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We present several classroom demonstrations that have sparked student
involvement in our introductory undergraduate courses in probability and
statistics. The demonstrations involve both experimentation using exams
and statistical analysis and adjustment of exam scores.

Our courses for undergraduates typically include two midterm exams and
a final. Students are of course very interested in their exam scores; here,
we present some tricks we have used to channel this interest into thinking
about statistics.

Guessing Exam Scores

We include a question at the end of the first midterm asking the student
to guess his or her total score on the other questions of the exam. As an
incentive, the student receives 5 points extra credit if the guess is within 10
points of the actual score (which is on a scale of 0 to 125). When the students
complete their exams, we keep track of the order in which they are handed
in, so that we can later check to see if students who finish the exam early
are more or less accurate in their self-assessments than the students who take
the full hour. When grading the exams, we do not look at the guessed score
until all the other questions are graded. We then record the guessed grade,
actual grade, and order of finish for each student. We have three reasons for
including the self-evaluation question. First, it forces the students to check
their work before turning in the exam. Second, it teaches them that subjective
predictions can have systematic bias (in this case, students tend to be overcon-
fident about their scores). And third, the students’ guesses provide us with
data for a class discussion, as described below.

We thank Phillip Price, Seth Roberts, and Howard Wainer for helpful comments
and the National Science Foundation for Young Investigator Award DMS-9457824.
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Figure 1 displays the actual and guessed scores for each student in a class
of 53, with students indicated by solid circles (women), empty circles (men),
and ? for a student of unknown gender. (This student had an indeterminate
name, was not known by the teaching assistants, and dropped the course
after the exam.) The points are mostly below the 45° line, indicating that
most students guessed too high. Perhaps surprisingly, men do not differ
appreciably from women. The dotted line shows the linear regression of
actual score on guessed score and displays the typical “regression to the
mean” behavior. A class discussion should bring out the natural reasons for
this effect. Figure 2 shows the difference between actual and guessed scores,
plotted against the order of finish. Many of the first 20 or 25 students, who
finished early, were highly overconfident, whereas the remaining students,
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FIGURE 1. Actual versus guessed midterm exam scores for a class of 53 students

Note. Each symbol represents a student; empty circles are men, solid circles are
women, and ? is of unknown gender. The 45° line represents perfect guessing, and
the dotted line is the linear regression of actual score on guessed score. (The separate
regression lines for men and women were similar.) Both men and women tended to
perform worse than their guesses. That the slope of the regression line is less than
1 is an instance of the “regression effect”: If a student’s guessed score is x points
higher than the mean guess, then his or her actual score is, on average, only about
0.6x higher than the mean score. A square scatterplot is used because the horizontal
and vertical axes are on the same scale.
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FIGURE 2. Difference between actual and guessed midterm exam scores, plotted
against the order of finishing the exam

Note. The exact order is relevant only for the first 20 or 25 students, who finished
early; the others all finished within 5 minutes of each other at the end of the class
period. Each symbol represents a student; empty circles are men, solid circles are
women, and ? is of unknown gender. The horizontal line represents perfect guessing.
The students who finished early were highly overconfident, whereas the other students
were less biased in their predictions.

who took basically the full hour to complete the exam, were close to unbiased
in their predictions. Perhaps this suggests that students who finish early
should take more time to check their results. (The students who finished
early did, however, have higher-than-average scores on the exam.)

When teaching this course again, we varied the procedure by handing out
Figures 1 and 2 a week before the midterm exam, discussing the overconfi-
dence phenomenon, and warning them that the same question would appear
on their exam. We were encouraged to find that, thus prepared, the students’
guesses were less biased than those of the earlier class. Figure 3 displays the
results for the unprepared class (indicated by dots, the same data as displayed
in Figure 1) and the prepared class (indicated by asterisks).

Correlations and Regressions

A nice way to illustrate the regression effect is with a scatterplot of students’
scores on the two midterm exams. The regression line of the second on the
first typically has a slope less than 1; the students who score the highest on
the first exam typically do worse on the second exam (“regression to the
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FIGURE 3. Actual versus guessed midterm exam scores for students in two terms of
introductory statistics classes

Note. The dots represent students in the first term; the asterisks represent students
in the second term, who were shown the data from the first term a week before the
exam. The students in the second term gave predictions that were less biased. A
square scatterplot is used because the horizontal and vertical axes are on the same scale.

mean”); and so forth. Many students are more interested in this example
than in the traditional regression example of parents’ and children’s heights.
Students commonly see exam scores represented as univariate distributions
(for example, mean, median, and standard deviation of scores, or stem-and-
leaf plots) but the bivariate display stimulates new thoughts.

One year, to make a different point, we recorded for each student the score
on the final exam and the number of pages used by the student in the blue
book to write the exam solutions. The two variables are negatively correlated.
Since then, we have used these data to illustrate Simpson’s paradox and the
distinction between correlation and causation. A naive interpretation of the
negative correlation between pages written and exam scores would suggest
that students could raise their scores (on average) by writing less. But this
is not so. For any given student, it would only help to write more. This is
similar to the high scores of the students who finish early on exams (see the
previous section): Students who require the entire class period to finish their
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exams have lower scores, on average, than those who finish early, but, for
any given student, staying on and working through the entire class period
can only increase his or her score.

