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We analyze the effects of redistricting as revealed in the votes received by the Democratic and Republican candidates for state
legislature. We develop measures of partisan bias and the responsiveness of the composition of the legislature to changes in
statewide votes. Our statistical model incorporates a mixed hierarchical Bayesian and non-Bayesian estimation, requiring
simulation along the lines of Tanner and Wong (1987). This model provides reliable estimates of partisan bias and responsiveness
along with measures of their variabilities from only a single year of electoral data. This allows one to distinguish systematic
changes in the underlying electoral system from typical election-to-election variability.
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1. INTRODUCTION

State and national legislators in the United States are
largely elected by plurality vote in individual geographic
districts, whose boundaries are redrawn after every de-
cennial census. In addition to ensuring equal populations
in each district, redistricting affects which candidates are
elected, the relative strengths of the two parties in a leg-
islative house, and other features of the electoral system
in a state.

Partisans on both sides generally expend considerable
political and financial resources trying to control the re-
districting process. Because redistricting affects not only
immediate political outcomes, but also the fundamental
rules of the game, it has always been a highly controversial
partisan issue (Cain 1984). When partisans do not receive
satisfaction in the legislative arena, they often take their
case to the courts. After decades of these cases, the Su-
preme Court finally declared political gerrymandering jus-
tifiable (Davis v. Bandemer 1986). The court has not yet
settled, however, on an acceptable standard for or mea-
sure of an unfair redistricting plan.

In this article, we analyze the effects of redistricting as
revealed in the votes received by the Democrats and Re-
publicans in elections for state legislative seats. We also
develop measures of partisan bias and the responsiveness
of the partisan composition of the legislature to changes
in statewide votes. Our conclusions depend on the ob-
served distribution of votes across the legislative districts,
as affected by redistricting, and on assumptions about how
these district-level votes change as the statewide vote
changes. We also explicitly model uncontested district
elections.

Related quantitative issues that we do not directly dis-
cuss here, but that could be studied with our model, in-
clude trends in “marginal seats,” the importance of in-
cumbency, the effectiveness of racial gerrymandering, the
effect of redistricting on individual districts, and the recent
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declining responsiveness of the U.S. House of Represen-
tatives to vote swings (Gelman and King, in press; King
and Gelman, in press).

Our statistical methodology involves a hierarchical ran-
dom-effects model with a mixture of Bayesian and non-
Bayesian estimation, summarized probabilistically. Our
Bayesian computation requires simulation along the lines
of Tanner and Wong (1987).

2. THE DATA

We analyze the votes received by Democratic and Re-
publican candidates for the lower house of the legislatures
of Ohio, Connecticut, and Wisconsin, in the seven elec-
tions held in even-numbered years from 1968 through 1980.
All elections in these states were by plurality vote in single-
member districts, and, except for two districts in Wisconsin
in 1980, were won by one of the two major-party candi-
dates. As a result of redistricting in the 1960s, all districts
had roughly equal populations. As a sample of our data,
Table 1 shows votes in each district election in Ohio in
1972 and 1974. (Our data are available from the Inter-
University Consortium for Political and Social Research.)

The Democrats controlled the 1971 Ohio redistricting
process and redrew the 99 districts. Connecticut had 177
districts in 1968-1970; during the 1971 redistricting, the
number of districts was reduced to 151 and the Republi-
cans controlled where the lines were drawn. Wisconsin’s
100 districts were redrawn in 1971 by bipartisan agree-
ment.

For convenience, we will henceforth refer to the Dem-
ocratic proportion of the two-party vote for a given district
election as the district vote. We label the average of these
proportions, over all districts in a given state and election,
as the average district vote.

Some district elections feature a single candidate with
insignificant opposition or none at all. We refer to such
an election as uncontested if one candidate gets more than
95% of the two-party vote. The proportion of uncontested
elections among all of the district elections varies greatly
over the three states and seven election years, with an
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Table 1. Votes Received by Democrats and Republicans in Ohio Legislative House Districts, 1972 and 1974

