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Abstract

Maximum entropy and maximum likelihood methods are compared for a simplified
version of a medical imaging problem. Iterative reconstructions are tracked by plotting
successive values of log-likelihood and entropy, and we find a tradeoff between these
two measures of fit. Maximum likelihood is found to fit the data more closely, but
maximum entropy creates more reasonable images. We conclude that the former uses
the data efficiently, but the latter gives a better choice of image. This reasoning leads
to a somewhat Bayesian version of the constrained maximum entropy method of Gull
and Daniell (1978). The constraint of that method is interpreted from a Bayesian
perspective.

1 Background and setting up the problem

This paper discusses image reconstruction from incomplete, noisy data. Qur main example
is a simplified model of positron emission tomography (Vardi et al. (1985)). We consider
this problem on a theoretical level only, and the brief description which follows may be
thought of as motivation for our study. In emission tomography, the image = of interest is
an intensity function of radioactive emissions {rom a two-dimensional region in the human
brain. We cannot directly observe z on a ]ivé':i)erson, but we can count the emissions that
leave the brain, and observe their direction. These indirect observations come in the form
of a finite set of counts, labeled ¥ = (#15---,¥s), in 7 pairs of radiation detectors outside
the brain. (Note: all vectors in this paper are column vectors.) The assumed probability
mode] is:

¥ -~ independent Poisson (M;), i =1,... ST,
M o= (My,...,M,)
Az.
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The expectations M; (the ‘mock data’ of Skilling (1986}) are derived from = by a linear
transformation 4 of conditional probabilities. To make the problem tractable, the image
is defined on the discrete space of a grid of N picture elements or ‘pixels’. The image is
then a vector z = (24,... ,n} of nonnegative elements, and the linear transformation 4
can be identified with an matrix of rank n, each of whose columns sum to 1. (None of the
entries of A will be negative.) The parameter N is chosen by the analyst; to aveid major
discretization errors, we will typically assume N > n. Note, however, that care is then
required in picking reasonable images from a large N-dimensional space.
For this problem, the likelihood is FyIM) o< [T; M¥ e, and we define

-2LL{M |y) —2log f(y[M) + arbitrary constant

M;
23 [wlog (35) + - 1]

(This corresponds to the ‘chisquared” statistic of Skilling (1986).) In passing from the first
line to the second, we have set the constant so that -2LL{M|y) = 0 at the maximum, when
M=y

In general, the entropy of a vector ¢ = (a1, ...,ax), relative to a measure b = {b1,...,bx),

is defined as:
_ G ae/3e;
CCRED (za,-) log ( 2 /zb,.,-) .

2 Comparing maximum entropy and maximum likelihood
estimators

il

I

We will consider two simple estimators # of z. In both cases, we define the estimated
sampling expectations M = Az. First, the constrained maximum entropy estimate of Gull
and Daniell (1978) and Skilling (1986} is the # that maximizes S(#]m), subject to the
constraint: -2LL(M|y) < n. (We will define the entropy relative to the uniform measure:
m; = 1, for all j.) If the constraint on -2LL cannot be satisfied, then the maximum
likelihood estimate (defined below) will be labeled as ‘constrained maximum entropy’, too.

Second, the maximum likelihood estimate is an nonnegative image £ that minimizes
-2LL{M|y). The estimate £ will be unique, except when the absolute minimum, 2LL{M |y} =
0 (that is, A% = y) can be achieved. In this case, we choose, as a unique ‘maximum
likelihood estimate’, the # that maximizes the entropy 5(&fm), subject to the constraint:
-2LL{M]y) = 0.

