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Abstract
The Gibbs sampler can be very useful for simulating multivariate

distributions, but naive use of it can give misleading-falsely precise
answers. An example with the Ising lattice model demonstrates that it
is generally impossibile to assess convergence of a Gibbs sampler from
a single sample series. This conclusion also applies to other iterative
simulation methods such as the Metropolis algorithm.
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1 Introduction

Bayesian inference is becoming more common in applied statistical work,
partly to make use of the flexible modeling that occures when treating all
unknowns as random variables, but also because of the increasing availabil-
ity of powerful computing environments. It is now often possible to obtain
inferences using simulation-that is, to summarize a "target" posterior dis-
tribution by a sample of random draws from it, rather than by analytic
calculations.
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For many problems, direct simulation of a multivariate distribution is im-
possible, but one can simulate a random walk through the parameter space
whose stationary distribution is the target distribution. Such a random walk
may be considered an iterative Markov process that changes its distribution
at every iteration, converging from the incorrect starting distribution to the
target distribution as the number of iterations increases.

Such iterative simulation techniques have been used in physics since
Metropolis et al. (1953) for studying Boltzmann distributions (also called
Gibbs models) from statistical mechanics, with applications including solid
state physics and the kinetic theory of gases. Geman and Geman (1984)
applied the physical lattice models of statistical mechanics, and the asso-
ciated computational techniques of iterative simulation, to image analysis,
and coined the term "Gibbs sampler" for a particular technique. Since then,
the Gibbs sampler has been applied with increasing frequency in a variety
statistical estimation problems, often to probability distributions with no
connection to Gibbs models; Gelfand et al. (1990) provide a review.

Although the Gibbs sampler is becoming popular, it can be easily mis-
used relative to direct simulation, because in practice, a finite number of
iterations must be used to estimate the target distribution, and thus the
simulated random variables are, in general, never from the desired target
distribution. Various suggestions, some of which are quite sophisticated,
have appeared in the statistical literature and elsewhere for judging conver-
gence using one iteratively simulated sequence (e.g., Ripley, 1987; Geweke,
1991; Raftery and Lewis, 1991). Here we present a simple but striking ex-
ample of the problems that can arise when trying to assess convergence from
one observed series. (We use the terms "series" and "sequence" interchange-
ably.)

This example suggests that a far more generally successful approach is
based on simulating multiple independent sequences. The suggestion to
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use multiple sequences with iterative simulation is not new (e.g., Fosdick,
1959), but no general method has appeared for drawing inferences about
a target distribution from multiple series of finite length. Subsequent work
(Gelman and Rubin, 1991) uses simple statistics to obtain valid conservative
inferences for a large class of target distributions, including but not limited
to those distributions that can be handled by one sequence.

2 Ising model

The Ising model, described in detail in Kinderman and Snell (1980) and
Pickard (1987), is a family of probability distributions defined on a lattice
Y = (Y.,...,Yk) of binary variables: Yi = ±1. It is a particularly appro-
priate model to illustrate potential problems of judging convergence with
one iteratively simulated sequence since much of the understanding of it
comes from computer simulation (e.g., Fosdick, 1959; Ehrman et al., 1960).
The Ising model was originally used by physicists to idealize the magnetic
behavior of solid iron: each component Yi is the magnetic field ("up" or
"down") of a dipole at a site of a crystal lattice. From the laws of statistical
mechanics, Y is assigned the Boltzmann distribution:

P(Y) oc exp(-PU(Y)), (1)

where the "inverse temperature" d is a scalar quantity, assumed known,
and the "potential energy" U is a known scalar function that reflects the
attraction of dipoles of like sign in the lattice-more likely states have lower
energy. The Ising energy function is simple in that only attractions between
nearest neighbors contribute to the total energy:

U(Y) = - Ei6YjYj (2)
"..

where bij = 1 if i and j are "nearest neighbors" in the lattice and 6ij = 0 oth-
erwise; in a two-dimensional lattice, each site has four neighbors, except for
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edge sites, which have three neighbors, and corner sites, with two neighbors
each. The Ising model is commonly summarized by the "nearest-neighbor
correlation" p(Y):

p(Y) = s"Ei'j 3ij'

We take the distribution of p(Y) as the target distribution, where Y is
defined on a two-dimensional 100 x 100 lattice, and has distribution (1)
with k = 10,000 and iB fixed at 0.5.