1972 1974
District Democrat Republican District Democrat Republican District Democrat Republican District Democrat Republican
1 18,250 22,798 51 22,488 16,951 1 20,490 15,107 51 20,952 7,473
2 25,679 17,130 52 24,336 14,083 2 18,669 11,969 52 21,499 7,697
3 0 33,954 53 25,932 8,997 3 12,778 20,272 53 19,522 6,225
4 23,684 10,212 54 22,780 15,229 4 15,765 9,813 54 13,885 15,582
5 21,723 16,130 55 20,198 9,583 5 11,711 9,708 55 19,400 6,538
6 28,309 0 56 21,603 10,678 6 20,584 5,763 56 21,361 9,262
7 20,334 12,675 57 16,533 17,114 7 20,193 9,778 57 11,677 13,944
8 16,622 3,656 58 13,587 22,105 8 11,1583 2,261 58 12,286 16,158
9 11,946 10,396 59 14,877 20,234 9 9,566 0 59 13,834 14,211
10 12,383 5,316 60 14,556 13,940 10 8,277 1,890 60 12,550 9.659
11 20,091 18,539 61 16,507 17,825 11 22,398 5,221 61 15,589 13,451
12 18,337 20,561 62 23,668 13,428 12 9,865 19,599 62 18,802 8,178
13 16,688 1,970 63 13,868 18,402 13 10,687 966 63 9,713 9,948
14 22,865 11,218 64 13,984 22,593 14 11,478 8,087 64 10,227 17,747
15 21,401 0 65 11,710 29,134 15 15,905 1,936 65 12,282 21,978
16 27,783 12,701 66 15,500 30,156 16 21,909 10,403 66 11,587 24,978
17 24,511 15,716 67 20,409 17,931 17 22,327 11,274 67 17,556 13,500
18 28,805 14,454 68 21,489 15,574 18 22,416 8,138 68 17,070 12,882
19 17,687 23,463 69 16,592 21,816 19 12,431 19,832 69 12,501 17,328
20 15,225 28,639 70 14,172 21,642 20 17,129 19,927 70 12,708 16,905
21 12,392 23,427 71 22,439 20,831 21 10,732 16,700 71 27,279 0
22 16,635 27,940 72 15,616 19,879 22 13,945 21,762 72 12,734 15,738
23 16,986 7,681 73 0 26,079 23 11,332 0 73 13,178 14,974
24 22,856 12,779 74 22,359 12,626 24 16,270 9,187 74 19,691 9,488
25 20,298 12,292 75 14,653 27,063 25 15,566 7,078 75 15,290 19,913
26 15,181 30,866 76 16,438 24,947 26 13,809 24,345 76 13,940 20,516
27 12,045 35,880 77 14,054 23,185 27 11,655 28,036 77 14,526 18,326
28 20,637 27,011 78 18,867 24,829 28 0 27,907 78 12,307 18,867
29 17,418 13,589 79 15,459 26,221 29 14,001 9,433 79 11,312 19,455
30 15,080 9,381 80 24,237 17,392 30 10,117 3,935 80 23,053 10,137
31 19,754 12,971 81 14,606 24,845 31 16,409 7,302 81 14,778 18,131
32 20,068 13,059 82 18,349 24,436 32 16,402 8,042 82 9,825 23,615
33 13,182 22,046 83 12,650 28,287 33 11,627 16,281 83 11,787 21,775
34 15,101 14,159 84 23,448 17,882 34 12,035 8,516 84 22,858 9,891
35 19,344 10,166 85 15,896 24,792 35 12,146 6,785 85 12,670 19,082
36 19,375 7,792 86 18,969 22,815 36 15,336 2,672 86 12,437 18,466
37 17,149 11,274 87 21,828 15,253 37 13,795 8,310 87 18,484 11,590
38 10,759 30,945 88 20,732 12,816 38 0 23,672 88 20,849 0
39 24,246 18,772 89 27,325 16,336 39 20,149 11,974 89 26,780 9,673
40 21,006 20,625 90 25,239 18,272 40 14,268 14,378 90 23,829 14,405
41 29,507 11,524 91 19,783 20,492 41 22,472 6,734 91 14,733 17,729
42 21,635 17,233 92 20,567 20,749 42 15,888 11,543 92 16,859 15,651
43 26,149 9,428 93 11,803 27,093 43 19,881 5,012 93 11,470 21,709
44 24,020 17,601 94 16,508 19,409 44 15,428 18,232 94 12,036 16,015
45 22,872 0 95 10,642 26,685 45 14,622 4,673 95 8,897 21,921
46 23,080 11,743 96 27,270 14,044 46 19,006 7,538 96 23,133 9,397
47 20,465 8,920 97 16,859 13,746 47 17,031 0 97 21,528 9,742
48 18,756 27,079 98 28,857 11,878 48 18,001 19,673 98 22,598 7,454
49 19,809 18,632 99 26,945 14,848 49 17,406 13,021 99 21,235 10,584
50 18,036 19,734 50 14,994 14,481
average of 10% of the seats uncontested in any election. 0.5 | 11234
No statewide election in our study had more than 23% :
5667789999

