efficiency for an MCMC algorithm for which convergence has already been judged by other
means. A third approach is to monitor mixing of sequences directly. Gelman and Rubin
(1992a) (and subsequently Brooks and Gelman 1998a) proposed monitoring the mixing of
simulated sequences by comparing the variance within each sequence to the total variance
of the mixture of the sequences. This is an adaptation of statistical analysis of variance to
the standard multiple-sequence approaches in statistical physics (see, e.g., Fosdick 1959).

Interestingly, the approaches based upon detecting a lack of mixing are ineffective in
monitoring convergence of non-Markov-chain iterative simulation methods such as impor-
tance sampling, for which successive draws are not nearby in the parameter space. This
is another argument in favor of the use of MCMC in preference to other iterative simula-
tion methods. In particular, the autocorrelation or locality of random-walk or state-space
algorithms, which is generally perceived as a drawback (since it decreases the efficiency of
simulations), is actually an advantage in convergence monitoring.

An alternative group of approaches that do not require random walk-type behavior are
based upon sequential testing of portions of simulation output in order to determine whether
or not they could be considered to have been drawn from the same distribution. Methods
of this sort sequentially discard an increasing proportion of the early simulated values and
divide the remaining observations into three blocks. The observations in the first and third
block are then compared and a formal procedure used to test the null hypothesis that the
simulated observations are drawn from the same distribution. If the test is rejected, then
more of the early values are discarded and the testing procedure is repeated. If the test
is accepted, then it is assumed that the discarded observations covered the burn-in period
and that the remaining observations are all generated from the same (assumed to be the
stationary) density. See Geweke (1992) and Heidelberger and Welch (1983), for example.

Methods based upon functions of the simulation output that are related to the sim-
ulation algorithm in a known way, such as importance ratios, acceptance probabilities,
transition probabilities, and posterior densities have also been developed. Importance ratios
and acceptance probabilities have been useful in approximately evaluating the efficiency of
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importance sampling (Kong 1992) and Metropolis algorithms (Gelman, Roberts, and Gilks
1996) once convergence has been reached, but they do not seem very powerful in detecting
poor convergence if used alone. More effective approaches combine importance ratios with
other information, as in the methods of Roberts (1992) and Brooks, Dellaportas, and Roberts
(1997). These methods are based upon the comparison of density estimates obtained from
different replications using appropriate distance measures. These are particularly powerful
convergence assessment techniques, but are typically hard to implement and difficult to
interpret.

There has been a great deal of interest, for both theoretical and practical reasons,
for summary measures based upon the target density function. This article explores one
such class of methods, based upon the score function. As we shall see, we can use some
already-known identities from classical statistics and path sampling to develop a new class
of convergence diagnostics which are both practical to implement and easy to interpret. We
begin with what we call the score function diagnostic in Section 2 which uses the fact that
the expected value of the score statistic U is zero with respect to the target distribution. We
illustrate the performance of this method via a simulated example. In Section 3, we discuss
how techniques based upon ideas from path sampling may be used to provide marginal
density estimates for comparison between replications. In Section 4 we extend this idea
and describe four separate density estimation techniques and, in Section 5, we discuss
the application of these density estimates as convergence diagnostics with an illustrated
comparison to existing methods. Finally, in Section 6, we introduce three examples to
illustrate the utility of our methods before ending with some discussions in Section 7.

2. THE SCORE FUNCTION DIAGNOSTIC

One approach to detecting lack of convergence is to estimate, using simulation, quan-
tities that have known values under the target distribution. If θ denotes the parameter vector
sampled via iterative simulation, then we can use simulation draws to estimate E[U(θ)]
for any computable function U . Many diagnostic techniques are based upon monitoring
functionals which converge to some specific value. In general, however, this value is not
known and so the resulting diagnostic is rather hard to interpret in that it may have settled
to some value, but it is unclear whether or not it is the true value; see Roberts (1992) and
Gelman and Rubin (1992b). Of course, these problems would be removed if we knew what
the true expectation of U was under the stationary distribution, and this article is concerned
with trying to find functions, or families of functions, for which this is the case.

One such function is the score function. If θ ∈ E ⊆ R
K , and we let π(θ) denote the

target distribution for the simulations, then we might take

Uk(θ) =
∂ logπ(θ)
∂θk

, k = 1, . . . ,K.

Assuming regularity conditions analogous to the those of Cox and Hinkley (1974, p.
107), the multivariate case can be reduced to the univariate one if the partial derivative with
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respect to θk can be exchanged with the integral with respect to the remaining parameters,
θ(k):

Eπ[Uk(θ)] =
∫ ∫

∂π(θ)
∂θk

dθ(k)dθk

=
∫

∂

∂θk

∫
π(θ)dθ(k)dθk

=
∫

∂

∂θk
πk(θk)dθk,

where πk is the marginal of θk. This one-dimensional integral is zero (for all k) by the
fundamental theorem of calculus if πk is continuously differentiable and declines to zero
at the boundary of the support.

Similarly, if we let

U(θ) = (U1(θ), U2(θ), . . . , UK(θ)),

and the information matrix

I(θ) = E(U(θ)U(θ)T )

is the variance-covariance matrix of the Uk(θ)s, with the (jk)th element defined as

Ijk(θ) = E(Uj(θ)Uk(θ)) = E
[
∂ logπ(θ)
∂θj

∂ logπ(θ)
∂θk

]
= E
[
−∂

2 logπ(θ)
∂θj∂θk

]
,

then, assuming that the posterior is asymptotically normal, U(θ) has an asymptotic multi-
variate Normal distribution so that

U(θ) ∼ N(0, I(θ)),

and therefore

U(θ)T I(θ)−1U(θ) ∼ χ2
K

provided that I(θ) is nonsingular so that the inverse I(θ)−1 exists. (See Dobson 1990, p.
50.)

If the density π is not regular [i.e., we are unable to interchange the order of integration
and differentiation, as with a Uniform distribution for example, see Cox and Hinkley (1974),
p. 112] we can always reparameterize π in order to restore regularity, as discussed by Cox
and Hinkley (1974).

To assess convergence, we might monitor each of these Uk functions for samples
θ1,θ2, . . ., until they appear to settle to around zero. We might also estimate the standard
error of the Uk(θ) from multiple sequences, so as to determine whether or not observed
values are “significantly” different from zero. In practice the diagnostic may be best imple-
mented as follows. Given the output from separate chains j = 1, . . . , J , let Ūkj denote the
mean of the Uk(θ) values for chain j, formed from the second half of the chain. Then, for
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each k, let µk and σk denote the empirical mean and standard deviation, respectively, of
Ūkj calculated over the J replications.

