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Summary. According to the hypothesis of configural encoding, the spatial relationships between
the parts of the face function as an additional source of information in the facial perception of
emotions. The paper analyses experimental data on the perception of emotion to investigate
whether there is evidence for configural encoding in the processing of facial expressions. It
is argued that analysis with a probabilistic feature model has several advantages that are not
implied by, for example, a generalized linear modelling approach. First, the probabilistic feature
model allows us to extract empirically the facial features that are relevant in processing the
face, rather than focusing on the features that were manipulated in the experiment. Second,
the probabilistic feature model allows a direct test of the hypothesis of configural encoding as it
explicitly formalizes a mechanism for the way in which information about separate facial features
is combined in processing the face. Third, the model allows us to account for a complex data
structure while still yielding parameters that have a straightforward interpretation.
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1. Introduction

The recognition of facial expressions (FEs) is an important aspect of most face-to-face commu-
nications. However, little is known about the mechanisms that lie at the basis of the perception
of emotion and several theoretical questions are still actively debated in the literature (for an
overview, see Massaro (1998)). An important question, for instance, is whether a single holistic
cue or multiple cues are used in processing an FE.

According to the hypothesis of configural encoding, the spatial relationships between the
parts of the face function as an additional source of information when processing an FE. To test
this hypothesis, we could conduct a typical experiment in which subjects are asked whether they
perceive certain emotions in FEs that are manipulated to distort or preserve the spatial rela-
tionships between the upper and lower halves of the face. Prototypical FEs of basic emotions
(Ekman and Friesen, 1976) such as happiness or fear naturally preserve the spatial relation-
ships between the upper and lower halves, whereas chimerically constructed FEs that consist
of upper and lower halves of two distinct FEs expressing basic emotions (see de Bonis et al.
(1999) and Morris et al. (2002)) do not preserve such spatial relationships. The effect of pre-
serving or distorting spatial relationships on the processing and the rating of the face can be
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evaluated in a straightforward way by using a standard analysis technique such as generalized
linear modelling. More specifically, the hypothesis of configural encoding (i.e. the spatial rela-
tionships between the parts of the face function as an additional source of information when
processing an FE) can be evaluated by testing the interaction between upper and lower facial
halves.

However, important drawbacks of such a generalized linear model analysis include that

(a) it does not yield a direct insight into the relevance of different facial feature configurations
for the processing of the FE and

(b) it fails to give insight into the way that configurations of features are combined when
processing the FE.

As an alternative, this paper proposes a probabilistic feature model to analyse the experimental
data. In contrast with the generalized linear modelling approach, this model extracts the relevant
features from the data and it formalizes a mechanism for combining information about distinct
features in processing the FE. In particular, the probabilistic feature model assumes that the
perception of an emotion in an FE depends on two types of event that can be represented as
the realization of latent Bernoulli variables:

(a) it is assumed that certain features representing properties of the face are activated when
a person judges an FE and

(b) it is assumed that the activation of features may or may not be a necessary condition for
a particular emotion to be perceived in a certain FE.

The model further assumes that an emotion will be perceived in an FE if all the required features
are activated.

The outline of the paper is as follows. In Section 2 we discuss the data that will be analysed
in this paper. We explain the probabilistic feature model and discuss estimation in a Bayesian
framework for this model in Section 3. In Section 4 we discuss the issue of model selection and
model checking. In Section 5 we fit the model to our data and assess the model fit by using
posterior predictive checks. We conclude in Section 6.