uncontested seats, except for Wisconsin in 1980, with 32%.
Election returns in uncontested districts do not adequately
reflect support for the two political parties. Since we are
interested in this party support, we define the effective
vote in the case of uncontested districts to be the (unob-
served) proportion of the two-party vote that this candi-
date would have won in his or her district had the election
been contested. We approximate the probability density
of the effective vote with a stem-and-leaf plot of the vote
proportions received by a party in a contested district, one
election before an uncontested win by that party in that
district. Figure 1 presents this plot, based on data from
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Figure 1. Stem-and-Leaf Plot of the Proportion of the Vote Received
by a Party in a Contested District Election, Immediately Preceding an
Election in Which That Party Was Unopposed in That District.
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1968-1980 in the three state legislatures considered in this
article.

3. DATA SUMMARIES AND EXPLORATION

Previous work in this field has involved various theo-
retical constructs and related data summaries, but ex-
tremely few statistical models. One early concept is the
‘“swing ratio”’—the change in the proportion of legislative
seats won by a party (S5), divided by the change in the
average district vote (V) received (Ansolabehere, Brady,
and Fiorina 1988; Kendall and Stuart 1950). This concept
was expanded to the ‘“‘seats—votes curve,” which is the
fraction of the legislative seats won by a party, as a function
of the average district vote (Niemi and Fett 1986; Quandt
1974). This curve can be expressed as the function S(V),
where the variables for fraction of seats won and average
district vote each vary from O to 1. Figure 2 presents two
examples of seats—votes curves. One reflects de facto state-
wide proportional representation, where § = V. The other
represents a highly responsive electoral system near the
middle of the votes scale, where most elections are usually
decided. Following King and Browning (1987) and King
(1989), we consider these two symmetric seats-votes curves
to represent electoral systems that are fair to the political
parties. Deviation from bipartisan symmetry is considered
partisan bias.

Of course, a party’s legislative representation is not a
function only of the number of votes it receives; a deter-
ministic seats—votes curve, as defined, cannot be more
than a theoretical construct (Tufte 1973). For this reason,
we define the seats—votes curve in real electoral systems
to be the expected value of S, as a function of V, and we
will be interested in both this conditional expectation func-
tion and variability around it. Responsiveness and bias can
be defined more formally as follows:

Responsiveness(V) = dE(S | V)/dV
Bias(V) = E(S| V)
- -ES[1-V). @)

Past researchers have empirically estimated bias and
responsiveness in two ways. The most widely used method
uses the statewide Democratic fraction of seats won and
the average statewide district vote for a legislature for each
of several consecutive elections. One can estimate the
seats-votes curve by fitting a nonlinear regression to a
scatterplot of these values, and one can calculate sum-
maries of interest from this estimated curve. This method
has the disadvantage of ignoring short-term systematic
changes in the underlying electoral system, as might result
from redistricting. Since only five elections are generally
held between redistricting processes, this method is quite
limited for present purposes.

The second method, dating back to Butler (1951) [see
also Gudgin and Taylor (1979)], creates a ‘“hypothetical”
seats—votes curve from the district votes of a single state-
wide election. This curve plots S(V), under the assump-
tion of “uniform partisan swing”’; that is, as the statewide
vote V changes, the vote proportion in each district changes
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Figure 2. Example of Seats-Votes Curves.

by the same amount. This method breaks down with dis-
trict votes near 0 or 1 and, in general, is based on an overly
strict assumption about voting patterns.