Clearly, if draws really are from the stationary distribution, then simple manipulations
reveal that µk is approximately Normal with mean zero and standard deviation σk/

√
J .

Thus, we can plot the µk values over time (and for each k), together with “error bounds”
µk ± 2σk/

√
J , which should cover the value zero.

Similarly, if we define

X2 = J
K∑

k=1

(
µk

σk

)2

,

thenX2 ·∼ χ2
K . Thus, we might also plotX2 against time to gain an overall assessment of

the convergence of allK parameters simultaneously. We shall refer to these diagnostics as
diagnostics based on the univariate score functions.

In the case where the information matrix I(θ) is nonsingular so that an inverse exist,
a more powerful multivariate diagnostic based on U(θ)T I(θ)−1U(θ) statistic can be used
instead of monitoring each of the Uk(θ)s separately. Given the output from chains j =
1, . . . , J , let Ūj(θ) denote the mean of the U(θ)T I(θ)−1U(θ) for chain j formed over the
second half of the chain. Let µ and σ denote the empirical mean and standard deviation,
respectively, of the Ūj(θ) calculated over the J replications. It can be shown that µ is
approximately normally distributed with mean K and standard deviation σ/

√
J . Thus,

plotting the µ values over time together with error bounds µ ± 2σ/
√
J should cover the

valueK. We refer to these diagnostics as diagnostics based on multivariate score functions.

2.1 TOY EXAMPLE

The main strength of our diagnostic method is that comparisons are made between the
sample output and known quantities of the target distribution, while most other existing
diagnostics tend to base comparisons solely between sample output.

To illustrate this point, we use a mixture of two bivariate Normal distributions

π = 0.8N

[(
−2
6

)
,

(
2 0.8

0.8 1

)]
+ 0.2N

[(
4

−1

)
,

(
1 0.5

0.5 2

)]
.

Suppose that our sampler was able to sample only from one of the two modes in our
target distribution, say, the smaller of the two modes, as was the case in this example.
We took 5,000 iterations of this Metropolis-Hastings sampler over five replications, each
replication using the same starting value. Figures 1(a) and (b) show the outputs from Gelman
and Rubin (1992a) diagnostic, and clearly they indicate convergence. A few of the other
well-known convergence diagnostics were also tried on these sample outputs, and none
were able to spot the lack of convergence.

Figures 1(c) and (d) show the univariate score diagnostics Uk calculated for the second
half of the chains. Clearly, while a lack of convergence in the x direction was detected,
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the diagnostic failed to pick up the lack of convergence in the y direction. While in the
multivariate X2 case, Figure 1(e), the diagnostic also indicates a lack of confidence in
the convergence of the chain. The fact that the univariate score diagnostic failed to detect
a lack of convergence highlights one drawback of this method, in that if the chain was
stuck sampling in some (nearly) symmetric part of the target distribution, the diagnostic
would fail to reveal the problem. This would happen, for example, in the case where the
target distribution isN(0, 1) and we may be sampling incorrectly fromN(0, 2). We would
expect that as the complexity of the target distribution increases with increasing dimension, it

Figure 1. Mixture of two bivariate Normal densities: (a) and (b) Gelman and Rubin (1992a) diagnostics; (c) and
(e) univariate score function diagnostics Uk; and (f) multivariate score function UT IU diagnostic. Solid lines
indicates the diagnostic value and the dashed lines the 95% confidence bands.
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would be relatively rare for such cases to occur, at least not in all directions, as illustrated
in our current example, the lack in convergence was detected in the x direction.

Figure 1(f), where the multivariate diagnosticUT IU was calculated for the second half
of the chains at every 100 iterations, shows that the diagnostic based on the multivariate
score function U overcomes the problem discussed above. In Figure 1(f), the expected
value for the multivariate score diagnostic does not lie within the 95% confidence interval
of the diagnostic. Thus, we would recommend the multivariate score diagnostic to be used
whenever the inverse can be found for the information matrix.

We provide further illustration of these methods in Section 6 but first introduce a second
group of diagnostic techniques based upon the idea of path sampling.

3. PATH SAMPLING

Gelman and Meng (1998) reviewed how, given two unnormalized densities p0(θ) and
p1(θ) on the same support, with normalization constants c(0) and c(1), respectively, the log
of the ratio of these normalization constants can be written as

λ = log

(
c(1)
c(0)

)
= Ep(θ,τ)

(
U(θ, τ)
p(τ)

)
,

where p(θ|τ) = p1−τ
0 (θ)pτ1 (θ), τ ∈ [0, 1] describes a geometric path between p0 and p1,

U(θ, τ) =
∂

∂τ
log p(θ|τ)

is the score function as discussed earlier, p(θ, τ) = p(θ|τ)p(τ), and p(τ) is an arbitrary
prior density for τ ∈ [0, 1].

Thus, by drawing samples {(θi, τ i) : i = 1, . . . , n} from p(θ, τ) we can estimate λ by

λ̂ =
1
n

n∑
i=1

U(θi, τ i)
p(τ i)

.

In practice, the sampling is most easily performed either by first sampling τ from p(τ),
commonly a standard uniform, and then drawing θ from p(θ|t); or by specifying p(θ, τ)
directly and drawing (θ, τ) jointly using a Metropolis-Hastings algorithm. In the latter
case, the marginal p(τ) may not itself be known, and λ will be estimated using numerical
integration over the range of the sampled points, as described in Section 4.

This can be extended to general dimensions as follows. Suppose t ∈ R
K , and that we

are interested in estimating λ = log
[
c(t1)/c(t0)

]
, where c(ti) is the normalization constant

for p(θ|ti). Then, if we let {t(τ) : τ ∈ [0, 1]} denote a continuous path from t1 to t0, and

Uk(θ, t) =
∂

∂tk
log p(θ|t); ṫk(τ) =

∂tk(τ)
∂τ

k = 1, . . . ,K,

then

λ =
∫ 1

0

∫
p(θ|t(τ))

K∑
k=1

Uk(θ, t(τ))ṫk(τ)dθdτ.
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As before, this may be approximated by drawing observations {(θi, t(τ i)) : i = 1, . . . , n},
and setting

λ̂ =
1
n

n∑
i=1

K∑
k=1

ṫk(τ i)Uk(θi, t(τ i)).

In order to construct a diagnostic, we will use this final result to construct estimates of the
marginal distribution of parameters of interest. These estimates can be compared between
replications, with any discrepancies indicating a lack of convergence.

Suppose that we have some target distribution π(θ), from which we have samples
θ1, . . . ,θn, and that we are interested in estimating the marginal distribution for θk, which
we shall denote by πk(θk). Then we define

Uk(θ) =
∂

∂θk
logπ(θ).