3 Iterative simulation with the Gibbs sampler

For all but minscule lattices, it is difficult analytically to calculate sum-
maries, such as the mean or variance of p(Y); integrating out k lattice
parameters involves adding 2k terms. Direct simulation of the model is es-
sentially impossible except in the one-dimensional case, for which the lattice
parameters can be simulated in order. However, it is easy to iteratvely sim-
ulate the Ising distribution of Y, and thus of p(Y), using the Gibbs sampler.

Given a multivariate target distribution P(Y) = P(Y1, .. ., Yk), the Gibbs
sampler simulates a sequence of random vectors (y(l), y(2),.. .) whose dis-
tributions converge to the target distribution. The sequence (Y(t)) may be
considered a random walk whose stationary distribution is P(Y). The Gibbs
sampler proceeds as follows:

1. Choose a starting point Y(O) = (Y(O) . ,Y(° )$) for which P(Y(0)) > O.

2. Fort=1,2,...:
For i = 1, ..., k:
Sample Yi(t) from the conditional distribution:

P(Y, Iy y(t-l) for all j i),

thereby altering one component of Y at a time; each iteration of the
Gibbs sampler alters all k components of Y.
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The proof that the Gibbs sampler converges to the target distribution has
two steps: first, it is shown that the simulated sequence (Y(t)) is a Markov
chain with a unique stationary distribution, and second, it is shown that the
stationary distribution equals the target distribution. The first step of the
proof holds if the Markov chain is irreducible, aperiodic, and not transient
(see, e.g., Feller, 1968). The latter two conditions hold for a random walk
on any proper distribution, and irreducibility holds as long as the random
walk has a positive probability of eventually reaching any state from any
other state, a condition satisfied by the Ising model.

To see that the target distribution is the stationary distribution of the
Markov chain generated by the Gibbs sampler, consider starting the Gibbs
sampler with a draw from P(Y). Updating any component Yi moves us to
a new distribution with density,

P(YJI Y, all j $ i) P(Yj, all j $ i),

which is the same as P(Y).

4 Results of iterative simulation

For the Ising model, each step of the Gibbs sampler can alter all k lattice
sites in order. An obvious way to start the iterative simulation is by setting
each site to ±1 at random. For the Ising model on a 100 x 100 lattice with
= 0.5, theoretical calculations (Pickard, 1987) show that the marginal

distribution of p(Y) is approximately Gaussian with mean nearly 0.9 and
standard deviation about 0.01.

Figure 1 shows the values of p(Y(t)), for t = 1 to 2000, obtained by
the Gibbs sampler with a random start, so that p(Y(O)) : 0; the first few
values are not displayed in order to improve resolution on the graph. The
series seems to have "converged to stationarity" after the thousand or so
steps required to free itself from the initial state. Now look at Figure 2,
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Figure 1: 2000 steps, starting at p = 0
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Figure 3: 2000 steps, starting at p = 1
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which zooms in on the first 500 steps of the series. Figure 2 looks to have
converged after about 300 steps, but a glance at the next 1500 iterations, as
displayed in Figure 1, shows that the apparent convergence is illusory. For
comparison, the Gibbs sampler was run again for 2000 steps, but this time
starting at a point Y(0) for which p(Y(O)) = 1; Figure 3 displays the series
p(Y(t)), which again seems to have converged nicely. To destroy all illusions
about convergence in any of these figures, compare Figures 1 and 3: the two
iteratively simulated sequences appear to have "converged," but to different
distributions! The series in Figure 3 has "stabilized" to a higher value of
p(Y) than that of Figure 1. We are of course still observing transient behav-
ior, and an estimate of the distribution of p(Y) based on Figure 1 alone, or
on Figure 3 alone, would be misleadingly-falsely-precse. Furthermore,
neither series alone carries with it the information that it has not stabilized
after 2000 steps.
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5 Discussion

This example shows that the Gibbs sampler can stay in a small subset of
its space for a long time, without any evidence of this problematic behavior
being provided by one simulated series of finite length. The simplest way
to run into trouble is with a two-chambered space, in which the probability
of switching chambers is very low, but Figures 1-3 are especially disturbing
because p(Y) in the Ising model has a unimodal and approximately Gaussian
marginal distribution, at least on the gross scale of interest. That is, the
example is not pathological; the Gibbs sampler is just very slow. Rather
than being a worst-case example, the Ising model is typical of the probability
distributions for which iterative simulation methods were designed, and may
be typical of many posterior distributions to which the Gibbs sampler is
being applied.