Before describing our stochastic model, we give some
exploratory data summaries. We are interested in the dis-
tribution of district vote across a state. Figure 3 shows a
stem-and-leaf plot of the district votes for the contested
elections in Ohio in 1972. This pattern of two main humps
with irregular outliers is typical of recent U.S. legislative
elections. We identify the two humps with Democratic and
Republican “safe seats,” and we identify the irregular pat-
tern with the irregular influences of geography on election
districts and individual candidates on election results.
Sometimes such a plot for an election shows only one main
hump in the middle; this corresponds to a competitive
system with few safe seats.
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Figure 3. Stem-and-Leaf Plot of the Democratic Proportion of the
Two-Party Vote in Contested District Elections in Ohio, 1972.
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Figure 4. Electoral Swing in Contested Districts, Ohio State House,
1972-1974.

Finally, we would like to know how much partisan vot-
ing patterns persist from election to election. As an ex-
ample of this, Figure 4 shows a scatterplot of district vote
proportions for contested elections in Ohio in 1972 and
1974. (Each point on the plot represents one district.) Note
that district votes clearly do not move exactly according
to “uniform partisan swing”; if they did, all the points
would fall precisely on a single line with slope 1. Instead,
the points in Figure 4 are scattered around a straight line
with slope 1 and intercept equal to the statewide vote
swing. We interpret the residual standard deviation in this
figure to be within-district random variation about the
statewide average vote swing. (A nonuniform shift would
be apparent if the points in Fig. 4 fit a clearly nonlinear
pattern or no pattern at all.)

4. A PROBABILISTIC MODEL

To avoid problems with vote proportions near 0 or 1,
we work with the logit of district votes in contested elec-
tions. We label v;, as the Democratic vote in district i and
election ¢, and u; = logit(v;) = In[v,/(1 — v,)] for con-
tested elections. (For uncontested elections, u;, is the logit
of the unobserved effective Democratic vote. This will be
dealt with in Sec. 5.1.)

Our linear model, fit to a single state, is

un‘ -~ N(ait’ 02), air = V: + 5“ (2)

where y; is a district effect, J, is a statewide election effect,
and the Normal distributions are independent.

We assume, therefore, that vote swings about the state-
wide mean are spatially independent across districts. More
information about individual districts might enable one to
better characterize district-level vote swings. Unfortu-
nately, these data have not been collected, and it would
be quite difficult to do so. Modeling districts with addi-
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tional information such as spatial correlation or covariates,
if they were available, would probably yield more accurate
estimates of the seats—votes curve. Omitting this unavail-
able information is unlikely to systematically bias our re-
sults.

From the logit effective vote proportions u, = (uy, . . . ,
u,,) for an election ¢, we define the aggregate Democratic
proportions of votes and seats:

_lg, 2! -1
Vr - n ':El Ui = n E] lOglt (uir)
1o 1
Sr = ’—1' 2 sif = ';l Z 1(“”>0). (3)

1

We consider the vector y = (y;, . . . ,,), along with
the variance o2, to identify an *‘electoral system.” We will
summarize this system by the seats-votes curve E(S, | V,,
y), its variance var(S, | V,, y), and functions of these such
as the bias and responsiveness functions. Since the ele-
ments of y remain unknown, we model them as random
effects by letting the y’s be distributed as a three-point
Normal-mixture distribution with a prior distribution, all
described in Section 5.2. We then average over our un-
certainty in y as represented by this distribution.

The foregoing model is applied to a single observed
statewide election, labeled ¢ = 0, with observations u,, (i
=1, ..., n)and the assignment §, = 0. This assignment
is arbitrary and does not affect our estimates of the seats—
votes curve. If an arbitrary constant were added to each
effective district vote u,, our results would not change. A
family of “hypothetical election” results u, is defined by
the linear model, applied to a range of statewide vote shifts
6,. This assumption that most electoral districts respond
approximately as the statewide total does is widely ac-
cepted in the political science literature (Butler 1951; Niemi
and Fett 1986), although it has not been formalized sta-
tistically. Our data, such as those in Figure 4, are consistent
with this pattern. This is also consistent with our assump-
tion in Equation (2) of no interaction between y, and J,.

We apply this model to our data in four steps.

1. Preliminary Estimation. With data from several con-
secutive elections, we estimate the global parameters of
the model. These include g% and uncontested effective vote
parameters u,, and o ,,, described in Section 5.

2. Bayesian Estimation for a Single Election. We con-
dition on the data u;, = (u,;i = 1, . . . , n) from a single
election to sample from the posterior distribution P(y |
u,) of the vector y. This Bayesian estimation uses the
parameters determined in the previous step.