If π(θ) is known only up to some normalization constant so that we have only the functional
form π̃(θ), then we also have that

Uk(θ) =
∂

∂θk
log π̃(θ).

We may then estimate the marginal distribution from the sample by constructing a path
sampling estimate as follows. Let λk(θk) = log π̃k(θk) denote the log of the unnormalized
marginal posterior distribution up to an arbitrary constant, and order the observations θ(1)

k <

θ
(2)
k < · · · < θ(mk)

k ,mk ≤ n, ignoring any duplicates which may arise in the context of the
Metropolis algorithm, for example. Now, suppose that there are ni

k repeated observations
for each θ(i)k , i = 1, . . . ,mk and that they occur at times τk

i (1), τk
i (2), . . . , τk

i (ni
k), then

define Ūk(i) to be the mean of the Uk(θ) values for each of these replications, so that

Ūk(i) =
1
ni

k

nk
i∑

j=1

Uk(θτk
i
(j)).

Then, we obtain the following lemma.

Lemma 1.

∂

∂θk
λk(θk) = E(Uk(θ)),

where the expectation is taken with respect to all of the otherK − 1 components of θ.
Proof: See Appendix. ✷

We may construct an estimate ofπk(θk) by using the Ūk(i) either as empirical estimates
of the gradient of λk = log π̃k(θk) at θ(i)k , thus obtaining a piecewise exponential estimate
of π̃k(θk) or, by recalling that

∂

∂θk
λk(θk) =

∂

∂θk
log π̃k(θk) =

1
π̃k(θk)

∂

∂θk
π̃k(θk) (3.1)
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as empirical estimates of the gradient of π̃k(θk) directly. Alternatively, we can use a sim-
ple stepwise approximation rather than linear on the log-scale. We discuss all of these
approaches in the next section.

4. ESTIMATING THE DISTRIBUTION FUNCTION

In this section, we discuss various methods for estimating the marginal density function
of some parameter θk, given samples from the full joint distribution, using path sampling.

4.1 METHOD 1: STEPWISE LINEAR ESTIMATION

The basic idea here is that using the Ūk(i), we can estimate the gradient of πk at
each of the points in the sample. We can then use these points to form a stepwise linear
approximation to πk, by arbitrarily setting the approximating function to be zero at θ(1)

k

and then using the gradient estimate at that point to obtain the value at the next point in
the sample. We then take the value at the first point as being an approximation to πk in the
region between the two points. We can repeat this procedure to obtain a sequence of lines
defined between successive θ(i)k .

This approximation, with its arbitrary scale, can be used to obtain an estimate of the
distribution function of πk, by analytically integrating the stepwise linear approximation.
The resulting estimate of the distribution function is then normalized by setting its value at
θ
(m)
k to be 1. Thus, we obtain a normalized estimate of the density πk, which we can use

for comparison. We proceed as follows.
By Lemma 1, the Ūk provide an empirical estimate of the gradient of λk at points

in the sample, and may therefore be used to construct a stepwise approximation to logπk

and therefore πk. We construct this piecewise linear approximation by arbitrarily setting
λ̂k(θ(1)

k ) = 0 and, for i = 2, . . . ,m, define

λ̂k

(
θ
(i)
k

)
= λ̂k

(
θ
(i−1)
k

)
+
(
θ
(i)
k − θ(i−1)

k

)
× (Ūk(i) + Ūk(i− 1)

)
/2. (4.1)

We thus have an unscaled approximation to the value of logπk at each of the sample
points, which can be used to construct a stepwise linear approximation to πk for all points
θ ∈ [θ(1)

k , θ
(m)
k ], given by

pk(θ) = exp(λ̂k(θ(i)k )), for θ ∈
[
θ
(i)
k , θ

(i+1)
k

]
. (4.2)

Having obtained this stepwise linear approximation to πk, we can then estimate the
corresponding distribution function, by integrating pk within the range [θ(1)

k , θ
(m)
k ]. This

estimate is then normalized by dividing by the integral over the entire range so that the
estimate of the distribution function becomes 1 at the last observed data point. The following
lemma provides us with the normalization constant that we require.
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Lemma 2. Given a piecewise linear function,

p1(t) =

{
ai + bit t ∈ (yi, yi+1]
0 t > ym or t < y1

,

where i = 1, . . . ,m− 1, then

P1(t) =
∫ t

−∞
p1(τ)dτ

=




0 t ∈ (−∞, y1]
ai(t− yi) + bi(t2 − y2

i )/2 +
∑i−1

j=1 aj(yj+1 − yj)
+bj(y2

j+1 − y2
j)/2 t ∈ (yi, yi+1],∑m−1

j=1 aj(yj+1 − yj) + bj(y2
j+1 − y2

j)/2 t ∈ (ym,∞)

where i = 1, . . . ,m− 1.
In the context of our diagnostic, if we wish to estimate πk(θ) we have, from (4.2) and

(4.1), that yi = θ
(i)
k , t = θ, ai = pk(θ(i)k ) and bi = 0. By Lemma 2 the normalization

constant for our density estimator is given by

P1(θ
(m)
k ) =

m−1∑
j=1

aj

(
θ
(j+1)
k − θ(j)k

)
,

and we obtain our first estimator

π̂k,1(θ) = p1

(
θ)/P1(θ

(m)
k

)
.

4.2 METHOD 2: PIECEWISE LINEAR ESTIMATION

An alternative approach based upon estimating the gradient of πk, may be obtained
by using the gradients to πk at each of the sample points to form a piecewise (rather than
stepwise) linear approximation to πk. Again, we arbitrarily set the approximating function
to be zero at θ(1)

k and then use the gradient estimate at that point to define an approximation
over the range [θ(1)

k , θ
(2)
k ]. We can then repeat this procedure to obtain a sequence of lines

defined between successive θ(i)k .
This second approximation can be used to obtain an estimate of the corresponding

distribution function, by analytically integrating the piecewise linear approximation. The
resulting estimate of the distribution function is then normalized by setting its value at θ(m)

k

to be 1. We proceed as follows.
By Lemma 1, the Ūk provide an empirical estimate of the gradient of λk at points in the

sample and, from (3.1), π̃kŪ provides an empirical estimate of the gradient of π̃k. Thus, we
may construct an arbitrarily scaled approximation to πk, denoted by pk, as follows. First,
set pk(θ(1)

k ) = 0 and then, for i = 2, . . . ,m, set

pk

(
θ
(i)
k

)
= pk
(
θ
(i−1)
k

)
+
(
θ
(i)
k − θ(i−1)

k

)(
π̃k

(
θ
(i)
k

)
Ū(i) + π̃k

(
θ
(i−1)
k

)
Ū(i− 1)

)
/2.
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Thus, we define pk at the points in the sample. We can then extrapolate between these points

to produce a piecewise linear function defined over the entire range
[
θ
(1)
k , θ

(m)
k

]
, by setting

pk(θ) = pk
(
θ
(i)
k

)
+

θ − θ(i)k

θ
(i+1)
k − θ(i)k

(
pk

(
θ
(i+1)
k

)
− pk
(
θ
(i)
k

))
, for θ ∈

[
θ
(i)
k , θ

(i+1)
k

]
.