A method designed for routine use must at the very least "work" for
examples like the Ising model. By "work" we mean roughly that routine
application should give valid conservative inferential summaries of the tar-
get distribution, that is, conservative relative to inferences that would be
obtained from direct simulation of independent samples from the target dis-
tribution. Iterative simulation involves additional uncertainty due to the
finite length of the simulated sequences, and so an appropriate inferential
summary should reflect this in the same way that multiple imputation meth-
ods, which also involve the simulation of posterior distributions, reflect the
uncertainty due to a finite number of imputations (Rubin, 1987).

In many cases, choosing a variety of dispersed starting points and run-
ning independent series may provide adequated diagnostic information, as
in the example of Section 4. Nonetheless, for general practice, a more prin-
cipled analysis of the between-series and within-series components of vari-
ability is far more convenient and useful. Gelman and Rubin (1991) offer
such a solution based on simple statistics, which applies not only to the
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Gibbs sampler but to any other method of iterative simulation, such as the
Metropolis algorithm.

6 Using components of variance from multiple
sequences

This section briefly presents, without derivations, our approach to inference
from multiple iteratively simulated sequences; Gelman and Rubin (1991)
present details in the context of a real example.

First, independently simulate m > 2 sequences, each of length 2n, with
starting points drawn from a distribution that is overdispersed relative to the
target distribution (in the sense that overdispersed distributions are used in
importance sampling). To limit the effect of the starting distribution, ignore
the first n iterations of each sequence and focus attention on the last n.

Second, for each scalar quantity X of interest (e.g., p(Y) in the above
example), calculate the sample mean i. = jxij and variance s? =

n1 Z(xi - Z,.)2, for each sequence i = 1,...,m. Then calculate the
variance components,

W = the average of the m within-sequence variances, s2,

each based on n - 1 degrees of freedom, and

B/n = the variance between the m sequence means, xi.,

each based on n values of X.

If the average within-sequence variance, W, is not substantially larger than
the between-sequence variance, B/n, then the m sequences have not yet
come close to converging to a common distribution. With only one sequence,
between and within variabilities cannot be compared.

Third, estimate the target mean p = fXP(X)dX by a =-i xi., the
sample mean of all mn simulated values of X.
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Fourth, estimate the target variance, a2 = f(X- 1i)2P(X)dX, by a
weighted average of W and B, namely 62 = n-1W + *B, which overes-
timates a2 assuming Po(X) is overdispersed. The estimate 62 is unbiased
under stationarity (i.e., if Po(X) = P(X)), or in the limit n - oo.

Fifth, create a conservative Student-t distribution for X with center a,
scale XiT = l/a2 + B/mn, and degrees of freedom to = 2V2/varV), where

=a+()(mn-1)(1 ) + 1)2 2 2

var -va~~r(s? [covs
m B)2(m - 1)n- 1) n [cov(s?, X-2 ) - 27..cov(s?, 7Xi)]

and the variances and covariances are estimated from the m sample values
of s?, xi.,, and x2

Sixth, monitor convergence of the iterative simulation by estimating the
factor by which the scale of the Student-t distribution for X might be re-
duced if the simulations were continued in the limit n -- oo. This poten-
tial scale reduction is estimated by VR = , which declines to 1 as
n - oo.

A computer program implementing the above steps appears in the ap-
pendix to Gelman and Rubin (1991) and is available from the authors.

7 Previous multiple-sequence methods

Our approach is related to previous uses of multiple sequences to monitor

convergence of iterative simulation procedures. Fosdick (1959) simulated
multiple sequences, stopping when the difference between sequence means
was less than a prechosen error bound, thus basically using W but without
using B as a comparison. Similarly, Ripley (1987) suggested examining at
least three sequences as a check on relatively complicated single-sequence
methods involving graphics and time-series analysis, thereby essentially es-

timating W quantitatively and B qualitatively. Tanner and Wong (1987)
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and Gelfand and Smith (1990) simulated multiple sequences, monitoring
convergence by qualitatively comparing the set of m simulated values at
time s to the corresponding set at a later time t; this general approach can
be thought of as a qualitative comparison of values of B at two time points
in the sequences, without using W as a comparison.

Our method differs from previous multiple-sequence methods by being
fully quantitative, differs from single-sequence methods by relying on only
a few assumptions, and differs from previous approaches of either kind by
incorporating the uncertainty due to finite-length sequences into the dis-
tributional estimates. Current work focuses on the possibility of obtaining
automatically overdispersed starting distributions and more efficient esti-
mated target distributions for specific models.
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