3. The Seats—Votes Curve. We average over P(y | u)
to estimate the posterior seats—votes curve:

E(S, | Vi, up). 4)

(We allow V, to range from 0 to 1 by allowing 6, to range
from — o to » on the logit scale.) We estimate the expected
variance of results across hypothetical elections:

E(var(S, | Vi, w, 7). 5
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We also estimate uncertainty in the seats-votes curve due
to our uncertainty in y:

var(E(S, | V,, o, 7))- (6)

4. Summaries. From the estimated seats-votes curve
(4) and related conditional expectations, we estimate bias
and responsiveness summaries of the definitons in (1):

(average bias between V = .45 and V = .55)

1 55
=35_—4—5f_45 (ES|V) -1 - ES|1-WV)]av

(average responsiveness between V = .45 and V = .55)

1
= — V=. — ES|V=.45] (@7
< [E(S|V = .55 — ES| N )
We define these summaries from V = .45 to V = .55.
This is a convenient range, symmetric about .5, within
which most statewide votes fall. We calculate the posterior
mean and variance of these summaries.

5. ESTIMATION OF HYPERPARAMETERS
51 Election-to-Election Variability

Our linear model creates hypothetical district election
results u; from the district effects y; by adding a constant
shift §, to the mean in every district. From here, we add
the variability in (2); this “unexplained” variance o de-
termines the scope of the electoral system identified with
the family of hypothetical elections. Setting o> = 0, for
example, causes the district effects to be exactly identified:
9; = u;. This assumption of “‘uniform partisan swing” on
the logit scale cannot hope to fit more than a single state-
wide election.

We estimate o2 from a model of the variances in real
district-level election results, across time. We use the fol-
lowing conceptual model:

(variance between two elections, Y years apart)

= (variance due to randomness in individual

elections) + (variance due to changes in the
underlying electoral system).

In this framework, the first term on the right side of this
equality is 2¢%; we imagine the second quantity to be roughly
proportional to Y. Note that, from (2), the difference
uy — Wy, has variance 202 if their two Normal distributions
are independent.

For each state, we calculate the sample variance of the
change in district vote between election years ¢, and &, for
districts contested in both elections:

S%ltz = '—1_ 2 [uitl - Uy, — (Etl - iztz)]z’
Reg,
where 7,,, is the number of districts in the state contested
in both elections ¢, and t,. We calculate this quantity for
all election years (¢, t,), t; < t,, between 1972 and 1980;
that is, we do not track district votes across redistricting.

Joumnal of the American Statistical Association, June 1990

We then fit a linear regression of the values s?,, as a
function of the time differences (¢, — t,). For each state,
our estimate of 202 is just the estimate of the constant
term in this regression, and with an estimate of the regres-
sion slope pooled across the three states. This yields es-
timates of ¢ (on the logit scale) as .22, .19, and .22 for
Ohio, Connecticut, and Wisconsin, respectively, each with
a standard error of estimation of .02.

5.2 The Distribution of District Effects y;

We need to estimate the vector y of district effects and
our uncertainty in it. Embedding y in a lower-dimensional
probabilistic model allows us to estimate these n district
effects from the n data points u;; we can also then con-
veniently summarize our results in a posterior distribution.

We consider the district effects to be drawn from a mix-
ture of three Normal distributions, identified by an eight-
dimensional parameter 0 = (y;, p? — 0% 4;;j = 1, 2, 3)
of means, variances, and mixture proportions, with the
constraint 4, + 4, + 4; = 1. These three humps are meant
to fit plots like Figure 3, with areas of Democratic strength,
areas of Republican strength, and some districts that fit
no clear pattern. The parameter p? is the variance of the
jth Normal distribution in the density of observed district
vote proportions u;; (p? — ¢?) is the variance of the jth
Normal distribution in the density of expectations y;.