(4.3)
Having obtained this piecewise linear approximation to πk, we can then estimate the

corresponding distribution function, by integrating pk within the range [θ(1)
k , θ

(m)
k ]. This

estimate is normalized by dividing by the integral over the entire range so that the estimate
of the distribution function becomes 1 at the last observed data point.

From (4.3), we have yi ≡ θ(i)k , t ≡ θ,

ai = pk
(
θ
(i)
k

)
− θ

(i)
k

θ
(i+1)
k − θ(i)k

(
pk

(
θ
(i+1)
k

)
− pk
(
θ
(i)
k

))

and

bi =
pk(θ(i+1)

k ) − pk(θ(i)k )

θ
(i+1)
k − θ(i)k

.

Thus, Lemma 2 suggests that

π̂k,2(θ) = p1(θ)/P1

(
θ
(m)
k

)
is a normalized estimator for the marginal density πk(θ), where

P1

(
θ
(m)
k

)
=

m−1∑
j=1

aj

(
θ
(j+1)
k − θ(j)k

)
+ bj

((
θ
(j+1)
k

)2
−
(
θ
(j)
k

)2
)
/2.

By arbitrarily setting pk(θ(1)
k ) = 0, we make p1(t) negative whenever the gradient π̃kŪ

is less than zero. In this case we must re-normalize p2(t) by setting the right tail to be zero.
If we let C = am−1 + bm−1θm, then if C < 0, we set a′

i = ai + |C| for i = 1, . . . ,m− 1
and use a′

i instead of ai.

4.3 METHOD 3: PIECEWISE EXPONENTIAL ESTIMATION

An alternative method for estimating the density πk is to use the Ūk(i) to construct a
piecewise exponential approximation to πk. This can be done by forming a piecewise linear
approximation to λk(θk), which is then exponentiated to form an approximation to πk. We
proceed as follows.

We begin by defining λ̂(θ(i)k ) at each of the sample points, as in (4.1) and obtain a
piecewise linear estimator λ̂k(θ) of λk(θ) over [θ(1)

k , θ
(m)
k ], by setting

λ̂k(θ) = λ̂k

(
θ
(i)
k

)
+

θ − θ(i)k

θ
(i+1)
k − θ(i)k

(
λ̂k

(
θ
(i+1)
k

)
− λ̂k

(
θ
(i)
k

))
, for θ ∈

[
θ
(i)
k , θ

(i+1)
k

]
.

(4.4)
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Having obtained this piecewise linear approximation to λk(θk), we may obtain an
estimate to the density πk by exponentiating to obtain pk(θ) = exp[λ̂k(θ)] and integrating
the piecewise exponential function pk(θ)) within the range [θ(1)

k , θ
(m)
k ]. As before, we then

normalize by dividing by the integral over the entire range, which we obtain via the following
lemma.

Lemma 3. Given a piecewise exponential function,

p3(t) =

{
exp(ai + bit) t ∈ (yi, yi+1],
0 t > ym or t < y1

,  

where i = 1, . . . ,m− 1, then

P3(t) =
∫ t

−∞
p3(τ)dτ

=




0 t ∈ (−∞, y1]
eai (ebit−ebiyi )

bi
+
∑i−1

j=1
eaj (ebjyj+1 −ebjyj )

bj
t ∈ (yi, yi+1]∑m−1

j=1
eaj (ebjyj+1 −ebjyj )

bj
t ∈ (ym,∞)

.

where i = 1, . . . ,m− 1.
As before, we have yi ≡ θ(i)k , t ≡ θ and, from (4.4), we have

ai = λ̂k

(
θ
(i)
k

)
− θ

(i)
k

θ
(i+1)
k − θ(i)k

(
λ̂k

(
θ
(i+1)
k

)
− λ̂k

(
θ
(i)
k

))
, (4.5)

and

bi =
λ̂k

(
θ
(i+1)
k

)
− λ̂k

(
θ
(i)
k

)
θ
(i+1)
k − θ(i)k

. (4.6)

Thus, the piecewise exponential estimator is given by

π̂k,3(θ) = p3(θ)/P3

(
θ
(m)
k

)
,

where

P3

(
θ
(m)
k

)
=

m−1∑
j=1

eaj

(
ebjθ

(j+1)
k − ebjθ

(j)
k

)
bj

by Lemma 3. (4.7)

4.4 METHOD 4: EXTENDING THE PIECEWISE EXPONENTIAL ESTIMATE

Suppose that π has bounded support, [tmin, tmax] then we can extend Lemma 3 as
follows.

Lemma 4. Given a piecewise exponential function and t ∈ (tmin, tmax),

p4(t) =




0 t ∈ (−∞, tmin)
exp(a1 + b1t) t ∈ (tmin, y1]
exp(ai + bit) t ∈ (yi, yi+1],
exp(am−1 + bm−1t) t ∈ (ym, tmax]
0 t ∈ (tmax,∞)
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where i = 1, . . . ,m− 1 then,

P4(t) =
∫ t

−∞
p4(τ)dτ

=




0 t ∈ (−∞, tmin)
ea1 (eb1t−eb1tmin )

b1
t ∈ (tmin, y1]

ea1 (eb1y1 −eb1tmin )
b1

+
∑i−1

j=1
eaj (ebjyj+1 −ebjyj )

bj

+ eai (ebit−ebiyi )
bi

t ∈ (yi, yi+1],
ea1 (eb1y1 −eb1tmin )

b1
+
∑m−1

j=1
eaj (ebjyj+1 −ebjyj )

bj

+ eam−1 (ebm−1t−ebm−1ym )
bm−1

t ∈ (ym, tmax]
ea1 (eb1y1 −eb1tmin )

b1
+
∑m−1

j=1
eaj (ebjyj+1 −ebjyj )

bj

+ eam−1 (ebm−1tmax −ebm−1ym )
bm−1

t ∈ (tmax,∞)

where i = 1, . . . ,m− 1.
Thus, with ai and bi as defined in (4.5) and (4.6) and with p4 and P4 as defined in

Lemma 4, we can take

π̂k,4(θ) = p4(θ)/P4(tmax),

to be our estimator which is defined over the range [tmin, tmax] rather than the smaller
[θ(1)

k , θ
(m)
k ] range common to the previous estimators. Of course, tmin and tmax need not be

finite. However, in order to ensure that the distribution function remains finite, we can only
extend tmin to −∞ if b1 > 0 else exp(b1tmin) does not have a finite limit. Similarly, we can
only extend the upper limit to ∞ if bm−1 < 0, else exp(bm−1tmax) does not have a finite
limit.