The data that are analysed in the paper can be obtained from

http://www.blackwellpublishing.com/rss

2. Data

de Bonis et al. (1999) conducted an experiment in which they asked raters (i = 1, . . . , 18) to
indicate whether or not they perceived each of a set of emotions (e=1, . . . , 19) in different types
of FEs. The raters were shown 10 photographed faces, corresponding to emotions of happiness
and fear for each of five different stimulus people (s=1, . . . , 5), from a standard set of pictures
of emotional FEs (Ekman and Friesen, 1976). In addition, 10 computer-generated chimerical
faces were constructed by using common morphing techniques, by combining, for each stimulus
person, the happy upper half and the fearful lower half, or the fearful upper half and the happy
lower half. Happy and fearful faces are denoted as HH (happy upper and happy lower part) and
FF (fearful upper and fearful lower part). The chimerical faces are denoted as HF (happy upper
and fearful lower part) and FH (fearful upper and happy lower part). Fig. 1 shows the proto-
typical and chimerical faces for one of the stimulus people. The set of emotions consisted of 19
emotion words taken from a study by Rosenberg and De Boeck (1997). The set included nine
positive emotions (admiration, affection, amused, cheerful, connected, enjoyment, interested,
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Fig. 1. Happy (HH) and fearful (FF) prototypical FEs and chimerical FEs with a happy upper half and fearful
lower half (HF) and a fearful upper half and happy lower half (FH) for one stimulus person

relaxed and warm), nine negative emotions (angry, confused, contempt, distant, embarrassed,
fearful, pained, repulsed and sad) and a single neutral emotion (surprise).

Fig. 2 displays the proportion of raters who perceive each emotion for each of the five pictures
within each type of face. As observations may be tied (different pictures within a type of face
may elicit a certain emotion from the same proportion of raters), vertical bars with a length that
is proportional to the number of ties are added to the plot.

Inspection of Fig. 2 shows that the observations for the happy FE differ in at least two ways
from the observations for fearful and chimerical FEs: first, the observed proportions for the
happy FE tend to be more extreme and less different across different stimulus people. Second,
for the happy FE (compared with other types of FE), positive and negative emotions constitute
clear clusters in that most positive emotions are elicited and most negative emotions are not.
Furthermore, it is remarkable that so-called basic emotions such as anger and contempt have
quite a high probability of being elicited by the chimerical expression HF and that quite different
emotional states such as confusion, embarrassment, repulsion and surprise all have quite a high
probability of being perceived in prototypical fearful FEs.

3. Probabilistic feature models

Our approach to probabilistic feature analysis is based on the probability matrix decomposition
model (Maris et al., 1996) which is a method of data analysis for two-way frequency tables. In
most applications, the entries of such tables reflect the numbers of raters according to whom
elements in the rows and columns of the table are related; in such cases, high and low frequencies
indicate respectively strong and weak associations between the corresponding elements. In this
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Fig. 2. Graphical representation of the proportion of raters who perceive a particular emotion in (a) happy
(HH), (b) fearful (FF), (c) chimerical HF and (d) chimerical FH facial expressions from five stimulus people:
�, observed proportion; j, ties, with length proportional to the number of ties

paper the model of Maris et al. (1996) will be referred to as the probabilistic feature model
(PFM).

PFMs have been applied to analyse a wide variety of phenomena in various substantive con-
texts such as psychiatric diagnosis (Maris et al., 1996; Gelman et al., 2004), marketing research
(Candel and Maris, 1997), cross-cultural research (Meulders, De Boeck, Van Mechelen, Gelman
and Maris, 2001) and personality assessment (Meulders et al., 2002, 2003).

To explain the perception of emotion in FEs, PFMs assume a twofold process: first, it is
assumed that, during the perception of some FE, certain facial features may (or may not) be
activated, and that these features may (or may not) be linked to the emotion that is judged.
Second, it is assumed that the rating of the face follows from applying the conjunctive rule that
the emotion will be elicited by the FE under study if all features that are linked to the emotion
are also activated in the FE. PFMs are especially suited to modelling the data of the current
experiment because they extract the relevant features from the data through a process of feature
activation and because they include a (conjunctive) mechanism for explaining the combination
of relevant facial features in the perception of emotion. In contrast, a generalized linear model
which models the sum of the binary responses of the 18 raters for each combination of FE, stim-
ulus person and emotion as binomial with a linear link and a linear predictor that depends on
the upper and lower facial halves and their interaction would take the experimentally manipu-
lated features for granted. Moreover, this generalized linear model would not provide an explicit
model for the way in which information from distinct facial features is combined in processing
the face.