The method of maximum likelihood is inadequate to
estimate these eight parameters, since the likelihood func-
tion is unbounded. Therefore, we give the eight param-
eters a prior distribution and move to Bayesian estimation.
It is mathematically convenient, and substantively suffi-
cient, to choose a family conjugate to an N(y;, g2) distri-
bution:

#i~ Ny, 03),  j=1,2,3

p/'_2 ~ r(%ap,’ %ﬂp,),

(41, 42, 43) ~ Dirichlet(a;,, a;,, a,,). 8
Table 2 specifies these distributions; we have chosen these
hyperparameters based on our substantive knowledge, and
from inspection of stem-and-leaf plots like Figure 3 and
for many statewide elections (King and Gelman in press).
When possible, we approximate to make prior assump-
tions about @ vague rather than overly restrictive. Note
that the prior distribution for y;is symmetric about 0, hence
treating the political parties equally. We allow the param-
eters y and 6 to change each election year.
Finally, we truncate this distribution so that (p? — ¢?)
=0forj=1,2,3.

j=1,23

Table 2. Specified Hyperparameter Values for the Prior
Distribution on 0

Parameter j=1 j=2 j=3
My -4 4 0
g, 4 4 3
a, 4 4 4
B, .16 16 .64
a, 19 19 4
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5.3 Uncontested Elections

For an uncontested Democratic district election, we ap-
proximate the uncertainty in the effective vote by the in-
formation in the stem-and-leaf plot of Figure 1. We then
fit this to a Normal density on the logit scale: that is, for
each uncontested seat i,

~ 2
Uio N(:uuna Oun)-

Our data yield the estimates (&, 6,,) = (.74, .57). As-
suming this distribution to be independent of u;, in Equa-
tion (2), we get another Normal distribution for the un-
contested district effects:

-~ N(qun’ Uzn - 02) (9)

where g2, > 02 We then truncate this distribution to be
all-positive, so that an uncontested seat will always favor
the winning party. We also symmetrically define y; for a
Republican uncontested district to be distributed as
N(— ttun, 02, — 0?), truncated to be negative. (Recall that
0 on the logit scale is .5 on the votes scale.)

6. BAYESIAN ESTIMATION FOR A
SINGLE ELECTION

We summarize posterior distributions by sampling from,
in the following order:

1. P(0 | ng)
2‘ P(y | 0’ U(])
3. P(u| 6, 7, 0, ug) = P(u,| 6, 7).

Together, these steps amount to sampling from the desired
posterior distribution of election results. (All of these dis-
tributions are of course conditional on the parameters
specified in Sec. 5.)

64 Averaging Over Uncertainty in 6

The likelihood function P(u, | ) is the product of n
independent densities: u;, ~ Normal-mixture(y,, pZ, 4,; j
= 1, 2, 3). The posterior density P(0 | u,) is cumbersome,
because of the Normal-mixture terms in the likelihood.
Direct sampling or numerical integration over this eight-
dimensional distribution seems impossible. With a Normal
likelihood, however, simulation of 6§ would be easy. We
exploit this possibility through the data augmentation al-
gorithm of Tanner and Wong (1987).

First, we decompose the Normal mixture through a ma-
trix of unobserved indicator variables t = (7,50 = 1,. . .
n;j =1,2,3). The likelihood P(x, | 6) can then be factored
into independent multinomial distributions for the indi-
cators (11, Tp, T3 | ) ~ multinomial(4,, 4,, 4;; 1), for i
=1, ..., n, and a Normal distribution for the data,
conditional on the indicators (u, | 7;, = 1, 0) ~ N(u,
a?).

]Next, we sample from P(0 | u,), in two steps, using the
intermediate variable .

1. Sample from P(z | u,)
2. Sample from P(6 | 7, uy).

Step 2, using Bayes’s theorem with our conjugate prior
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distributions (8), is straightforward:
(pi2] 7, uo) ~ T'(Me, + 1), 3B, + SS))),
J=123,
(:u] | pjz’ T, uO) ~ N(ﬂ;*a p;k)’ =1,2,3,
and
(A1, A2, A3 | 7, ug) ~ Dirichlet(a;, + n;;j = 1,2, 3),
where
ol + Pty

n. = E T : 'u* = ————
] 12 J 2 2 2
7 oun; + pj
— 77.)2
SS] - 2 T,j(u,'g - u]) Py
i
2 52
1 Oup)
— 2 /
u = — 2 T Au,o p* = —-—:
] Dhatl J 2 2
o njoy, + p;

In addition, the values p} are constrained to be no less
than ¢2. If we simulate too low a value for a p,, we just
keep repeating the simulation of 6 until we satisfy the
constraint.