The values of b1 and bm−1 are entirely problem- and data-dependent therefore though
in many cases it will be possible to extend the π̂k,4(θ) estimator to the whole real line, these
conditions on b1 and bm−1 will have to be checked.

4.5 COMPARISONS

Before considering the application of these results to convergence assessment, we
examine how well these methods work as density estimators. As an illustration, we take
three different densities: a N(0, 1), an exponential(1), and an even mixture of N(−3, 1)
andN(2, 1) densities. Each of these take quite different shapes and we test the performance
of the four estimators. For each example, we simulated five sequences of 100 observations
from the corresponding densities and density estimates were obtained for each sequence
separately, the average is taken over the five sequences together with the 95% confidence
interval, the results are given in Figure 2.

We can see from Figure 2 that Method 4 (the extended piecewise exponential estimator)
outperforms the remaining estimators in general, though Method 3 (the basic piecewise
exponential estimator) also performs well and Method 2 (the piecewise linear estimator)
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appears to do perhaps slightly better for the mixture problem. Closer inspection reveals that
Method 4 is far better at estimating the tails of the distribution in general and so would
normally be the preferred method when a choice is available.

As a further test, we used Method 4 to estimate the mixture density on the basis of 10,
20, 30, 50, 70, and 100 observations drawn directly from the mixture. Our results show that
although for small samples the estimate is poor, the estimator rapidly improves with sample
size and provides almost perfect performance with only 70 observations. This provides
reassurance that large sample sizes are not required to obtain reasonable density estimates.

Figure 2. Density estimates using Methods 1–4 on a N(0, 1), exponential(1) and an even mixture of N(−3, 1) and
N(2, 1) densities. For each graph, five simulated datasets were used for each density curve estimation, the mean
curve for the five repetitions is represented by a solid line, and the corresponding 95% confidence intervals are
plotted in dotted lines, with the true densities indicated by a dashed line.



OUTPUT ASSESSMENT FOR MONTE CARLO SIMULATIONS 193

This is an important consideration if they are to be used for convergence diagnosis as
described in the next section.

Of course, these density estimates are of value in themselves and may be useful as
a means for estimating marginal densities of interest from MCMC output, for example,
where Rao-Blackwell estimators are not available. However, our focus in this article is on
their application to convergence assessment and we explain how they may be used for that
purpose in the next section.

5. THE PATH SAMPLING DIAGNOSTIC

Once we obtain our density estimate (whichever method we use), we might compare
it with similar estimates from other chains in order to check that they are each sampling
from the same (presumably the stationary) distribution. This may be done separately for all
k = 1, . . . ,K. The idea here is similar to that of Gelman and Rubin (1992a), in that if the
differences between the replications are small, then it is reasonable to assume that they are
all sampling from the same distribution and that this would be their stationary distribution.

Although it is clear from Section 4.5, that Method 4 gives the best estimate of the
distribution function, the method fails when for example b1 < 0 in Lemma 4, as discussed
in Section 4.4. In this situation, we cannot extend the density to −∞, and we expect that it is
not unusual to encounter this type of situation in practice. Though the following results can
be easily applied to any of the density estimation procedures, we shall focus only upon the
standard piecewise exponential estimator π̂k,3 described in Section 4.3 for the remainder
of the paper since this can be applied in any setting and Figure 2 suggests that it performs
best amongst the remaining estimators.

In order to compare density estimates between replications, we require some measure
of distance between the corresponding estimates. Two natural choices are the L1 and L2

distances between the densities. For any two density estimates, the L1 distance between
them can be obtained as follows.

Proposition 1. Suppose that we havem observations from each of the two simulation
schemes, and that we denote them by x1, x2, . . . , xnx

and z1, z2, . . . , znz
(m = nx + nz)

with corresponding density estimates π̂x and π̂z , respectively. Let yi ∈ {x1, x2, . . . , xnx
,

z1, z2, . . . , znz
} such that y1 < y2 < . . . < ym. Then the L1 distance between the two

corresponding piecewise exponential estimators is given by D1, defined as follows.

D1 =
∫

|π̂x(θ) − π̂z(θ)| dθ = |Px(y1) − Pz(y1)|

+
m∑

i=2

|[Px(yi) − Px(yi−1)] − [Pz(yi) − Pz(yi−1)]| + |[1 − Px(ym)] − [1 − Pz(ym)]| ,

where Px(·) and Pz(·) denote the normalized distribution functions obtained by dividing
the distribution function estimates given in Lemma 3 by the normalization constant in (4.7)
based upon the x and z series, respectively.
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Similarly, a second measure between two density estimates can be obtained using L2

distance, as follows.

Proposition 2. Suppose that we havem observations from each of the two simulation
schemes, and that we denote them by x1, x2, . . . , xnx and z1, z2, . . . , znz (m = nx + nz)
with corresponding density estimates π̂x and π̂z , respectively. Let yi ∈ {x1, x2, . . . , xnx , z1,

z2, . . . , znz
} such that y1 < y2 < · · · < ym. Then the L2 distance between the two

corresponding piecewise exponential estimators is given by D2, defined as follows.

D2 =
∫

[π̂x(θ) − π̂z(θ)]2dθ =
m−1∑
i=1

∫ yi+1

yi

1
P 2

x

exp[2(ax,i + bx,it)]dt

+
∫ yi+1

yi

1
P 2

z

exp[2(az,i + bz,it)]dt

− 2
PxPz

∫ yi+1

yi

exp[(ax,i + az,i) + (bx,i + bz,i)t]dt

=
m−1∑
i=1

{
1

2bx,iP 2
x

(exp[2(ax,i + bx,iyi+1)] − exp[2(ax,i + bx,iyi)])

+
1

2bz,iP 2
z

(exp[2(az,i + bz,iyi+1)] − exp[2(az,i + bz,iyi)])

− 2
(bx,i + bz,i)PxPz

(exp[ax,i + az,i + (bx,i + bz,i)yi+1]

− exp[ax,i + az,i + (bx,i + bz,i)yi])} ,

where Px and Pz denote the normalization constants given in (4.7) based upon the x and
z sequences, respectively, and the ax,i are the ai given in (4.5) based upon the x sequence,
with similar definitions for az,i, bx,i and bz,i.