3.1. The model
Let binary variables Ditse equal 1 if rater i perceives emotion e in FE t of stimulus person s
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and equal 0 otherwise, and let ditse denote a specific observation. The index t indicates the four
types of FE (i.e. HH, HF, FH and FF). The number of raters who perceive a certain emotion
in a particular facial expression is denoted by variables D+tse =ΣiDitse. PFMs assume that each
observed response Ditse is obtained as a mapping of latent variables X

tsf
ei and Y

ef
tsi .f =1, . . . , F/

which have the following interpretation:

X
tsf
ei =




1 if feature f representing properties of a face is activated in FE t

of stimulus person s when rater i judges whether emotion e is
perceived in this FE,

0 otherwise;

Y
ef
tsi =




1 if the activation of feature f is required for emotion e to be
perceived when rater i is judging the association between FE t

of stimulus person s and emotion e,
0 otherwise.

The model further assumes that

X
tsf
ei ∼Bern.σtsf /, .1/

Y
ef
tsi ∼Bern.ρef /, .2/

with all latent variables being independent. The parameters σtsf and ρef are further denoted as
feature activation and feature emotion probabilities respectively.

From a psychological point of view, the independence assumptions regarding feature acti-
vation in FEs and the realization of feature emotion links are motivated as follows: first, the
assumption that feature activation is renewed at each encounter .i, t, s, e/ implies an independent
processing of a specific FE by rater i for each emotion e. This assumption may be meaningful as
FEs are complex stimuli that do not necessarily activate the same features each time that they
are being perceived. Second, the assumption that feature emotion links are renewed at each
encounter .i, t, s, e/ links up with the concept of fuzzy emotion definitions (see, for example,
Russell (2003)).The postulate that emotion links are renewed at each new judgment is only one
possible meaningful way of specifying the psychological process of activation of a fuzzy emo-
tion definition of a rater who makes a judgment. Other possible specifications are possible but
these have not been further developed here as the present paper focuses on the hypothesis of
configural encoding.

Once the 2×F latent variables Xts
ei = .Xts1

ei , . . . , XtsF
ei / and Ye

tsi = .Ye1
tsi , . . . , YeF

tsi / have been real-
ized for a particular combination .i, t, s, e/, the observed response ditse is obtained by applying
the conjunctive rule that the emotion will be perceived in the FE if all the features that are linked
to the emotion are also activated in the FE, i.e.

Ditse =1⇔∀f : Xtsf
ei �Y

ef
tsi : .3/

This mapping rule can be formally expressed by specifying the conditional distribution of the
observation given the underlying latent variables as follows:

p.ditse|xts
ei, ye

tsi/=
[∏

f

{1− .1−x
tsf
ei /y

ef
tsi }

]ditse
[
1−∏

f

{1− .1−x
tsf
ei /y

ef
tsi }

]1−ditse

,

with xts
ei and ye

tsi denoting vectors of latent realizations underlying observation ditse. From expres-
sions (1)–(3) we may derive that
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P.Ditse =1|σ, ρ/=∏
f

P.X
tsf
ei �Y

ef
tsi |σ, ρ/

=∏
f

{1−P.X
tsf
ei <Y

ef
tsi |σ, ρ/}

=∏
f

{1−P.X
tsf
ei =0, Y

ef
tsi =1|σ, ρ/}

=∏
f

{1− .1−σtsf /ρef },

with σ and ρ being vectors that comprise all parameters σtsf and ρef respectively.

3.2. Estimation
We shall follow a Bayesian approach to obtain statistical inferences for the PFM, using a hier-
archical model to capture the variation of parameters from different stimulus people. Let d
be a vector that comprises all observations and let φ be a vector of hyperparameters. For the
hierarchical PFM, inferences are based on the posterior distribution p.σ, ρ, φ|d/, which is pro-
portional to the product of the likelihood p.d|σ, ρ/, the prior p.σ, ρ|φ/ and the hyperprior
p.φ/. The specific form of the likelihood and the families of densities to be used for the prior
and the hyperprior distributions will be discussed next.

3.2.1. Likelihood
As each observation ditse is based on independent realizations of Bernoulli variables Xts

ei and Ye
tsi

it follows that Ditse ∼Bern.πtse/, with πtse =Πf {1− .1−σtsf /ρef }. Consequently, the likelihood
of the data d can be expressed as

p.d|σ, ρ/=∏
i

∏
t

∏
s

∏
e

πditse
tse .1−πtse/

1−ditse : .4/

This also implies that D+tse ∼ Bin.18, πtse/, so that the PFM actually models frequencies d+tse

as a (non-linear) function of the parameters σ and ρ.