These examples are a natural lead-in to other discussions of correlation
and causation. For example, people who own BMWs have bigger bank
balances, on average, than people who own VWs, but this does not mean
that if you sell your VW for a BMW you will have more money in the bank.
For another example, baseball players with higher batting averages receive
higher salaries, on average; does this mean that if a professional baseball
player raises his batting average he will likely get a higher salary? Well,
yes ... but why is that? Obviously the correlation alone is not enough to
convince us.

Randomizing the Order of Exam Questions

Without the knowledge of the students in the class, we prepare two versions
of the second midterm examination, identical in all respects except that the
order of the questions is reversed. We prepare equal numbers of the two
versions and mix them randomly before handing out one to each student for
the exam. In grading, we are careful not to be influenced by the order of the
questions. (If necessary, blindness can be achieved by having the students
put their names on each sheet of the exam and then tearing the exams apart
before grading, but we find grading of probability and statistics questions to
be objective enough that such a formal procedure seems unnecessary.) We
record the grades achieved by the two groups of students.

After returning the graded exams to the students, we reveal that there were
two forms of the exam and present the aggregate results; for example, the
average score was 65 for Exam A and 71 for Exam B. Should we adjust the
scores of the Exam A students upward (and the Exam B students downward)
to reflect that Exam A seems more difficult, in retrospect? A student who
took Exam B objects, noting that the two exams had identical questions—just
the order was different. But the order could have an effect, right? What if
the two forms had been randomly given to 1,000 students and this difference
had been observed—would it be “real” then? The goal here is to get the Exam
A students and Exam B students all fired up and holding opposite positions.

How can we address the question of whether the observed difference is
due to the exams or just because, say, the better students happened to take
Exam B? We can consider this as an experiment designed to measure the
difference in exam difficulties and use the standard methods to obtain an
estimate and standard error. Is the difference statistically significant? Should
we adjust the scores, and, if so, by how much? To round out the discussion,
we ask, What if the exams differed not just in their ordering, but in the
questions themselves? How would/should our statistical methods change?
This is of course a subtle question with no easy answers. Students have also
raised ethical questions about basing grades on different forms of the exam.
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In practice, the quality of the discussion is highly influenced by the observed
difference between groups, which cannot be predicted ahead of time. If the
true difference between the exams is approximately zero and the standard
deviation of exam scores is 20, then with a class of 40 students the observed
difference in means has an expected value of zero and a standard deviation
of 6.3. An adjustment of 5 to 10 points is enough for students to care about,
but anything less than 5 points might not spark much interest.

We return to this example at the end of the course when covering multiple
regression. There are two basic explanations for the differences in average
scores between the two exams: different difficulty levels of the two exam
forms and different quality of students taking the exams. Randomization
balances out the latter factor on average, but only on average. We ask the
class, How would we be able to tell if better students were taking Exam B?
What other information do we have about their abilities? That’s right—their
scores on the first exam! A difference in difficulty between the two exams
should appear as a nonzero regression coefficient on the variable exam type,
in a regression of exam score, after controlling for score on the first exam.
Of course, the above comparison of means is equivalent to this regression,
but without controlling for the first exam score. Including the control variable
should improve our estimate of the relative difficulties of the exams.

Probabilistic Answers to True-False Questions

In our course on decision theory, we introduce the Brier (1950) score for
evaluating probabilistic forecasts of binary outcomes. If a forecaster assigns
the probability p to an event, the forecaster’s Brier score is defined as 1 —
(1 — p)? if the event occurs, or 1 — p? if the outcome does not occur. This
scoring system is designed to give an advantage to forecasters who are
calibrated (given that the forecast probability is p, the event should actually
occur with frequency p) and precise (p should be as close as possible to 0
or 1, while remaining calibrated). If a forecaster has a subjective probability
w that an event will occur, the expected Brier score will be maximized by
setting p = r; that is, it is a “proper” scoring rule (see Dawid, 1986, for
more on this topic).

We cover the Brier score extensively in class, using examples such as
weather forecasting (the original motivation for the method). But we really
bring the subject to life by including on the midterm exam several true-false
questions, for which each student is asked to give a subjective probability p
that the correct answer is “True.” Their score for each question is 5 times
the Brier score. We have found that students tend to be overconfident in their
answers, frequently assigning probabilities of O or 1 (indicating certainty that
the answer is “False” or “True,” respectively) but being wrong. They have
not internalized the mathematics of the Brier score. For example, suppose
you think that the correct answer to a question is “True,” but you are not
completely sure. If you write 0.8, you will receive 4.8 points (out of a possible
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5) if you are correct and 1.8 points if you are wrong. Even a blind guess of
0.5 nets you a certain 3.75 points. Students have a greater appreciation of
calibration of forecasts after losing exam points from overconfident guessing.
There are many other possible methods of adjusting exam scores to take into
account students’ uncertainties in their answers; see, for example, Coombs,
Milholland, and Womer (1956) and DeFinetti (1965).

Conclusions

Exams are an important teaching tool for two obvious reasons: (a) the
students’ direct experience in working out the problems during the exam,
and (b) the learning that occurs while studying and preparing before the
exam. This article discusses some ways in which we have used exams to
teach statistical concepts in a third way, as direct experience, by harnessing
students’ interest in their grades. We have had success using these techniques
to involve the students in class discussions, and we believe there is the
potential for much more work in this area. However, these demonstrations
must be conducted with care: Students take their grades seriously, and it is
important to make it clear that their exam grades are not manipulated in an
arbitrary or random manner.
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