Each of these distances is calculated for a particular marginal density, πk(θ). An overall
measure of distance may be obtained by simply summing these distances (L1 or L2) over
all parameters k to obtain what we shall refer to as the multivariate D1 and D2 plots,
respectively.

5.1 TOY EXAMPLE

Here we again illustrate the path sampling diagnostic in a toy example, and compare
its performance with existing diagnostics.

Let the target distribution be

π = N(0.6, 1).

We obtain 10,000 samples each, from three skew-normal distributions (Azzalina and
Valle 1996) which are very similar to each other and to the target distribution

SN(1.14, 1,−1), (5.1)
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Figure 3. (a)–(c) Histograms of samples from the skew-normal distributions. Solid curve indicates the path
sampling density estimates based on these samples using the piecewise exponential estimator of Section 4.3, and
the dotted lines indicates the density curve of the target distribution N(0.6, 1). (d)–(f) Gelman and Rubin diagnostic
(1992a) output (d); L1 and L2 path sampling diagnostic (e) and (f) from Lemma 3 based on Proposition 1 and
Proposition 2. Solid lines indicate the respective L1 and L2 diagnostic values, and the dotted lines gives the
point-wise 95% confidence interval.

SN(1.29, 1,−2), (5.2)

and

SN(1.6, 1.3,−5). (5.3)

The histograms in Figure 3 indicates the degree of skewness in each sample.
As expected, due to the similarity of the output, the Gelman and Rubin diagnostic in

Figure 3(d) and other existing popular diagnostics such as Heidelberger and Welch (1983)
and Geweke (1992), fail to detect a difference between the samples.

We can see that in Figures 3(b) and (c), the path sample density estimation has shown
quite some differences between the three skew-normal samples, particularly in the tails of
the density estimation. The path sampling density estimates are expected to be extremely
effective in tail areas, as relatively few points are needed to gain confidence in the esti-
mations, thus we expect that path sampling diagnostic would be particularly useful for
detecting chains which do not explore low density areas well. Discrepancies between den-
sity estimates and the raw histograms of output is another indication that individual chains
have not converged.

For the L1 and L2 diagnostics, we calculated distances for all three combinations of
chain pairs (chains (1, 2), (2, 3), and (1, 3)). This is done at each iteration t, using only the
second half of the chains up to t. The final diagnostic values are calculated as the average
over the three sets. We can add a 95% confidence band over these values as an indication of
variations between the different pairwise comparisons. Finally, smoothing of the diagnostics
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may be desirable in some cases for clarity, here we averaged over the second half of the
diagnostic values up to iteration t, to obtain smoothed plots in Figures 3(e) and (f). The plots
indicate that although the outputs are very close to each other, the variation in the case ofD1

is quite large and it was not decreasing rapidly. Both diagnostics appear to suggest that we
cannot be confident that convergence has been achieved. Thus, the path sampler was able
to use some information from the tails of the target distribution to help assess convergence.

6. EXAMPLES

In this section, we examine the application of our new diagnostic methods for the
determination of MCMC burn-in in the context of, first of all, the analysis of an autoregres-
sive times series and second, the analysis of censored survival data, and finally a bivariate
Normal model with a nonidentified parameter problem.

6.1 AUTOREGRESSIVE TIME SERIES

Here, we fit an autoregressive model of order 3 to the dataset described and modeled
by Huerta and West (1999). This series comprises T = 540 monthly observations of the
Southern Oscillation Index (SOI) during 1950–1995 which is computed as the difference
of the departure from the long-term monthly mean sea level pressures at Tahiti in the South
Pacific and Darwin in Northern Australia.

The data comprises univariate observations x1, . . . , xT and the AR(3) model suggests
that

xt =
3∑

i=1

aixt−i + εt, (6.1)

where εt ∼ N(0, 1/τ). Thus, our model admits four parameters, θ = {a1, a2, a3, τ}.
We take a vague Γ(0.001, 0.001) prior distribution for τ and independent N(0, 1) prior
distributions for the ai. We use the usual approximation to the likelihood, taking

L(x|θ) =
540∏
t=4

√
τ

2π
exp


−τ

2

[
xt −

3∑
i=1

aixt−i

]2

 .

It is then fairly simple to show that

Uj(θ) = τ
540∑
t=4

(
xt −

3∑
i=1

aixt−i

)
xt−j − aj , j = 1, 2, 3,

and

U4(θ) =
267.501
τ

− 0.001 − 1
2

540∑
t=4

(
xt −

3∑
i=1

aixt−i

)2

.
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To illustrate our diagnostic methods we ran five replications of an MCMC chain each

of length 10,000 iterations. The MCMC algorithm comprised block updates of the autore-

gressive parameters followed by a univariate update of the error variance, each using Gibbs

updates. This should provide a fairly rapidly mixing chain. See Brooks, Giudici, and Roberts

(2003), for example.

The univariate score diagnostic plots for the four parameters are provided in Figures

4(a)–(d). Diagnostics were calculated over second half of the chains at regular intervals

of 100 iterations to minimize computational cost. We can clearly see from the individual

plots of Figures 4(a)–(d) that the chains perform well and that convergence appears to have

been achieved rapidly. The diagnostic value settles quickly to values around zero and the

confidence bounds generally shrink as the simulation continues. The multivariate diagnostic

(Figure 4(e)) also clearly indicates convergence, with the diagnostic plot generally lying

mostly within the 95% upper confidence bound.

Figures 4(g) and (h) provide the multivariate path sampling plots, taken as the average

over the four univariate path sampling diagnostic values for each parameter. A 95% confi-

dence interval is provided to indicate the amount of variation between the parameters. We

note that theD1 diagnostic is scaled to be between zero and one by dividing by its maximum

value of 2. D2 is left unscaled.

As with the score statistic, the univariate path sampling diagnostics appeared to suggest

that the samplers were performing well and moving fairly rapidly towards convergence.

Perhaps the most interesting point to note here is the difference in scale between the plots

for different parameters. As we might expect, the parameter about which we know most is

τ and the y-scales for τ had a far smaller scale than the other plots. Similarly, the parameter

about which we know least is α3 which had the largest scale along the y-axis.

We note also a slight increase in many of the distance measures after about 3,000

iterations, as was also indicated in the multivariate diagnostic plot of Brooks and Gelman

(1998a) in Figure 4(f). We note that this is consistent with an increase in error bounds for

the corresponding score statistic plots at around the same point. Further investigation of

the raw trace plots reveals that one of the chains moves further out into the tails of the

posterior at this point thereby slightly altering the density estimate from that chain. As the

other chains slowly explore the same tail, the uncertainties and corresponding distances

decrease again. This highlights the sensitivity of both the diagnostic methods to even small

differences between chains.