3.2.2. Augmented likelihood
The augmented likelihood is defined as the joint distribution of all observed and latent variables,
i.e. p.d, x, y|σ, ρ/. An elegant property of PFMs is that the augmented likelihood can be factor-
ized in three parts that reflect the assumptions of the two-process model, namely the activation
of features in the FE (i.e. p.x|σ/), the realization of links between emotions and features (i.e.
p.y|ρ// and the conjunctive mapping rule (i.e. p.d|x, y/). As a result, the augmented likelihood
has a simple structure as it is proportional to a product of Bernoulli likelihoods:

p.d, x, y|σ, ρ/=p.d|x, y/ p.x|σ/ p.y|ρ/

=p.d|x, y/
∏
i

∏
t

∏
s

∏
e

∏
f

σ
x

tsf
ei

tsf .1−σtsf /1−x
tsf
ei ρ

y
ef
tsi

ef .1−ρef /1−y
ef
tsi:

The simple structure of the augmented likelihood may be exploited by using an EM (Dempster
et al., 1977) or data augmentation algorithm (Tanner and Wong, 1987) for parameter estimation.

3.2.3. Prior distribution
The prior distribution of the PFM can be specified by considering certain groups of parameters
in .σ, ρ/ to be a sample of independent beta distributions. In the present context, we consider
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separate population distributions for feature activation probabilities that are associated with
a specific feature and a specific type of face. In this way, feature activation probabilities for
FEs of different stimulus people are made structurally dependent, which makes sense from a
substantive point of view. The mean of the population distribution reflects the average level
of clustered probabilities whereas the variance of the population distribution is a measure of
the heterogeneity of clustered probabilities that are associated with FEs of different stimulus
people. Furthermore, the feature emotion probabilities are considered as a sample of a single
population distribution. The resulting prior distribution is

p.σ, ρ|φ/=∏
t

∏
s

∏
f

beta.σtsf |αtf
σ , βtf

σ /
∏
e

∏
f

beta.ρef |αρ, βρ/, .5/

with φ a vector of hyperparameters .α, β/. The augmented posterior distribution p.σ, ρ|d,
x, y, φ/ has the same functional form as the prior, and so it can be expressed as a product of
beta distributions:

p.σ, ρ|d, x, y, φ/=∏
t

∏
s

∏
f

beta
{

σtsf |αtf
σ +∑

e

∑
i

x
tsf
ei , βtf

σ +∑
e

∑
i

.1−x
tsf
ei /

}

×∏
e

∏
f

beta
{

ρef |αρ +∑
t

∑
s

∑
i

y
ef
tsi , βρ +∑

t

∑
s

∑
i

.1−y
ef
tsi /

}
:

3.2.4. Hyperprior distribution
For each of the beta priors in equation (5), the hyperparameters are assigned a distribution
p.α, β/. As we have no specific hypotheses about the mean or the variance of the population
distributions we specify uniform distributions in the interval [0, 1] for the mean u=α=.α+β/

and the ratio v = 1=.α + β/. For the feature activation and feature emotion probabilities, we
denote the transformed hyperparameters as .u

tf
σ , v

tf
σ / and .uρ, vρ/ respectively. As we have only

a sample of five parameters to estimate the hyperparameters .u
tf
σ , v

tf
σ / that are associated with

FE t and feature f , we have only little information to obtain a reliable estimate of the parameter
vtf , which may be regarded as a measure of the variability of the distribution. Therefore we
impose the restriction that v

tf
σ =vσ .t =1, . . . , 4; f =1, . . . , F/.

The specification of a uniform prior for u and v is standard practice (for a similar example,
see Gelman et al. (2003), page 128) with the understanding that, if the posterior distribution is
insufficiently informative, we could go back and assign a more informative prior distribution
based on the scientific literature. In the present application it turns out that u and v are esti-
mated relatively precisely (and are not close to the boundaries), which indicates that the data
are sufficiently informative.