Conditional on the true image z, an estimate % is a function of the random variable y-
Rather than examine an # directly, we look at its fit to the prior measure m, observations
Y, true image z, and true sampling expectations M. These four summary comparisons
are: §(&|m), -2LL(Mly), S5(2|z), and S(M|M), respectively. We are interested in the
expectations of these quantities, averaged over the sampling distribution of y. For fixed
dimensious n and N, a fixed transition matrix A, and a fixed true image 2, we can simulate
independent data sets y (from the appropriate Poisson distributions)., Given n, N, A, and
¥, a computer program finds the constrained maximum entropy and maximum likelihood
estimates of z. For each estimator, the program then calculates the average values of the




CONSTRAINED MAXIMUM ENTROPY METHODS IN AN IMAGE RECONSTRUCTION PROBLEM 431

Table 1: Approximate sampling expectations of various functions of two estimators £ of the
image x

Dimen- Recon- Fit to Fit to Fit to Fit to

sion struc- prior data: true truth in

of data tion Esti- measure: image: | data space:

True image vecior grid mator | —§(%|m) | - 2LL(M|y) | —S(&}z) | —S(M|M)
n=6 4x4 max-ent 13 6.0 J10 L0064

m.le .38 0.0 .15 .0050

8x8 max-ent .10 6.0 .16 0061

m. Le. .29 0.0 .19 .0050

20 20 20 20 n=12 4x4 max-ent .08 12.0 12 D050
20 ) 100 | 100 | 20 m.le. .89 4.1 51 0034
20 | 100 | 100 | 20 8x8 max-ent .06 12.0 A7 0053
20 20 20 20 m.le. 1.43 3.4 1.11 0037
n=24 4x4 max-ent .16 24.0 07 0115

m.le. 57 9.3 .28 0099

8x8 max-ent 13 24.0 12 0117

m.le. 1.60 2.2 1.35 0132

n=>6 4 x4 max-ent 07 6.0 .28 0067

m.l.e. .30 0.0 .38 0048

8x8 max-ent .06 6.0 .29 0066

m.le. .23 0.0 .38 0048

20 | 20 20 | 20 n=I2 4 x4 max-ent .19 12.1 36 .0064
20 | 200 ] 20 | 20 m.l.e. 1.21 5.9 .89 055
20 20 20 20 8x8 max-ent 27 12.1 .49 0066
20 | 20 20 | 20 m.le. 237 531 2.18 0057
n=24 4 x4 max-ent 21 24.0 19 0299

m.l.e. .82 11.6 .69 0411

8§x8 max-ent .14 24.0 .21 0133

ml.e. 1.69 2.2 1.24 0152

four comparisons described above, over 20 simulations of y. For this paper, we did the
above computation for 12 cases: 2 irue images £ (each defined on a 4 x 4 grid); 3 sets of
n and A; and 2 reconstruction grids (4 x 4 and 8 x 8; that is, N = 16 and N = 64). The
results are shown in Table 1.

3 ‘Tradeoff between likelihood and entropy

Table 1 shows that maximum likelihood better fits the true M, as well as, of course, the
data y. Constrained maximum entropy better fits the true =, as well as, of course, the
prior measure m. These results imply a tradeoff between fit in data space and fit in image
space, with constrained maximum entropy performing better in the key measure of fit to
the true image. Looking at the results more closely, we also find that maximum likelihood
does reasonably well when it fits the data exactly, and worse when it cannot.

Both methods of course fit the data or prior model better when they estimate over a
finer grid; at the same time, they fit the truth less well. This makes sense in our example,
because we defined the true image over the coarse grid. The constrained maximum entropy
reconstructions are only slightly worse in the fine grid, however, while some maximum
likelihood images fit far worse when allowed these extra degrees of freedom.
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The maximum likelihood estimate {(when there is no perfect fit) is found by EM (Vardi
et al. (1985)). This is an iterative algorithm, each step of which increases the likelihood of
the estimate (Dempster et al. (1977)). We can track the entropy and likelihood of the EM

iterates, starting at a uniform image (thus moving from maximum entropy to maximum -

likelihood). We have examined two such plots: one that converges to an image for which
M =y (and so -2LL{M|y) = 0) and one for which no such image exists. Interestingly,
5(#|m) decreases in each step of the algorithm, in both cases. These plots imply a tradeoff,
in models, between entropy and likelihood, especially in the region near maximurm likelihood,
where entropy shows a great decrease. For these same iterative estimates, we have also
plotted their fit S(|z) to the true image and the corresponding fit S(M|M) to the truth
in data space. Here we find that in the first few iterations, both measures of fit improve.,
However, as the algorithm approaches the maximum likelihood estimate, the fit in data
space gets slightly worse, and the fit in image space gets much worse. This is apparently
due to the spiky character of the maximum likelihood estimates and holds even in a case of
a very spiky true image.l