For comparison, we tested our sample outputs on well known diagnostic techniques.

Heidelberger and Welch (1983) and Raftery and Lewis (1992) both diagnosed convergence

for these outputs almost immediately after the start of the chains, while the multivariate

method of Brooks and Gelman (1998a) shown in Figure 4(f) returned similar conclusions

to our methods.
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Figure 4. For the autoregressive example: univariate score function diagnostic for each of the four parameters
(a)–(d); the corresponding multivariate diagnostic based on X2 (e), solid line indicates the diagnostic value and
the dashed lines the 95% and 99% (bottom and top respectively) confidence bands; multivariate diagnostic plot
based on Brooks and Gelman (1998a) (f); multivariate path sampling plots based on D1 and D2 (g) and (h), with
95% confidence intervals.
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6.2 CENSORED SURVIVAL ANALYSIS

Here, we revisit the Weibull example used by Brooks and Gelman (1998a) to demon-
strate difficulties in assessing convergence. Grieve (1987) provided data that measure pho-
tocarcinogenicity or survival times for four groups of mice subjected to different treatments.
The survival times are assumed to follow a Weibull distribution, so that the likelihood is
given by ∏

i

(
ρeβββ

′zitρ−1
i

)ci

exp
(
−eβββ′zitρi

)
,

where ti denotes the failure or censor time of an individual, ρ > 0 is the shape parameter
of the Weibull distribution, β is a vector of unknown parameters, the zi denote covariate
vectors assigning each observation to one particular treatment group, and the ci denote
indicator variables such that ci = 1 if time ti is uncensored and zero otherwise.

Thus, the model has five parameters,β1, . . . , β4 and ρ. Following Dellaportas and Smith
(1993), we assume vagueN(µi, σ

2
i ) prior distributions for the βi parameters and a similarly

vague Γ(α, γ) prior distribution for ρ, and we use the Gibbs sampler to fit the above model
to Grieve’s data.

If we let θi = βi, i = 1, . . . , 4 and θ5 = ρ, then it is easy to show that, for k = 1, . . . , 4,

Uk(θ) =
n∑

i=1

zik(ci − exp(β′zi)t
ρ
i ) − (βk − µk)/σ2

k,

and

U5(θ) =

(∑
i

ci + (α− 1) − γρ
)/

ρ+
n∑

i=1

(ci log ti − (log ti) exp(β′zi)t
ρ
i ).

Figures 5(a) and (b) provides the multivariate score statistic diagnostic plots, calculated
from the univariate score statistic using the approximation to χ2 distribution, and the mul-
tivariate score statistic U, respectively. We show error bounds based upon five replications
each comprising 5,000 iterations, using dispersed starting points. Individual univariate score
plots suggested that the β1 and β4 parameters were the slowest to settle, but that all chains
were performing well beyond 2,000 iterations. This conclusion is less easily drawn from
the multivariate diagnostic plot which appears to provide a more conservative convergence
assessment criterion. Both Figures 5(a) and (b) suggest that approximate convergence may
have been achieved after around 3,000 iterations, but indicate that a longer run may be
required to confirm this.

Figures 5(c) and (d) provides the corresponding multivariate path sampling diagnostics.
Diagnostic values were calculated over the second half of each chain at an interval of 100
iterations to save computational cost. Both of these plots indicate the distance (both L1

and L2) between density estimates formed from the five independent replications rapidly
decreases with time. However, there appeared to be a slight increase in some of the univariate
diagnostic plots towards the end of the simulation which is most notable inD2 diagnostics
for β3 and β4 parameters. On closer inspection, it appears that one of the chains for β3 did
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Figure 5. For the censored survival example: multivariate score function diagnostic plots (a) and (b) based on X2

and U; multivariate path sampling diagnostic plots (c) and (d) using D1 and D2 for 5,000 iterations; multivariate
path sampling diagnostic plots (e) and (f) using D1 and D2 for 10,000 iterations; and multivariate diagnostic from
Brooks and Gelman (1998a). Solid line indicates the diagnostic value and the dashed lines the 95% confidence
bands.
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not spend enough time in the left tail of the posterior distribution, particularly in the last
1,000 iterations, if a lack of convergence at this point was not detected, this would lead to
an underestimation in posterior variance. Similarly, there was both slight overestimation in
both tails for the β4 parameter in one chain, and an underestimation in another. The later
case may be related to the lack of convergence in β3. Thus, a longer run length might be
desirable in order to gain greater confidence that these chains have indeed converged.

As a comparison, we ran the multivariate diagnostics of Brooks and Gelman (1998a)
on the same sample output, the result is shown in Figure 5(g), this diagnostic suggests that
the chains may have converged after 2,000 iterations but again, a slight deviation away from
1 is found after iteration 4,000.

We ran the chains for a further 5,000 iterations and computed the diagnostics for the
second half of each chain, at an interval of 200 iterations. UnivariateD1 plots suggested that
all parameters have converged, particularly after 8,000 iterations. The multivariateD1 plot
(Figures 5(e) and (f)) again shows strong confidence in convergence after 8,000 iterations.

In general,D2 appears to be more conservative—most of the univariateD2 diagnostics
settle down fairly quickly after 2,000 iterations—but hovers just above zero for a long time.
We note, however, that theD1 diagnostic plots can be scaled by dividing by 2 while theD2

plots are left on the original scales, making it harder to interpret.

6.3 BIVARIATE NORMAL MODEL WITH A NONIDENTIFIED PARAMETER

We examine the bivariate normal example discussed by Brooks and Gelman (1998a).
The distribution of data y depends upon two parameters θ and φ:

yi ∼ N(θi + φi, 1),

where θ andφ are not identified by the likelihood but are separated via their prior distribution
p(θ, φ).

We follow Brooks and Gelman (1998a) and consider only one single observation y = 0
and independent prior distributions,

p(θ) ∼ N(µθ, σ
2
θ), p(φ) ∼ N(µφ, σ

2
φ).

The Gibbs sampler can be used to move through the posterior distribution, using the
transformation of variables from (θ, φ) to (θ, η), where ηi = θi +φi to speed convergence.
We use the same 1,000 iterations of Gibbs sampler output from five replications as those
used in Brooks and Gelman (1998a), with µθ = µφ = 50 and σθ = σφ = 10. In their
article, Brooks and Gelman (1998a) showed that the method proposed by Gelman and Rubin
(1992a) had failed to detect a lack of convergence in the η sequence.