Using φÅ to denote the entire collection of transformed hyperparameters, the joint distribu-
tion p.σ, ρ, φÅ/ can be expressed as

p.σ, ρ, φÅ/=∏
t

∏
s

∏
f

beta
(

σtsf

∣∣∣∣u
tf
σ

vσ
,

1−u
tf
σ

vσ

)∏
e

∏
f

beta
(

ρef

∣∣∣∣uρ

vρ
,

1−uρ

vρ

)

×∏
t

∏
f

U.utf
σ |0, 1/ U.vσ|0, 1/ U.uρ|0, 1/ U.vρ|0, 1/:

Samples from the posterior distribution p.σ, ρ, φÅ|d/ can be drawn by using the Gibbs sam-
pler, drawing directly from the conjugate full conditional posterior distributions for the latent
parameters xts

ei, ye
tsi, σtsf and ρef and using the Metropolis algorithm to update the hyperparam-

eters u
tf
σ , vσ, uρ and vρ in turn. Convergence can be monitored by using the multiple-sequence
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diagnostic of Gelman and Rubin (1992), and then the posterior sample can be used to derive
point estimates and 100.1−α/% posterior intervals of the parameters.

4. Model selection and model checking

An important topic in fitting PFMs is to choose the number of features so that the model has an
optimal balance between complexity and goodness of fit. In this paper we use the deviance infor-
mation criterion (DIC; Spiegelhalter et al. (2002)) for choosing between models with different
numbers of features. The DIC is especially suited to comparing complex hierarchical models in
which the number of parameters is not clearly defined and is easily computed on the basis of
the posterior sample. The model with the lowest DIC value should be selected. In Appendix A,
we describe the computation of the DIC for PFMs.

As model selection criteria concern only the relative fit of models it is recommended to eval-
uate whether the model selected captures important aspects of the data and whether it fits the
data in a global way. The sample of the posterior may be a basis for model evaluation via the
use of posterior predictive checks (Gelman et al., 2003). In Appendix B, we define a global
goodness-of-fit test for the PFM and we describe computational procedures for computing
Bayesian p-values.

5. Analysis

We performed inference for hierarchical PFMs with one, two, three or four features. For these
models the DIC values equal 8452, 6222, 5842 and 5779 respectively, and Bayesian p-values of
the Pearson χ2 discrepancy measure (see Appendix A) equal 0, 0.004, 0.094 and 0.513 respec-
tively. Hence, the four-feature model which is selected on the basis of the DIC also fits the data
in a global way.

In the following paragraphs we give a detailed presentation of the results for the four-feature
model. We focus on the following substantive questions.

(a) Are there important differences between feature activation probabilities associated with
FEs of the same type from different stimulus people?

(b) Which features are relevant when processing a particular type of FE?
(c) Do the data provide evidence for configural encoding?
(d) Does the model respect the multivariate nature of the data, i.e. does it capture higher

order interactions between the variables that are manipulated in the experiment, namely
the upper half (U), the lower half (L), the stimulus person (S) and the emotion (E)?

The posterior distributions of the feature activation probabilities σ (which are not reported
in this paper) indicate that the activation of features in prototypical FEs is usually reliable
(small posterior intervals) and consistent across FEs of different stimulus people (posterior
intervals strongly overlap). For chimerical FEs, however, feature activation is sometimes unre-
liable (especially for the happy upper feature) and more inconsistent across FEs of different
stimulus people.

An inspection of the estimated hyperparameters u
tf
σ in Fig. 3 indicates that the four features

that are extracted by the model are the facial feature configurations that are manipulated in the
experiment; they can be labelled happy upper (HU), happy lower (HL), fear upper (FU) and
fear lower (FL). This interpretation follows because FEs tend to have high feature activation
probabilities for features that correspond to their upper and lower parts and because they tend
to have low feature activation probabilities for features that do not correspond to their upper
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Fig. 3. Posterior median (ı) and 95% posterior interval ( ) of hyperparameters utf
σ of feature activation

probabilities for a four-feature model: (a) feature 1 (HU); (b) feature 2 (FU); (c) feature 3 (HL); (d) feature 4
(FL)

and lower parts. As an exception, the FU feature has a moderate probability of being activated
in the happy–fearful FE. However, this result is mainly caused by moderate activation prob-
abilities for the FEs of two stimulus people (average σHF,FU of 0.55) whereas the activation
probabilities for the other three stimulus people are lower (average σHF,FU of 0.30).