Step 1 is intractable as stated but would be easy if 0
were known, because

(Tll’ Ti2s Ti3 | 0 uO) -~ multlnomlal()tla 12’ 13’ )

fori =1,...,n,

where

1 U — U

Mo d = <;> for each i, j,
J P

and ¢ is the standard Normal density function. In our

application of the data augmentation algorithm, we sim-

ulate a single random sample 6 * from P (6| u), as follows.

1. Choose a reasonable starting point for 0*. We use
the posterior maximum of P(6 | u,), which we estimate
by the EM algorithm (Dempster, Laird, and Rubin 1977),
again treating t as unobserved data.

2. Repeat the following steps a number of times: (a)
sample t* from P(z | 8 = 6*, u,) and (b) sample 6* from
PO |t = t*, ug). For our data, the distribution of sim-
ulated values 6* appears to converge after 10 iterations.
Increasing the number of iterations did not noticeably
change the distribution of simulated values of 0* or our
final results.

Iterations of this procedure yield approximately indepen-
dent random samples from the posterior distribution of 0.
We found that 50 iterations provided sufficient precision.

6.2 Averaging Over Uncertainty in y

We can factor the conditional posterior density as fol-
lows:

Py |0, u) = TI P(yi| 0, wo)
* H P(uio | 7i, O)P (i | 0).
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The first factor here is just the Normal error density from
the model (2), and the second factor is the Normal-mixture
density parameterized by §. Their product yields a new
Normal-mixture density with easily calculated parameters
0, for each district; we sample from these independent
distributions.

For each uncontested district, we simulate y; from the
truncated Normal distribution (9). We combine these with
the simulated values y; for contested districts to get a sam-
ple vector y from its posterior distribution.

6.3 Averaging Over u,

To estimate the seats—votes curve and its variability, we
first approximate the first two moments of the joint con-
ditional distribution P(V,, S, |y, d,), for several values of
o,. Figure 5 provides an intuitive sense of our model and
sampling procedure by plotting several simulated values
u; for 6, = 0, as a function of observed district votes u;,
for Ohio in 1972. Note the assumed distribution of effec-
tive votes for the uncontested districts.

The aggregate votes and seats are averages [Eqgs. (3)]
of their district-level counterparts v;, and s;,, which in turn
depend on y; and J, only through their mean a;, = y; +
o,. Thus the desired conditional moments can be expressed
in terms of the following expectations:

> et 1 U — a;
E(vy | @) = f_ 1+ e ; ¢ (_}_‘f_) du,
E(sil | ail) = f -¢ (u_g"l) du
0o 0 ag
= & (a;/0),
o e 21 u— q
var(vy | a;) = f (1 n e“) p ¢ (‘7—"> du
= [E(vi | @)%,

var(s; | a;) = E(s; | a;)[1 — E(s; | a;)],

and
© et ] u— a;
COV( Vi, S i) = - -
V(i 4] ) LHM«p( - )du

- E(sit | a,»,)E( Vi I aiz)‘

Some of the foregoing integrals are immediately eval-
uated through the standard Normal distribution function
®; we calculate the rest by approximating the inverse logit
function e“/(1 + e*) by a third-degree polynomial in u.

We now approximate the seats-votes curve E(S | V)
versus V by the function defined by E(S, | ) versus E(V,
| @,), implicitly parameterized by e, (or, equivalently, by
the scalar ¢,). Similarly, we approximate the variance as
follows:

cov(V, S, | a,)
var(V, | a,)

This variance depends on V, and is parameterized by 4, in
the foregoing expression. The formula would be exactly

var(S,| V,) = var(S, | @) —
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Figure 5. Simulations, Ohio, 1972.
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correct if S, and V, were jointly Normally distributed, and
it is a reasonable approximation for our problem.

6.4 Calculating Summaries

Finally, we simulate several vectors y from the posterior
density P(y | uy). Each of these samples determines an
electoral system, for which we approximate the seats—votes
curve and its variance, as described previously. From the
seats—votes curve, we calculate the bias and responsiveness
of the system between 45% and 55% [Eqgs. (7)]. Finally,
we estimate the bias and responsiveness of the true elec-
toral system, and our uncertainty in these quantities, with
the sample mean and variance of these values, over the
many independent samples of y.

All computations were done in the Gauss computer lan-
guage on an IBM PS/2.