Here we monitor the convergence of the θ and η sequences using the multivariate score
function diagnostic, as well as the path sampling diagnostic. Thus, we need

Uθ(θ) = −(θ − 50)/100 + (η − θ − 50)/100,

and

Uη(θ) = −η − (η − θ − 50)/100.
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Figure 6(a) shows the score function diagnostics using multivariate score U, calculated
over the second half of the output for each of the five replicated chains. This diagnostic
successfully detect a lack of convergence at 1,000 iterations.

We also calculated the path sampling diagnostics for these outputs, diagnostics were
calculated at every iteration, and results were then smoothed over the last half of the di-
agnostic values to make interpretation easier. Figure 6(b)–(e) show the univariateD1 andD2

Figure 6. For the bivariate Normal with nonidentified parameter example: multivariate score function diagnostic
plot using U (a); univariate path sampling diagnostic plots (b)–(e) using D1 and D2 statistics for the parameters θ

and η, solid line indicates the diagnostic value and the dashed lines the 95% confidence bands over five replications;
and path sampling density estimates for θ and η (f)–(g).
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diagnostics. The D1 and D2 diagnostic values move close to zero after 800 iterations,
however, a lack of confidence in the convergence is shown by the fact that zero does not
fall within the confidence bands.

Finally, we ran the MCMC sampler a further 5,000 iterations until convergence had
been achieved. Figures 6(f) and (g) show the marginal density estimation for the parameters
θ and η, using the piecewise exponential estimator. Density estimates here are based on the
combined final 5,000 iterations of replicate chains.

7. DISCUSSION

This article considered two new methods for convergence assessment, using the score
function statistic and path sampling methods. Both are easily implemented in a generic
fashion (using the target density function as specified up to a normalizing constant) and
do not require extensive computation beyond what was already needed for MCMC. Fur-
thermore, the output from both of these diagnostics are easily interpretable, particularly
the score statistic diagnostic, with its natural scale. Of course, the derivatives required for
the construction of the score statistics may not always be available. In this case, numer-
ical techniques can be used to estimate the derivatives, facilitating the construction of a
highly generic code which requires only the functional form of the target distribution and
the sample values as input.

In developing the path sampling diagnostic, we show how accurate density estimates
can be constructed even from small sets of sample output. Though we only discuss their
applications for convergence diagnosis, these are potentially useful tools in their own right
and provide an efficient mechanism for parametric density estimation from sample output in
general when alternatives such as the Rao-Blackwell density estimation procedure (Gelfand
and Smith 1990) are not available. The path sampling diagnostic also has potential in
algorithms such as simulated tempering (Marinari and Parisi 1992; Geyer and Thompson
1995) that move through a generalized model space in such a way that it might be difficult
to get overdispersed starting points.

It is worth pointing out here that this article focuses primarily on one-dimensional
examples when demonstrating the performance of the density estimates based upon path
sampling. In the one-dimensional case there will be no noise in the ordinate values. However,
for multidimensional problems in which the corresponding variables exhibit dependence,
this may no longer be true. For example, it is fairly simple to show that for a sample from
a bivariate normal with zero means, unit variances and correlation ρ, the distribution of the
resulting (x, y) pairs with ordered x values can be described as(

X(i), X(i) − ρ√
1 − ρ2

Zi

)
,

where the X(i) denote the order statistics of a standard normal random sample and the
Zi are an independent standard normal random sample. Clearly, the noise in the ordinates
increases with |ρ|. In cases where dependencies are sufficiently strong to cause significant
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noise, it may be sensible either to reparameterize in order to decrease the correlation between
the parameter of interest and the remaining variables, or to smooth the ordinate values
before reconstructing the path sampling density. Methods for automatically detecting and
subsequently solving problems of this sort are a focus of current research.

No discussion of the issue of convergence assessment techniques could be complete
without some more general discussion of the wider context of their use. One issue relating
to convergence assessment that is rarely discussed in the literature is the fact that deciding
to stop the simulation on the basis of an output-based diagnostic can induce a bias in the
resulting estimates. Cowles, Roberts, and Rosenthal (1999) illustrated this idea for a number
of simple models and diagnostic techniques. A simple illustration of the general idea can
be seen by observing that stationarity is less likely to be diagnosed on occasions when
the sample path is out in the tails of the distribution, and so variances (for example) are
likely to be underestimated when many of the standard convergence diagnostics are used.
Of course, the effect of this bias can be minimized by using overdispersed starting points
and generating large post-convergence samples. However, the existence of a bias in such
simple cases raises the question of what may happen for more complicated problems where
both the sampling algorithm and posterior surface may be less well understood.

Another issue, discussed by Brooks and Gelman (1998b), is that the question of con-
vergence depends, in general, upon what the simulations will be used for. For example,
when computing posterior intervals, there is a natural limit on the necessary precision of
inferences (e.g., the 95% interval [3.5, 8.4] is as good, in practice, as [3.51345, 8.37802]). In
contrast, when estimating functionals such as posterior expectations, the required precision
of inferences must be given externally. Thus, no automatic convergence test could work in
such a setting without some input as to the desired precision level.

A. PROOF OF LEMMA 1

Let θ(k) denote the vector θ with element θk removed and let π(θ(k)|θk) denote the
conditional distribution of θ(k) given θk. Then, clearly,∫

. . .

∫
π(θ(k)|θk)dθ(k) = 1, (A.1)

since π(θ(k)|θk) is a density. Thus,∫
. . .

∫
∂

∂θk
π(θ(k)|θk)dθ(k) =

∂

∂θk

∫
. . .

∫
π(θ(k)|θk)dθ(k) by regularity

=
∂

∂θk
(1) by (A.1) = 0. (A.2)

Now E(Uk(θ)) =
∫
. . .

∫
∂

∂θk
log(π(θ))π(θ(k)|θk)dθ(k)

=
∫
. . .

∫
∂

∂θk
log(π(θ(k)|θk)πk(θk))π(θ(k)|θk)dθ(k)
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by Bayes’ theorem

=
∫
. . .

∫
∂

∂θk
log(π(θ(k)|θk))π(θ(k)|θk)dθ(k)

+
∫
. . .

∫
∂

∂θk
log(πk(θk))π(θ(k)|θk)dθ(k)

=
∫
. . .

∫
1

π(θ(k)|θk)
∂

∂θk
π(θ(k)|θk)π(θ(k)|θk)dθ(k)

+
∂

∂θk
log(πk(θk))

∫
. . .

∫
π(θ(k)|θk)dθ(k)

= 0 +
∂

∂θk
log(πk(θk)) · 1 by (A.1) and (A.2) =

∂

∂θk
log(πk(θk))

=
∂

∂θk
log(π̃k(θk)) +

∂

∂θk
log c

where c denotes the normalization constant for π̃

=
∂

∂θk
log(π̃k(θk)) =

∂

∂θk
λk(θk).
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