4 Rationale for constrained maximum entropy

To understand this apparent tradeoff, we must explore the link between a model in image
space and the data in their space. We are interested in the image z, but the data tell us
only about the sampling expectations M, and nothing about =, given M. To get an image,
we must estimate M from the information provided by the data, and then choose an #
consistent with our estimate M. We need meodels on data space and on image space, given
data. i we do not formalize our models, we are using implicit models. Perhaps these can
explain the behavior of the methods presented above.

We will embed the parameter M in a Bayesian model, and hence determine its probable
values, given the data. Then we will use maximumn entropy to select one image among all
those consistent with M, for each value in the posterior distribution of M. We do not extend
our Bayesian model to image space because, given M » inference on z would depend solely
on the prior distribution, It may be more desirable to choose our image-picking criterion
as such, rather than to model in the vast space of images. This is the rationale of Skilling
{1988).

As mentioned above, the fineness of the reconstruction grid is specified by the analyst; in
fact, there is no logical upper bound for the number N of pixels. Aside from computational
difficulties, a Bayesian modeler on z may wish to keep N low to moderate the task of
specifying a plausible distribution over the space of all images « in N-dimensional space.
Maximum entropy appears to solve this problem easily, however., Entropy is invariant under
continuous reparameterization; thus, if an image is left unchanged but is pixellized more
finely, its entropy (relative to a locally uniform measure) will not change, Furthermore, this
identical image has the highest entropy of all images, on the fine grid, that are consistent
with the original coarse image. The simulation results presented in Table 1 imply that
this invariance works to our advantage, in that the maximum entropy solution performs
relatively well over a too-fine grid.

!Graphs are available on request.
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5 Bayesian maximum entropy methods

This section discusses a maximum enfropy reconstruction method based on Bayesian esti-
mation of parameters in data space, and connects it on a theoretical level to the original
approach of Gull and Daniell (1978). Qur goal is to suggest an improved method, and to
clarify the hidden assumptions in the old method. Assume we have a posterior distribution
on (Mly). Assign, to every M, the maximum entropy image maz-ent [z(M)], satisfying
Az = M. This yields a probability distribution of images. If we want to pick just one
image, we might take M to be the posterior mean E(Mly), and pick the image maz-ent
[=(21)).

Gull and Daniell perform the more (computationally) difficult task of maximizing 5(z|m)
subject to the nonlinear constraint: -2LL(M]y) < C. If we wish to follow this route, we
might set C to the posterior mean of -2LL, given y. Asymptotically (that is, with A and
n fixed, but with more Poisson data), -2LL{M|y) ~ x%, with mean n. This gives some
justification for the usual constraint value ¢ = n. From the Bayesian perspective, however,
we should consider the posterior distribution of -2LL, conditional on the data y. In a small
sample, we would certainly prefer to set C = E(-2LL(M|y)), rather than C = =, for the
constraint: -2LL{Mly) < C. In fact, one may observe data y such that -2LL{M|y) > = for
all positive images z.

6 Illustrative examples

This section shows the use of the methods described abave as applied to three situations.
We start with a simple, straightforward example and move to an approximation of the main
example of this paper. The examples in this section will be based on the Normal model:

g~ N(Mi,0%), i=1,...,n.

The sampling expectations M will again be expressed as an all-positive linear transformation
of an all-positive image:

M = Az, with N pixelsin 2, N > n. A has rank n.

The fit to the data is then measured by a sum of squares:
2LL(Mlg) = Y (M5 - ).

The range of the transformation A4, applied to the set of nonnegative images «, is a convex
region in data space that we will call P. If y € P, then there is an image (in general, an
(N — n)-dimensional space of images) that fits the data perfectly. We put a uniform prior
distribution on M, for all M € P.