7. RESULTS

The procedure described in Section 6 produces estimates
of an electoral system from the results of a single statewide
election. This includes estimates of the seats—votes curve,
its variability, and summaries such as the bias and re-
sponsiveness functions. Our model assumes that district
votes move in an approximate uniform manner as the
statewide vote totals change. Because of the lack of in-
formation, we assume the absence of spatial correlation.
Finally, we assume that the district votes roughly follow
a three-hump distribution specified by our family of prior
distributions. Within these constraints, our model is quite
general and fits recent legislative electoral data quite well.

An example of the complete results appear in Figure 6.
The solid line in this figure is the estimated seats—votes
curve E(S | V) for Ohio in 1972. The dotted lines show
plus and minus two standard errors of estimation: E(S |
V) = 2var(E(S | V, y))"2. Instead of presenting seven of
these figures for each of three states, we summarize the
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Figure 6. Estimated Seats—Votes Curve, Ohio, 1972.
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results for each election from 1968 to 1980, using Formula
).

The results for all seven years in Ohio appear in Figure
7, where responsiveness is plotted by partisan bias. Pooled
standard error estimates appear in the lower left of the
figure. The black square marks 1968, a year of moderate
responsiveness but with an extreme bias favoring the Re-
publicans. The next square is 1970, which is close to and
within two standard errors of 1968. In 1971, the Democrats
controlled the redistricting process, dramatically affecting
Ohio’s electoral system: the dotted line drawn between
1970 and 1972, to indicate redistricting, represents a sys-
tematic change from extreme Republican bias to slight
Democratic bias—far beyond what one would expect due
to mere random variability. The change also appears per-
manent, as the elections over the course of the rest of the
decade remain at or above the initial level of Democratic
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Figure 7. Ohio House, 1968—1980.
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Figure 8. Connecticut House, 1968—-1980.

bias. The other change in the figure is a noticeable trend
after redistricting toward lower responsiveness.

The changes in Connecticut’s electoral system are por-
trayed in Figure 8. All of the years in Connecticut have
electoral systems that are quite responsive, particularly
compared with Ohio. In 1968 and 1970, Connecticut had
essentially no partisan bias. The 1971 redistricting was
controlled by the Republicans, and their effect in biasing
the system in their favor seems quite dramatic—again much
beyond what one would expect due to random variability.
This dramatic effect seems ephemeral, however, since over
the course of the rest of the decade the electoral system
worked its way back to just about where it began. The
Republican gerrymanderers in Connecticut were ob-
viously not as successful as their Democratic counterparts
in Ohio. We speculate that the pattern of incumbency
retirements accounts for this difference—particularly since
the Watergate landslide in 1974 helped to defeat many
Republican state legislators.

Figure 9 portrays Wisconsin’s electoral system. Because
a single party did not elect a governor and a majority of
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Figure 9. Wisconsin House, 1968—1980.



282

both houses of the state legislature, Wisconsin was redis-
tricted by a bipartisan agreement between the parties. Re-
districting thus has a quite predictable non-effect on the
system: the change from 1970 to 1972 is no greater than
most other changes between consecutive elections in this
graph. Political scientists have speculated that bipartisan
redistricters primarily try to protect incumbents; with fewer
seats of both parties vulnerable to electoral swings, this
would decrease responsiveness (Mayhew 1971). Surpris-
ingly, Wisconsin’s responsiveness changes no more across
redistricting than between any other two consecutive elec-
tions. Of course, responsiveness in Wisconsin started from
a low base; perhaps redistricters could not reduce respon-
siveness any further due to the geographic pattern of voters
in the state.

When controlling the redistricting process, partisans have
successfully biased the electoral system in their favor, at
least in the short term. A glance at Figures 7-9 shows that
redistricting had no systematic effect on responsiveness in
any of the three states. All previous seats-votes models
have been either deterministic, entirely theoretical, or av-
erage over many elections. Some have ignored partisan
bias and either fit responsiveness or fixed it to the value
of 3.0; other models have assumed the electoral system to
be constant over several elections. We explicitly model
variability and generate estimates and standard errors of
bias and responsiveness for each statewide election. A
comparison of the changes between elections with the stan-
dard errors in Figures 7-9 leads us to reject deterministic
models and those with constant bias and responsiveness.

[Received November 1988. Revised September 1989.]
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