As indicated in the section on model checking four features are needed to obtain a sufficient fit
to the data. However, further analysis also indicates that all features do not equally contribute in
fitting the data. In particular, excluding the features FL, HL, FU and HU from the four-feature
model decreases the variance that is accounted for in the observed frequencies by the model
from 94% to 52%, 42%, 67% and 85% respectively. Hence, the lower parts of the face provide
relatively more information for processing emotions in FEs. This finding is also supported by
the results of PFMs with fewer than four features: the two-feature model extracts features that
can be interpreted as HL and FL and the three-feature model additionally extracts a feature
that can be labelled FU. Finally, the HU feature contributes least to the model fit.

The PFM is especially suited to investigating the hypothesis of configural encoding as for
modelling the perception of emotions in FEs it assumes a conjunctive rule for combining the
information of separate facial features. More specifically, the model assumes that an emotion
will be perceived in an FE if all the features that are linked to the FE are also activated in the FE.
For a particular emotion, configural encoding then shows up if that emotion has high feature
emotion probabilities for two features pertaining to the two halves of the face.

As shown in Fig. 4, most positive emotions, however, require only the activation of the happy
lower feature to be perceived. Exceptions are the emotions ‘affection’ and ‘relaxed’ that also
show a moderately strong link with the happy upper feature. In contrast, most negative emotions
require the activation of two features to be perceived: the emotion ‘fear’ shows strong links with
the features FU and FL and not with the other features (HU and HL). Other emotional states
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Fig. 4. Posterior median (ı) and 95% posterior interval ( ) of fear emotion probabilities for a four-feature
model: (a) feature 1 (HU); (b) feature 2 (FU); (c) feature 3 (HL); (d) feature 4 (FL)

such as confused, embarrassed and repulsed show a similar pattern of feature emotion proba-
bilities, but posterior intervals are often larger than for fear. Furthermore, the basic emotions
‘anger’ and ‘contempt’ require the activation of HU and FL, which means that they have a high
probability of being perceived in the chimerical happy–fearful FE. Finally, the neutral emotion
surprise is linked only to the fear upper feature.

To evaluate whether the PFM can capture interactions between the design variables U, L, S
and E, we applied posterior predictive checks (see Appendix A) using the linear components
of the analysis-of-variance model for a completely randomized factorial design (Kirk (1995),
page 441) with four factors as test statistics. More specifically, this analysis-of-variance model
partitions the total sum of squares

SSTOT =∑
u

∑
l

∑
s

∑
e

.d+ulse − d̄+. . ./2

into main effects, second-order interactions and so on (Table 1). As the total sum of squares
can vary across replicated data sets, we use the proportion of the variation that is accounted
for by interaction components as test statistics. Table 1 shows the observed values of these test
statistics and the corresponding posterior predictive p-values that were computed for the four-
feature model. The results of the analysis indicate that most components are well represented by
the model in the sense that posterior predictive p-values are not close to 0 or 1. As an exception,
the ULS and ULSE interactions are slightly overestimated by the model and the SE interaction
tends to be underestimated. The third-order interactions ULE, USE and LSE, which account
together for about 10% of the variation in the observed frequencies, are all captured by the
model.
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Table 1. Observed proportion of the var-
iation accounted for by components of the
analysis-of-variance model and posterior
predictive p-value for a four-feature model

Component Observed p-value
proportion

SSU 0.0008 0.36
SSL 0.0172 0.57
SSS 0.0040 0.53
SSE 0.2047 0.67
SSUL 0.0001 0.75
SSUS 0.0010 0.81
SSUE 0.1446 0.29
SSLS 0.0043 0.68
SSLE 0.4782 0.41
SSSE 0.0336 0.06
SSULS 0.0002 0.98
SSULE 0.0238 0.64
SSUSE 0.0415 0.43
SSLSE 0.0357 0.24
SSULSE 0.0103 1.00