In our first example, we set N = n» and A to the identity, so M = z. The posterior
distribution of M is truncated Normal:

(Mily;) ~ N(y;,0%), constrained to M; > 0, fori=1,...,n.
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If all the observations y; are appreciably greater than ¢, the truncation will be unimportant.
In this case,
-2LL(My) ~ X3

For any specific M, the only possible image is # = M, and the posterior distribution of
maximum entropy estimates is the truncated n-dimensional Normal, centered at y.

Our second example is the same, but with the additional prior restriction that all the
M;’s be equal. Thus restricted, the n-dimensional Normal posterior distribution becomes a
univariate Normal on the common parameter M;:

2
(Mly) ~ N(gj,%), constrained to M; > 0,

SLL(M|y) = n(M;;" 7)* + Z {2 0—-21‘7)2.

Assuming ¥ is sufficiently far from 0, the conditional distribution of (ﬂ%'{-ﬂily) is x%, and
-2LL{M]y) is just that random variable plus a constant that is known, given y. Uncondi-

tional on the data, this constant has expectation E(E-(:;;!")z) =n-1

In our third example, ¥ > n and A is a complicated matrix. P is now a convex region in
data space bounded by m hyperplanes that intersect the origin. The posterior distribution
of M, given y, is truncated Normal once again, but this time the truncation matters. The
data y might not lie within P. Also, -2LL(M}y) will no longer be approximately distributed
as x2, and its expectation, given y, will most likely not be close to n. As o? decreases,
however, y becomes closer to the true M and less likely to be near the boundary of P.
Thus, the truncation becomes less important, and as o2 — 0, we return to the geometry
and distribution of (M|y) of the first example of this section. Of course, for any M, we
must still choose a maximum-entropy image £ from an (N — n)-dimensional space satisfying
A% = M. This third example is very similar to the main example of this paper, inasmuch
as the Normal distribution approximates the Poisson. The asymptotic case of infinite data
corresponds to g% — 0.

7 Discussion

This last example allows us to understand the problems of the maximum likelihood recon-
- struction. If y ¢ P, this reconstruction will lie on the boundary of P, yielding an image
with zeroes in many cells. The chance of this happening depends on how close 4 is to
being singular, as well as on the amount of Poisson data and on the true image; it can
happen even with a smooth true image. On the other hand, if y € P, thén the maximum
likelihood estimate gives M = y. This may overfit the data in those dimensions in which
M is constrained to a narrow region. In such directions, the posterior density of M may be
nearly constant. An estimator that fits too closely to the position of y will be subject to the
latter’s great sampling variability. These problems disappear asymptotically, of course. As
the number of counts increases, maximum likelihood becomes as precise as any estimator
of M.

Our theoretical study also explains the entropy-likelihood tradeoff in two ways. First,
as -2LL is allowed to increase, a larger region in data-space, and thus in image-space,
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becomes available in which to search for high-entropy images. Second, if the data y are a
small sample, parameters A with likelihoods near the maximum will generally be peculiar
points, probably nearer to the boundary of P than any reasonably smooth true image. This
is apparently common in practice, to judge from reports of unrealistic maximum likelihood
reconstructions for hypothetical and real tomography data (Vardi et al. (1984), Fox (1987)).
Such behavior can make the tradeoff more extreme near the maximum of likelihood.

In conclusion, maximum entropy and maximum likelihood estimates for our problem
differ; the former better fits the true image and the latter better fits the data. When fit
on an overly fine grid of pixels, maximum entropy produces reasonable images; maximum
likelihood does not. In light of these results, we suggest attacking our image reconstruction
problem with separate analyses on data space and image space. We can first estimate our
knowledge of the sampling expectations M, from the noisy data y. For any point in the
posterior distribution of M, we car then choose the maximum entropy image z consistent
with this incomplete information. A simple example shows the connection between this
method and that of Gull and Daniell (1978) and Skilling (1986). We interpret the ‘hard
constraints’ of the latter methods as an approximation to our Bayesian approach.
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