6. Discussion

In this paper we analysed experimental data on the perception of emotion from de Bonis et al.
(1999). Our analysis goes beyond the analysis of de Bonis et al. (1999) in several ways: we pre-
sented a fully Bayesian analysis of a hierarchical variant of the PFM (including Bayesian model
selection and model checking) whereas de Bonis et al. (1999) used an EM algorithm to obtain
inferences for a non-hierarchical PFM and presented no goodness-of-fit tests. A comparison
of the two models (which is not included in this paper) indicates that the hierarchical PFM
yields a better fit to the data than the non-hierarchical model both in a global way and with
respect to specific aspects of the data. Furthermore, the present paper focused on evaluating
the hypothesis of configural encoding whereas this topic was not discussed by de Bonis et al.
(1999). More specifically, it was argued in this paper that a PFM has several advantages for
testing the configurality hypothesis compared with a generalized linear modelling approach.
First, the PFM allows us to identify empirically the relevant features of emotion perception
from the data whereas a generalized linear model would take the features that are manipulated
in the experiment for granted. Note that the performance of PFMs in extracting relevant fea-
tures from the data was found to be very good in a simulation study when the DIC was used
as the selection criterion (see Meulders et al. (2003), page 71). In the present application, the
PFM identified the four manipulated facial halves to be the relevant features for the perception
of emotion and, as such, it provided a check on the manipulations that are involved in the
experiment. Second, the PFM is especially suited to investigating the configural encoding
hypothesis as it includes a (conjunctive) mechanism for modelling the combination of facial
features in processing the FE. The probabilistic feature analysis showed that there is only weak
evidence for configural encoding in perceiving positive emotions because the smile on the happy
lower half is often sufficient for perceiving such emotions. Furthermore, the analysis indicated
that there is strong evidence for configural encoding in perceiving fear. Third, as already indi-
cated by de Bonis et al. (1999), the PFM shows that basic emotions other than happiness or fear
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can be elicited by chimerical FEs; the analysis provides a clear picture of this phenomenon as
it indicates which features should be activated for an emotion to be perceived. Finally, we may
note that the distinction between PFMs and generalized linear models is not always necessary
since PFMs can in some cases be expressed as generalized linear models (Meulders, De Boeck
and Van Mechelen, 2001). For instance, a PFM in which either feature activation probabilities
or feature emotion probabilities are considered to be fixed would be equivalent to a generalized
linear model with a binomial random component, a log-link and a linear predictor that depends
on the type of face and the emotion.
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Appendix A: Computation of the deviance information criterion

Using θ as notation for parameters that are involved in the likelihood of the model, the DIC is defined as

DIC=D.θ/+pD,

with D.θ/ being the posterior mean of the deviance of the model and with pD being an estimate of the
effective number of parameters in the model, namely pD = D.θ/ − D.θ̄/, with θ̄ being the mean of the
posterior sample. For the PFM, the deviance function is specified as −2 log{p.d|σ, ρ/}.

Appendix B: Computation of Bayesian p-values

The posterior sample can easily be used to evaluate fit measures with the technique of posterior predictive
checks (Rubin, 1984; Meng, 1994; Gelman et al., 1996). In describing the computational procedures for
Bayesian p-values we may distinguish between two types of fit measures: statistics T.d/ that depend only
on the data d and discrepancy measures T.d, θ/ that depend on both the parameters θ and the data. An
example of the latter type of measure is the Pearson χ2-measure for evaluating global goodness of fit. In
the context of the present application, the Pearson χ2-measure is defined as

χ2.d, θ/=∑

t,s,e

{d+tse −E.D+tse|θ/}2

var.D+tse|θ/
,

with E.D+tse|θ/ = 18πtse and var.D+tse|θ/ = 18πtse.1 − πtse/. For statistics, the posterior predictive check
p-value can be computed by generating new data sets drep (using the draws from the observed posterior)
and by computing the proportion of replicated data sets in which T.drep/�T.d/. For discrepancy measures,
the p-value is computed as the proportion of replicated data sets in which realized discrepancies T.drep, θ/
exceed or equal observed discrepancies T.d, θ/.
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